首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
SWI/SNF complexes are ATP-dependent chromatin remodeling complexes that are highly conserved from yeast to human. From yeast to human the complexes contain a subunit with an ARID (A-T-rich interaction domain) DNA-binding domain. In yeast this subunit is SWI1 and in human there are two closely related alternative subunits, p270 and ARID1B. We describe here a comparison of the DNA-binding properties of the yeast and human SWI/SNF ARID-containing subunits. We have determined that SWI1 is an unusual member of the ARID family in both its ARID sequence and in the fact that its DNA-binding affinity is weaker than that of other ARID family members, including its human counterparts, p270 and ARID1B. Sequence analysis and substitution mutagenesis reveals that the weak DNA-binding affinity of the SWI1 ARID is an intrinsic feature of its sequence, arising from specific variations in the major groove interaction site. In addition, this work confirms the finding that p270 binds DNA without regard to sequence specificity, excluding the possibility that the intrinsic role of the ARID is to recruit SWI/SNF complexes to specific promoter sequences. These results emphasize that care must be taken when comparing yeast and higher eukaryotic SWI/SNF complexes in terms of DNA-binding mechanisms.  相似文献   

2.
3.
4.
The proteins belonging to SWI2/SNF2 family of DNA dependent ATPases are important members of the chromatin remodeling complexes that are implicated in epigenetic control of gene expression. We have identified a human gene with a putative DNA binding domain, which belongs to the INO80 subfamily of SWI2/SNF2 proteins. Here we report the cloning, expression, and functional activity of the domains from hINO80 gene both in terms of the DNA dependent ATPase as well as DNA binding activity. A differential expression of the various domains within this gene is detected in human tissues while a ubiquitous expression is detected in mice. The intranuclear localization is demonstrated using antibodies directed against the DBINO domain of hINO80.  相似文献   

5.
Elucidating the mechanism of ATP-dependent chromatin remodeling is one of the largest challenges in the field of gene regulation. One of the missing pieces in understanding this process is detailed structural information on the enzymes that catalyze the remodeling reactions. Here we use a combination of subunit radio-iodination and scanning transmission electron microscopy to determine the subunit stoichiometry and native molecular weight of the yeast SWI/SNF complex. We also report a three-dimensional reconstruction of yeast SWI/SNF derived from electron micrographs.  相似文献   

6.
7.
The Drosophila brahma (brm) gene encodes an activator of homeotic genes related to the yeast chromatin remodeling factor SWI2/SNF2. Here, we report the phenotype of null and dominant-negative brm mutations. Using mosaic analysis, we found that the complete loss of brm function decreases cell viability and causes defects in the peripheral nervous system of the adult. A dominant-negative brm mutation was generated by replacing a conserved lysine in the ATP-binding site of the BRM protein with an arginine. This mutation eliminates brm function in vivo but does not affect assembly of the 2-MD BRM complex. Expression of the dominant-negative BRM protein caused peripheral nervous system defects, homeotic transformations, and decreased viability. Consistent with these findings, the BRM protein is expressed at relatively high levels in nuclei throughout the developing organism. Site-directed mutagenesis was used to investigate the functions of conserved regions of the BRM protein. Domain II is essential for brm function and is required for the assembly or stability of the BRM complex. In spite of its conservation in numerous eukaryotic regulatory proteins, the deletion of the bromodomain of the BRM protein has no discernible phenotype.  相似文献   

8.
In most eukaryotes, genes encoding ribosomal RNAs (rDNA) are clustered in long tandem head-to-tail repeats. Studies of Saccharomyces cerevisiae have indicated that rDNA copy number is maintained through recombination events associated with site-specific blockage of replication forks (RFs). Here, we describe two Schizosaccharomyces pombe proteins, homologs of S. cerevisiae Slx1 and Slx4, as subunits of a novel type of endonuclease that maintains rDNA copy number. The Slx1-Slx4-dependent endonuclease introduces single-strand cuts in duplex DNA on the 3' side of junctions with single-strand DNA. Deletion of Slx1 or Rqh1 RecQ-like DNA helicase provokes rDNA contraction, whereas simultaneous elimination of Slx1-Slx4 endonuclease and Rqh1 is lethal. Slx1 associates with chromatin at two foci characteristic of the two rDNA repeat loci in S. pombe. We propose a model in which the Slx1-Slx4 complex is involved in the control of the expansion and contraction of the rDNA loci by initiating recombination events at stalled RFs.  相似文献   

9.
Interactions of the yeast chromatin-remodeling complexes SWI/SNF and RSC with nucleosomes were probed using site-specific DNA photoaffinity labeling. 5 S rDNA was engineered with photoreactive nucleotides incorporated at different sites in DNA to scan for the subunits of SWI/SNF in close proximity to DNA when SWI/SNF is bound to the 5 S nucleosome or to the free 5 S rDNA. The Swi2/Snf2 and Snf6 subunits of SWI/SNF were efficiently cross-linked at several positions in the nucleosome, whereas only Snf6 was efficiently cross-linked when SWI/SNF was bound to free DNA. DNA photoaffinity labeling of RSC showed that the Rsc4 subunit is in close proximity to nucleosomal DNA and not when RSC is bound to free DNA. After remodeling, the Swi2/Snf2 and Rsc4 subunits are no longer detected near the nucleosomal DNA and are evidently displaced from the surface of the nucleosome, indicating significant changes in SWI/SNF and RSC contacts with DNA after remodeling.  相似文献   

10.
An ATP-dependent DNA translocase domain consisting of seven conserved motifs is a general feature of all ATP-dependent chromatin remodelers. While motifs on the ATPase domains of the yeast SWI/SNF and ISWI families of remodelers are highly conserved, the ATPase domains of these complexes appear not to be functionally interchangeable. We found one reason that may account for this is the ATPase domains interact differently with nucleosomes even though both associate with nucleosomal DNA 17–18 bp from the dyad axis. The cleft formed between the two lobes of the ISW2 ATPase domain is bound to nucleosomal DNA and Isw2 associates with the side of nucleosomal DNA away from the histone octamer. The ATPase domain of SWI/SNF binds to the same region of nucleosomal DNA, but is bound outside of the cleft region. The catalytic subunit of SWI/SNF also appears to intercalate between the DNA gyre and histone octamer. The altered interactions of SWI/SNF with DNA are specific to nucleosomes and do not occur with free DNA. These differences are likely mediated through interactions with the histone surface. The placement of SWI/SNF between the octamer and DNA could make it easier to disrupt histone–DNA interactions.  相似文献   

11.
C Logie  C L Peterson 《The EMBO journal》1997,16(22):6772-6782
A novel, quantitative nucleosome array assay has been developed that couples the activity of a nucleosome 'remodeling' activity to restriction endonuclease activity. This assay has been used to determine the kinetic parameters of ATP-dependent nucleosome disruption by the yeast SWI/SNF complex. Our results support a catalytic mode of action for SWI/SNF in the absence of nucleosome targeting. In this quantitative assay SWI/SNF and ATP lead to a 100-fold increase in nucleosomal DNA accessibility, and initial rate measurements indicate that the complex can remodel one nucleosome every 4.5 min on an 11mer nucleosome array. In contrast to SWI/SNF action on mononucleosomes, we find that the SWI/SNF remodeling reaction on a nucleosome array is a highly reversible process. This result suggests that recovery from SWI/SNF action involves interactions among nucleosomes. The biophysical properties of model nucleosome arrays, coupled with the ease with which homogeneous arrays can be reconstituted and the DNA accessibility analyzed, makes the described array system generally applicable for functional analysis of other nucleosome remodeling enzymes, including histone acetyltransferases.  相似文献   

12.
13.
Chromatin-remodeling enzymes can overcome strong histone-DNA interactions within the nucleosome to regulate access of DNA-binding factors to the genetic code. By unzipping individual DNA duplexes, each containing a uniquely positioned nucleosome flanked by long segments of DNA, we directly probed histone-DNA interactions. The resulting disruption-force signatures were characteristic of the types and locations of interactions and allowed measurement of the positions of nucleosomes with 2.6-base-pair (bp) precision. Nucleosomes remodeled by yeast SWI/SNF were moved bidirectionally along the DNA, resulting in a continuous position distribution. The characteristic distance of motion was approximately 28 bp per remodeling event, and each event occurred with a catalytic efficiency of 0.4 min(-1) per nM SWI/SNF. Remodeled nucleosomes had essentially identical disruption signatures to those of unremodeled nucleosomes, indicating that their overall structure remained canonical. These results impose substantial constraints on the mechanism of SWI/SNF remodeling.  相似文献   

14.
15.
16.
17.
18.
19.
20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号