首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 13 毫秒
1.
Membrane-permeable and impermeable inhibitors of carbonic anhydrase have been used to assess the roles of extracellular and intracellular carbonic anhydrase on the inorganic carbon concentrating system in Chlamydomonas reinhardtii. Acetazolamide, ethoxzolamide, and a membrane-impermeable, dextran-bound sulfonamide were potent inhibitors of extracellular carbonic anhydrase measured with intact cells. At pH 5.1, where CO2 is the predominant species of inorganic carbon, both acetazolamide and the dextran-bound sulfonamide had no effect on the concentration of CO2 required for the half-maximal rate of photosynthetic O2 evolution (K0.5[CO2]) or inorganic carbon accumulation. However, a more permeable inhibitor, ethoxzolamide, inhibited CO2 fixation but increased the accumulation of inorganic carbon as compared with untreated cells. At pH 8, the K0.5(CO2) was increased from 0.6 micromolar to about 2 to 3 micromolar with both acetazolamide and the dextran-bound sulfonamide, but to a higher value of 60 micromolar with ethoxzolamide. These results are consistent with the hypothesis that CO2 is the species of inorganic carbon which crosses the plasmalemma and that extracellular carbonic anhydrase is required to replenish CO2 from HCO3 at high pH. These data also implicate a role for intracellular carbonic anhydrase in the inorganic carbon accumulating system, and indicate that both acetazolamide and the dextran-bound sulfonamide inhibit only the extracellular enzyme. It is suggested that HCO3 transport for internal accumulation might occur at the level of the chloroplast envelope.  相似文献   

2.
3.
Carbonic anhydrase (CA) activity in wild type cells of Chlamydomonasreinhardtii was low when cells were cultured under 2% CO3 inthe light. When the gas phase was changed to air, CA activityincresaed as much as 20 fold over the next 24 hours. In contrast,CA activity did not change markedly in cells of the mutantspet 20-8 (PS II-negative), lip 10-2 (photophosphorylation-negative),and F60 (phosphoribulokinase-negative), when they were subjectedto the same induction regimen. DCMU (10–5 M) and cydoheximide(3 µg/ml) severely inhibited the induction in wild typecells. No induction occured when CO2 concentration was loweredin darkness. 3Present adress: Photoconversion Research Branch, Solar EnergyResearch Institute, Golden, Colorado 80401, USA. (Received June 7, 1982; Accepted December 25, 1982)  相似文献   

4.
Carbonic anhydrase (EC 4.2.1.1 [EC] ; CA) was purified by affinitychromatography from cells of the unicellular green alga Chlamydomonasreinhardtii which had been grown photoautotrophically in ordinaryair. Antiserum raised in rabbit against this purified CA crossreactedwith Chlamydomonas CA but not with spinach leaf CA nor bovineerythrocyte CA. When the CO2 concentration provided to the algalcells was decreased from 4% to the ordinary air level (0.04%),CA activity and the content of CA protein determined by theimmunodiffusion test showed parallel increases. In contrast,when the CO2 concentration was raised from air level to 4% CO2CA activity and its content expressed on the basis of culturevolume remained rather constant. These results indicate thatsynthesis of the CA protein is induced when the CO2 concentrationis lowered from 4 to 0.04% during algal growth. On the otherhand, the synthesis of CA stops when CO2 concentration is raisedfrom air level to 4%. (Received June 30, 1984; Accepted October 8, 1984)  相似文献   

5.
6.
We have examined the induction of carbonic anhydrase activity in Chlamydomonas reinhardtii and have identified the polypeptide responsible for this activity. This polypeptide was not synthesized when the alga was grown photoautotrophically on 5% CO2, but its synthesis was induced under low concentrations of CO2 (air levels of CO2). In CW-15, a mutant of C. reinhardtii which lacks a cell wall, between 80 and 90% of the carbonic anhydrase activity of air-adapted cells was present in the growth medium. Furthermore, between 80 and 90% of the carbonic anhydrase is released if wild type cells are treated with autolysin, a hydrolytic enzyme responsible for cell wall degradation during mating of C. reinhardtii. These data extend the work of Kimpel, Togasaki, Miyachi (1983 Plant Cell Physiol 24: 255-259) and indicate that the bulk of the carbonic anhydrase is located either in the periplasmic space or is loosely bound to the algal cell wall. The polypeptide associated with carbonic anhydrase activity has a molecular weight of approximately 37,000. Several lines of evidence indicate that this polypeptide is responsible for carbonic anhydrase activity: (a) it appears following the transfer of C. reinhardtii from growth on 5% CO2 to growth on air levels of CO2, (b) it is located in the periplasmic space or associated with the cell wall, like the bulk of the carbonic anhydrase activity, (c) it binds dansylamide, an inhibitor of the enzyme which fluoresces upon illumination with ultraviolet light, (d) antibodies which inhibit carbonic anhydrase activity only cross-react with this 37,000 dalton species.  相似文献   

7.
A mendelian mutant of the unicellular green alga Chlamydomonas reinhardii has been isolated which is deficient in carbonic anhydrase (EC 4.2.1.1) activity. This mutant strain, designated ca-1-12-1C (gene locus ca-1), was selected on the basis of a high CO2 requirement for photoautotrophic growth. Photosynthesis by the mutant at atmospheric CO2 concentration was very much reduced compared to wild type and, unlike wild type, was strongly inhibited by O2. In contrast to a CO2 compensation concentration of near zero in wild type at all O2 concentrations examined, the mutant exhibited a high, O2-stimulated CO2 compensation concentration. Evidence of photorespiratory activity in the mutant but not in wild type was obtained from the analysis of photosynthetic products in the presence of 14CO2. At air levels of CO2 and O2, the mutant synthesized large amounts of glycolate, while little glycolate was synthesized by wild type under identical conditions. Both mutant and wild type strains formed only small amounts of glycolate at saturating CO2 concentration. At ambient CO2, wild type accumulated inorganic carbon to a concentration several-fold higher than that in the suspension medium. The mutant cells accumulated inorganic carbon internally to a concentration 6-fold greater than found in wild type, yet photosynthesis was CO2 limited. The mutant phenotype was mimicked by wild type cells treated with ethoxyzolamide, an inhibitor of carbonic anhydrase activity. These observations indicate a requirement for carbonic anhydrase-catalyzed dehydration of bicarbonate in maintaining high internal CO2 concentrations and high photosynthesis rates. Thus, in wild type cells, carbonic anhydrase rapidly converts the bicarbonate taken up to CO2, creating a high internal CO2 concentration which stimulates photosynthesis and suppresses photorespiration. In mutant cells, bicarbonate is taken up rapidly but, because of a carbonic anhydrase deficiency, is not dehydrated at a rate sufficiently rapid to maintain a high internal CO2 concentration.  相似文献   

8.
The acid-tolerant green alga Chlorella saccharophila maintainedphotosynthesis and accumulated intracellular pools of inorganiccarbon over a a range of external pH from 4.0 to 7.5. This accumulationwas unaffected by treatment of cells with 10 mol m–3 acetazolamide(AZA). Cells grown at alkaline pH had extracellular carbonicanhydrase (CA), but CA activity was repressed when cells weregrown at pH 5.0. Acid-grown cells retained a high affinity forCO2, both at acid and alkaline pH, and the ability to accumulateinorganic carbon. Rates of photosynthesis of acid-grown cellsand alkaline-grown AZA-treated cells at pH 8.0 were 2.5-foldhigher than the rate of CO2 supply from the uncatalysed dehydrationof , indicating that the cells can take up as a source of substrate for photosynthesis. Isotopic disequilibrium experiments with acid-grown cells maintainingsteady-state photosynthesis at pH 7.5 demonstrate that 14C from14CO2 was taken up more rapidly than from H14. This uptake takes place against a concentration gradient. Theseresults demonstrate that C. saccharophila cells have activetransport systems for the uptake of both CO2 and and both operate without the mediation of CA. Key words: Bicarbonate transport, carbon dioxide, carbonic anhydrase, Chlorella saccharophila, inorganic carbon accumulation  相似文献   

9.
10.
Carbonic anhydrase (CA, EC. 4.2.1.1 [EC] ) activity in air-grown Characorallina was detected mainly in the intracellular fraction,most of which composed of chloroplasts and cytoplasmic gel,and not on the cell surface. Only minor levels of CA activity,on the basis of equivalent volumes, were detected in the cellsap and the cytoplasmic sol. The maximum rate of photosynthetic O2 evolution by air-grownChara corallina at pH 6.0 was twice that at pH 7.6, while theapparent Km for external inorganic carbon (Ci) at pH 7.6 wasabout three times that at pH 6.0. However, the apparent Km(CO2)was about three times larger at pH 6.0 than at pH 7.6. The Km(Ci)-valueat pH 7.6 increased severalfold in the presence of acetazolamide(AZA), an inhibitor of CA, but no inhibition was observed atpH 6.0. The pH-dependence may be due to differences in the permeabilityof AZA at the given pH values. Fixation of 14CO2 at 20 µMand of H14CO3 at 200 µM over the course of 5 swas very similar at pH 7.4. Addition of CA significantly suppressedthe photosynthetic 14CO2-fixation but it stimulated the H14CO3-fixation.This result indicates that free CO2 is an active species ofCi that is incorporated into the cell during photosynthesis. These results together suggest the following: (1) Free CO2 isutilized for photosynthesis, (2) CA is mainly located insidethe cell and functions to increase the affinity for CO2 in photosynthesisby facilitating the supply of CO2 from the plasmalemma to thesite of CO2-fixation. 3Present address: Biological Laboratory, The University of theAir, Wakaba 2-11, Chiba, 260 Japan. (Received December 9, 1988; Accepted March 22, 1989)  相似文献   

11.
A mendelian mutant of the unicellular green alga Chlamydomonas reinhardii has been isolated that is deficient in inorganic carbon transport. This mutant strain, designated pmp-1-16-5K (gene locus pmp-1), was selected on the basis of a requirement of elevated CO2 concentration for photoautrophic growth. Inorganic carbon accumulation in the mutant was considerably reduced in comparison to wild type, and the CO2 response of photosynthesis indicated a reduced affinity for CO2 in the mutant. At air levels of CO2 (0.03-0.04%), O2 inhibited photosynthesis and stimulated the synthesis of photorespiratory intermediates in the mutant but not in wild type. Neither strain was significantly affected by O2 at saturating CO2 concentration. Thus, the primary consequence of inorganic carbon transport deficiency in the mutant was a much lower internal CO2 concentration compared to wild type. From these observations, we conclude that enzyme-mediated transport of inorganic carbon is an essential component of the CO2 concentrating system in C. reinhardii photosynthesis.  相似文献   

12.
We report the changes in the concentrations and 18O contents of extracellular CO2 and HCO3 in suspensions of Synechococcus sp. (UTEX 2380) using membrane inlet mass spectrometry. This marine cyanobacterium is known to have an active uptake mechanism for inorganic carbon. Measuring 18O exchange between CO2 and water, we have found the intracellular carbonic anhydrase activity to be equivalent to 20 times the uncatalyzed CO2 hydration rate in different samples of cells that were grown on bubbled air (low-CO2 conditions). This activity was only weakly inhibited by ethoxzolamide with an I50 near 7 to 10 micromolar in lysed cell suspensions. We have shown that even with CO2-starved cells there is considerable generation of CO2 from intracellular stores, a factor that can cause errors in measurement of net CO2 uptake unless accounted for. It was demonstrated that use of 13C-labeled inorganic carbon outside the cell can correct for such errors in mass spectrometric measurement. Oxygen-18 depletion experiments show that in the light, CO2 readily passes across the cell membrane to the sites of intracellular carbonic anhydrase. Although HCO3 was readily taken up by the cells, these experiments shown that there is no significant efflux of HCO3 from Synechococcus.  相似文献   

13.
Blue light was specifically required for the induction of carbonicanhydrase (CA) activity in Chlamydomonas reinhardtii. The enhancingeffect of blue light (460 nm) was saturated at energy fluencerate as low as 0.6-0.8 W/m2. The wavelength dependency curvehad a peak at 460 nm with no effect at wavelengths above 510nm, thus showing the strong similarities to other blue lightresponses in microalgae. CA induction was strongly inhibitedby UV irradiation at 280 nm. Experiments with the flavin quencher,potassium iodide, suggested that flavin is somehow involvedin CA induction. 1On leave from the Institute of Biological Sciences, Collegeof Arts and Sciences, University of the Philippines at Los Banos,4031 College, Laguna, Philippines. (Received August 29, 1988; Accepted November 26, 1988)  相似文献   

14.
Husic HD  Marcus CA 《Plant physiology》1994,105(1):133-139
A carbonic anhydrase (CA)-directed photoaffinity reagent, 125I-labeled p-aminomethylbenzenesulfonamide-4-azidosalicylamide,was synthesized and shown to derivatize periplasmic CA in the unicellular green alga Chlamydomonas reinhardtii. The photoderivatization of purified C. reinhardtii periplasmic CA or intact C. reinhardtii cells with the reagent resulted in the modification of the large (37 kD) subunit of the enzyme. Photoderivatization of proteins in lysed C. reinhardtii cells also resulted in the specific labeling of a polypeptide of 30 kD. Centrifugation of the cell extract prior to photoaffinity labeling revealed that the labeled peptide was present predominantly in a particulate fraction. The photoaffinity-labeled 30-kD polypeptide was not observed in extracts from a mutant of C. reinhardtii that is believed to be deficient in an intracellular form of CA. These results provide evidence that the 30-kD polypeptide, which is photoaffinity labeled in lysed C. reinhardtii cells, is an intracellular form of CA.  相似文献   

15.
cDNAs encoding the large subunit and a possibly truncated small subunit of the potato tuber (Solanum tuberosum L.) adenosine 5'-diphosphate-glucose pyrophosphorylase have been expressed in Escherichia coli (A.A. Iglesias, G.F. Barry, C. Meyer, L. Bloksberg, P.A. Nakata, T. Greene, M.J. Laughlin, T.W. Okita, G.M. Kishore, J. Preiss, J Biol Chem [1993] 268: 1081-1086). However, some properties of the transgenic enzyme were different from those reported for the enzyme from potato tuber. In this work, extension of the cDNA was performed to elongate the N terminus of the truncated small subunit by 10 amino acids. This extension is based on the almost complete conservation seen at the N-terminal sequence for the potato tuber and the spinach leaf small subunits. Expressing the extended cDNA in E. coli along with the large subunit cDNA yielded a transgenic heterotetrameric enzyme with similar properties to the purified potato tuber enzyme. It was also found that the extended small subunit expressed by itself exhibited high enzyme activity, with lower affinity for activator 3-phosphoglycerate and higher sensitivity toward inorganic phosphate inhibition. It is proposed that a major function of the large subunit of adenosine 5'-diphosphate-glucose pyrophosphorylases from higher plants is to modulate the regulatory properties of the native heterotetrameric enzyme, and the small subunit's major function is catalysis.  相似文献   

16.
Existence of an internal carbonic anhydrase was demonstrated in the cyanobacterium Synechocystis PCC 6714. The enzyme, present at a low specific activity, was inducible by limitation in inorganic carbon and inhibited both in vivo and in vitro by acetazolamide. The internal inorganic carbon pool as determined by mass spectrometry, was similarly modulated by the actual inorganic carbon growth regime; its building up was also sensitive to acetazolamide. A possible role of carbonic anhydrase in inorganic carbon metabolism regulation through the control of the dimension and nature of the inorganic carbon pool is discussed.  相似文献   

17.
Inorganic Carbon Uptake by Chlamydomonas reinhardtii   总被引:3,自引:12,他引:3  
The rates of CO2-dependent O2 evolution by Chlamydomonas reinhardtii, grown with either air levels of CO2 or air with 5% CO2, were measured at varying external pH. Over a pH range of 4.5 to 8.5, the external concentration of CO2 required for half-maximal rates of photosynthesis was constant, averaging 25 micromolar for cells grown with 5% CO2. This is consistent with the hypothesis that these cells take up CO2 but not HCO3 from the medium and that their CO2 requirement for photosynthesis reflects the Km(CO2) of ribulose bisphosphate carboxylase. Over a pH range of 4.5 to 9.5, cells grown with air required an external CO2 concentration of only 0.4 to 3 micromolar for half-maximal rates of photosynthesis, consistent with a mechanism to accumulate external inorganic carbon in these cells. Air-grown cells can utilize external inorganic carbon efficiently even at pH 4.5 where the HCO3 concentration is very low (40 nanomolar). However, at high external pH, where HCO3 predominates, these cells cannot accumulate inorganic carbon as efficiently and require higher concentrations of NaHCO3 to maintain their photosynthetic activity. These results imply that, at the plasma membrane, CO2 is the permeant inorganic carbon species in air-grown cells as well as in cells grown on 5% CO2. If active HCO3 accumulation is a step in CO2 concentration by air-grown Chlamydomonas, it probably takes place in internal compartments of the cell and not at the plasmalemma.  相似文献   

18.
We have studied the role of carbonic anhydrase 9 (CA9), a cancer-associated extracellular isoform of the enzyme carbonic anhydrase in multicellular spheroid growths (radius of ∼300 μm) of human colon carcinoma HCT116 cells. Spheroids were transfected with CA9 (or empty vector) and imaged confocally (using fluorescent dyes) for both intracellular pH (pHi) and pH in the restricted extracellular spaces (pHe). With no CA9 expression, spheroids developed very low pHi (∼6.3) and reduced pHe (∼6.9) at their core, associated with a diminishing gradient of acidity extending out to the periphery. With CA9 expression, core intracellular acidity was less prominent (pHi = ∼6.6), whereas extracellular acidity was enhanced (pHe = ∼6.6), so that radial pHi gradients were smaller and radial pHe gradients were larger. These effects were reversed by eliminating CA9 activity with membrane-impermeant CA inhibitors. The observation that CA9 activity reversibly reduces pHe indicates the enzyme is facilitating CO2 excretion from cells (by converting vented CO2 to extracellular H+), rather than facilitating membrane H+ transport (such as H+ associated with metabolically generated lactic acid). This latter process requires titration of exported H+ ions with extracellular HCO3, which would reduce rather than increase extracellular acidity. In a multicellular structure, the net effect of CA9 on pHe will depend on the cellular CO2/lactic acid emission ratio (set by local oxygenation and membrane HCO3 uptake). Our results suggest that CO2-producing tumors may express CA9 to facilitate CO2 excretion, thus raising pHi and reducing pHe, which promotes tumor proliferation and survival. The results suggest a possible basis for attenuating tumor development through inhibiting CA9 activity.The carbonic anhydrases (CAs)3 are a family of enzymes that reversibly catalyze CO2 hydration to H+ and HCO3 (1, 2). Recent studies have identified several CA isoforms, such as CA4, CA9, CA12, and CA14, with extracellular-facing catalytic sites (2). Many cells express extracellular CA (CAe) isoforms, but their physiological role remains unclear. In particular, the strong link between cancer and CA9 expression (15) has provoked great interest in the role of CAe in tumor biology.Based on their topology, CAe isoforms are likely to regulate the concentration of extracellular H+, CO2, and HCO3. Cell metabolism drives transmembrane fluxes of H+ ions, CO2 and HCO3, and can provide substrate for the CAe-assisted reaction. For example, CO2 is released from aerobically respiring cells. By consuming or producing H+ ions, the CAe-catalyzed reaction will affect extracellular pH (pHe). Many membrane proteins are modulated by pHe (68). Some of these are acid/base transporters that regulate intracellular pH (pHi) (9). Such modulation allows pHe to cross-talk with pHi (10, 11), thus helping to shape the plethora of effects that pHi has on cellular physiology (3, 9, 12, 13). Extracellular pH can also affect tissue structure through the release or modulation of proteolytic enzymes that act on the extracellular matrix (14, 15). In addition, the pHe-pHi difference is important in determining the distribution of membrane-permeant weak acids/bases, which include many drugs used clinically (e.g. doxorubicin).A complete understanding of pH regulation at tissue level requires characterization of events occurring within cells, at their surface membrane, and in the surrounding extracellular space. To date, many pH studies have treated the extracellular space as an infinite, well-stirred, and equilibrated compartment of constant pH. This condition is compatible with experimentally superfused, isolated cells, but it may not apply to all cells in situ. Blood plasma is a major component of extracellular fluid. In health, plasma pH is regulated to ∼7.4 by the lungs and kidneys, acting in concert to remove excess acid/base that has been added to blood from dietary or cellular sources. Tissue fluid occupies the gap between plasma and cells (with the exception of blood-borne cells). Under conditions of ideal diffusive coupling between cells and capillaries, pHe in tissue fluid would be held close to plasma pH. However, pHe close to the cell surface can diverge from 7.4, particularly when the cell-capillary distance is increased (e.g. as a result of poor blood perfusion), when the excreted acid/base load is elevated, or when the local buffering capacity is compromised.Regulation of pHe is particularly important in tumors because these are characterized by a high metabolic rate (16, 17) and abnormal blood perfusion (18, 19). Studies have shown that tumors develop low pHe (∼6.9) in response to the mismatch between metabolic demand and the capacity to remove metabolic waste products (14, 18, 20). Tumors can survive in considerably more acidic interstitium than their non-neoplastic counterparts, partly because of their ability to maintain a favorably alkaline pHi for growth and development (21). It has been argued that tumors can survive selectively by maintaining a level of pHe that is lethal to normal cells but not sufficiently acidic to kill the tumor itself (2, 14, 22).A major fraction of cell-derived acid is excreted in the form of CO2, generated directly from the Krebs cycle or from titration of intracellular H+ with HCO3. To maintain a steep outward gradient for CO2 excretion, extracellular CO2 must not accumulate. This can be achieved by venting CO2 to the nearest capillary or by reacting CO2 locally to produce H+ and HCO3. The balance between these two fluxes is set by the diffusion distance and CO2 hydration kinetics, respectively. Diffusion is anecdotally considered to be fast. However, over long distances, CO2 diffusion may be slower than its local reactive flux. Assuming a CO2 diffusion coefficient, DCO2, of 2500 μm2/s and a spontaneous CO2 hydration rate, kf, of 0.14 s−1 (23), local CO2 consumption by reaction will be faster than CO2 diffusion over distances >190 μm (√(2 × DCO2/kf)). The reactive flux can be augmented enzymatically by CAe, to increase further the importance of reactive versus diffusive consumption of CO2. If, for instance, hydration is catalyzed 10-fold, reactive CO2 removal would exceed diffusive CO2 removal over distances of >60 μm.The remainder of transmembrane acid efflux takes the form of lactic acid, generated from anaerobic respiration or aerobic glycolysis (Warburg effect) (16). Lactic acid efflux can be accelerated if its extracellular concentration is kept low by diffusive dissipation or by CAe-catalyzed extracellular titration of H+ with HCO3. It is important to note that CAe-catalyzed hydration of extracellular CO2 will reduce pHe, whereas titration of extracellular lactic acid by HCO3 (to form CO2, a weaker acid) will raise pHe. Therefore, the capacity of CAe to regulate pHe will depend on the chemistry of the excreted acid. In most healthy tissues at rest, the majority of cellular acid is emitted as CO2. Recent work on tumors also suggests a dominance of CO2 over lactic acid (22, 24).The role for CAe in facilitating CO2 removal has been demonstrated for CA4 in skeletal muscle (25) and proposed for CA9 in tumors (2, 26). Furthermore, CA9 expression is strongly up-regulated in hypoxia (5), providing a mechanism by which CA9 levels are linked to diffusion distance. A consequence of facilitated CO2 removal is the attainment of a more uniformly alkaline pHi across the tissue. We demonstrated this recently in three-dimensional in vitro tissue models imaged for pHi (23). One prediction from that study is that CA9, although reducing pHi nonuniformity, will give rise to local extracellular acidity, particularly at the core of multicellular growths.If pHe is indeed acidified by CA9, the enzyme expression may be doubly beneficial for CO2-excreting tumors: it will help to attain (i) a favorable alkaline pHi for growth and (ii) an acidic pHe to facilitate invasiveness. Clinically, CA9 may serve as a target for drugs. In the present work, we image pHe using a novel, membrane-impermeant fluorescent pH dye in multicellular spheroid growths (∼35,000 cells) derived from the colon carcinoma cell line HCT116. We demonstrate a key role for CA9 in regulating both pHi and pHe. Furthermore, we show that, even in the hypoxic core of spheroids, the principal substrate for CA9 is cell-excreted CO2 and that the precise effect of CA9 on pHe depends on the relative efflux from cells of lactic acid versus CO2.  相似文献   

19.
Treatment with trypsin of Chlamydomonas reinhardtii cells grownin ordinary air (low-CO2 cells) caused almost complete releaseof carbonic anhydrase (CA) into the suspending medium, but didnot affect the shape and kinesis of the cells. These resultsindicate that most of the CA exists on the cell surface of low-CO2cells. The released CA has the same molecular weight, specificactivity and susceptibility to various CA inhibitors as thatpurified from non-treated low-CO2 cells. (Received August 24, 1985; Accepted November 20, 1985)  相似文献   

20.
The utilization of NO3 by green algae growing photoautotrophically under air, which are growth conditions close to their more habitual situations in nature, is associated with the excretion of NO2 and NH4+ to the culture medium. The entire process is promoted by blue light and depends on photosynthetically active radiation for the required reducing equivalents. The stimulation of NO3 utilization and of its associated NO2 and NH4+ excretions saturated at very low quantum fluxes of blue light (15 microequivalents per square meter per second) in Chlamydomonas reinhardii cells sparged with CO2-free air and irradiated with 50 microequivalents per square meter per second background red light. The wavelength dependence data of this stimulation correlated closely with the in situ photoactivation of nitrate reductase and also with the light induced increase in its biosynthesis and/or assembly.

These results indicate that the photoregulation of inorganic N metabolism in C. reinhardii is mainly due to the blue light modulation of nitrate reductase. Although flavins are the most suitable candidates to act as physiological photoreceptors, the wavelength dependence data only show a major peak in the blue region between 400 and 500 nanometers.

  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号