首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The effect of 1.5-gluconolactone on the activity of rabbit skeletal muscle glycogen synthase I was investigated. Using statistic methods (pair regressive analysis) and computer analysis on a Robotron EC 1834 personal computer, it was found that 1.5-gluconolactone is a true competitive inhibitor of the enzyme in respect of UDP-glucose. Similar to UDP, 1.5-gluconolactone increases the Km value for UDP-glucose without affecting the V value. The Ki value for 1.5-gluconolactone is equal to 123 + 8 microM and it coincides with the Km value for UDP-glucose.  相似文献   

2.
1.5-Gluconolactone was shown to exert a strong inhibiting effect on the activity of rabbit skeletal muscle glycogen synthase I. The Ki values determined according to Dixon (0.13 mM) and Chuang and Bell (0.14 mM) coincide with the Km value for UDPG. Within the pH range of 5.4-7.0, N-ethyl-N'-(3-dimethylaminopropyl) carbodiimide (less than or equal to 3 mM) specifically inhibits the carboxyl group, which was supported by the reactivation of the enzyme under mild alkaline conditions. The reversible competitive inhibitor of glycogen synthase and the UDP reaction product as well as 1.5-gluconolactone afford an effective protective effect. It is supposed that the reaction catalyzed by rabbit skeletal muscle glycogen synthase I results in the formation of an intermediate carbonium ion. An essential role in the enzyme activity belongs to the carboxylic group of the active center.  相似文献   

3.
Glycogen synthase I (EC 2.4.1.11) from rat and from rabbit skeletal muscle was phosphorylated in vitro by glycogen synthase kinase 4 (EC 2.7.1.37) to the extent of 0.8 phosphates/subunit. For both phosphorylated enzymes, the activity ratio (activity without glucose 6-P divided by activity with 8 mM glucose 6-P) was 0.8 when determined with low concentrations of glycogen synthase and/or short incubation times. However, the activity ratio was 0.5 with high enzyme concentrations and longer incubation times. It was found that the lower activity ratios result largely from UDP inhibition of activity measured in the absence of glucose 6-P. Inhibition by UDP was much less pronounced for glycogen synthase I, indicating that a major consequence of phosphorylation by glycogen synthase kinase 4 is an increased sensitivity to UDP inhibition.  相似文献   

4.
Despite the biological relevance of glycosyltrasferases (GTs) and the many efforts devoted to this subject, the catalytic mechanism through which a subclass of this large family of enzymes, namely those that operate with net retention of the anomeric configuration, has not been fully established. Here, we show that in the absence of an acceptor, an archetypal retaining GT such as Pyrococcus abyssi glycogen synthase (PaGS) reacts with its glucosyl donor substrate, uridine 5'-diphosphoglucose (UDP-Glc), to produce the scission of the covalent bond between the terminal phosphate oxygen of UDP and the sugar ring. X-ray diffraction analysis of the PaGS/UDP-Glc complex shows no electronic density attributable to the UDP moiety, but establishes the presence in the active site of the enzyme of a glucose-like derivative that lacks the exocyclic oxygen attached to the anomeric carbon. Chemical derivatization followed by gas chromatography/mass spectrometry of the isolated glucose-like species allowed us to identify the molecule found in the catalytic site of PaGS as 1,5-anhydro-D-arabino-hex-1-enitol (AA) or its tautomeric form, 1,5-anhydro-D-fructose. These findings are consistent with a stepwise S(N) i-like mechanism as the modus operandi of retaining GTs, a mechanism that involves the discrete existence of an oxocarbenium intermediate. Even in the absence of a glucosyl acceptor, glycogen synthase (GS) promotes the formation of the cationic intermediate, which, by eliminating the proton of the adjacent C2 carbon atom, yields AA. Alternatively, these observations could be interpreted assuming that AA is a true intermediate in the reaction pathway of GS and that this enzyme operates through an elimination/addition mechanism.  相似文献   

5.
Mutants of Escherichia coli which are unable to synthesize glycogen were used to study the so-called “unprimed” synthesis of glycogen. The glycogen synthase has been partially purified from these mutants. During the purification, attempts were made to separate the activity which requires the addition of an exogenous primer (primed activity) from the activity which does not require a primer but is highly dependent on the presence of some salts such as citrate and EDTA (unprimed activity). No separation between these two activities could be achieved but the results obtained by chromatography on DEAE-Sephadex indicate that there is a single form of glycogen synthase which is responsible for both unprimed and primed activity. The evidence that a single protein was necessary to catalyze these two reactions was given by the findings that mutants defective in glycogen synthase activity were unable to catalyze glucosyl transfer without added primer. At low concentration, the glycogen synthase purified from a branching enzyme negative mutant catalyzed the unprimed reaction at a slow rate even in presence of salts. A protein activator of this reaction was found in mutants lacking glycogen synthase but not in mutants lacking branching enzyme. The hypothesis that this activator is the branching enzyme itself was supported by the observation that it co-purified with the branching enzyme from a E. coli strain defective in glycogen synthase activity. EDTA or Triton X-100 increased the stimulation of the unprimed synthesis by the branching enzyme. The apparent affinity of the glycogen synthase for glycogen was increased twofold in the presence of EDTA but the branching enzyme further increased the effect of EDTA. The combined action of the glycogen synthase and the branching enzyme on the endogenous glucan associated with the synthase may account for the unprimed activity observed in vitro.  相似文献   

6.
The effects of several inhibitors (ATP, ADP, AMP, UDP, and P1) and activators (Mg2+, glucose-6-P) of rabbit muscle glycogen synthase (UDP-glucose:glycogen 4-alpha-glucosyltransferase, EC 2.4.1.11) were studied in relation to the phosphorylation state of the purified enzyme. All the modifiers had increasing effects with enzyme of increasing alkali-labile phosphate content. In experiments where combinations of effectors were present, it was apparent that (a) concentrations of modifiers in the physiological range could be significant in determining enzymic activity and (b) the sensitivity of the reaction rate to changes in phosphorylation state was critically dependent on the concentration of the small molecules. Changes in the phosphorylation of the enzyme corresponding to changes in the %I activity reported in the literature for studies in vivo were capable of producing large alterations in glycogen synthase activity. Because the magnitudes of such changes were dependent on the effector concentrations, there may be an integration of local cellular control, through small molecule effects, with hormonal control, through the phosphorylation state of glycogen synthase.  相似文献   

7.
Purified preparations of glycogen synthase are a complex of two proteins, the catalytic subunit of glycogen synthase and glycogenin, present in a 1:1 molar ratio [J. Pitcher, C. Smythe, D. G. Campbell & P. Cohen (1987) Eur. J. Biochem. 169, 497-502]. This complex has now been found to contain a further glucosyltransferase activity that catalyses the transfer of glucose residues from UDP-Glc to glucosylated-glycogenin. The glucosyltransferase, which is of critical importance in forming the primer required for de novo glycogen biosynthesis, is distinct from glycogen synthase in several ways. It has an absolute requirement for divalent cations, a 1000-fold lower Km for UDP-Glc and its activity is unaffected by incubation with UDP-pyridoxal or exposure to 2 M LiBr, which inactivate glycogen synthase by 95% and 100%, respectively. The priming glucosyltransferase and glycogen synthase activities coelute on Superose 6, and the rate of glycosylation of glycogenin is independent of enzyme concentration, suggesting that the reaction is catalysed intramolecularly by a subunit of the glycogen synthase complex. This component has been identified as glycogenin, following dissociation of the subunits in 2 M LiBr and their separation on Superose 12. The glycosylation of isolated glycogenin reaches a plateau when five additional glucose residues have been added to the protein, and digestion with alpha-amylase indicates that all the glycogenin molecules contain at least one glucosyl residue prior to autoglucosylation. The priming glucosyltransferase activity of glycogenin is unaffected by either glucose 6-phosphate or by phosphorylation of the catalytic subunit of glycogen synthase. The mechanism of primer formation is discussed in the light of the finding that glycogenin is an enzyme that catalyses its own autoglucosylation.  相似文献   

8.
A mechanism of initiation of glycogen biosynthesis in Escherichia coli has been previously postulated: In a first step, the glucosyl groups would be transferred into an acceptor protein from UDPglucose or ADPglucose by two glucosyl transferases, distinct from the glycogen synthase. In this work, the activity of transfer from UDPglucose into a methanol-insoluble fraction could not be found in the crude extracts of six independently isolated glycogen synthase-deficient mutants of E. coli K-12. Purified E. coli K-12 glycogen synthase was able to catalyze the unprimed reaction from ADPglucose and UDPglucose but at a very low rate; the rate with UDPglucose is 6–7% the rate observed with ADPglucose. With these two substrates, the unprimed reaction was strongly stimulated by the simultaneous presence of salts and branching enzyme. However the activity with UDPglucose increased rapidly at low concentrations of branching enzyme and was inhibited at physiological concentrations whereas the activity with ADPglucose reached a maximum only at these concentrations. Consequently, the relative activities found with ADPglucose and UDPglucose varied with the branching enzyme concentration. Transfer from UDPglucose was inhibited by low concentrations of ADPglucose and high concentrations of glycogen. These results suggest that the same enzyme, namely the glycogen synthase, catalyzes the unprimed transfer from ADPglucose and UDPglucose and that ADPglucose is probably the most important physiological donor in glycogen biosynthesis in E. coli.  相似文献   

9.
The effect of flavin mononucleotide (FMN) on the activity of the I- and D-forms of rabbit skeletal muscle glycogen synthase has been studied for the first time. FMN has been shown to inhibit in a noncompetitive fashion the both forms of the enzyme, the D-form being more sensitive to the effect of the inhibitor. It has been shown also that glycogen synthase has three different sites involved in the interaction with inhibitors, namely, and active site, an adenyl nucleotide binding site and a FMN binding site. FMN binding has been shown to occur mostly via the isoalloxasine ring.  相似文献   

10.
The Escherichia coli T4 bacteriophage uses two glycosyltransferases to glucosylate and thus protect its DNA: the retaining alpha-glucosyltransferase (AGT) and the inverting beta-glucosyltransferase (BGT). They glucosylate 5-hydroxymethyl cytosine (5-HMC) bases of duplex DNA using UDP-glucose as the sugar donor to form an alpha-glucosidic linkage and a beta-glucosidic linkage, respectively. Five structures of AGT have been determined: a binary complex with the UDP product and four ternary complexes with UDP or UDP-glucose and oligonucleotides containing an A:G, HMU:G (hydroxymethyl uracyl) or AP:G (apurinic/apyrimidinic) mismatch at the target base-pair. AGT adopts the GT-B fold, one of the two folds known for GTs. However, while the sugar donor binding mode is classical for a GT-B enzyme, the sugar acceptor binding mode is unexpected and breaks the established consensus: AGT is the first GT-B enzyme that predominantly binds both the sugar donor and acceptor to the C-terminal domain. Its active site pocket is highly similar to four retaining GT-B glycosyltransferases (trehalose-6-phosphate synthase, glycogen synthase, glycogen and maltodextrin phosphorylases) strongly suggesting a common evolutionary origin and catalytic mechanism for these enzymes. Structure-guided mutagenesis and kinetic analysis do not permit identification of a nucleophile residue responsible for a glycosyl-enzyme intermediate for the classical double displacement mechanism. Interestingly, the DNA structures reveal partially flipped-out bases. They provide evidence for a passive role of AGT in the base-flipping mechanism and for its specific recognition of the acceptor base.  相似文献   

11.
Glycogen and starch synthases are retaining glycosyltransferases that catalyze the transfer of glucosyl residues to the non-reducing end of a growing alpha-1,4-glucan chain, a central process of the carbon/energy metabolism present in almost all living organisms. The crystal structure of the glycogen synthase from Pyrococcus abyssi, the smallest known member of this family of enzymes, revealed that its subunits possess a fold common to other glycosyltransferases, a pair of beta/alpha/beta Rossmann fold-type domains with the catalytic site at their interface. Nevertheless, the archaeal enzyme presents an unprecedented homotrimeric molecular arrangement both in solution, as determined by analytical ultracentrifugation, and in the crystal. The C-domains are not involved in intersubunit interactions of the trimeric molecule, thus allowing for movements, likely required for catalysis, across the narrow hinge that connects the N- and C-domains. The radial disposition of the subunits confers on the molecule a distinct triangular shape, clearly visible with negative staining electron microscopy, in which the upper and lower faces present a sharp asymmetry. Comparison of bacterial and eukaryotic glycogen synthases, which use, respectively, ADP or UDP glucose as donor substrates, with the archaeal enzyme, which can utilize both molecules, allowed us to propose the residues that determine glucosyl donor specificity.  相似文献   

12.
The combined action of temperature (10-35 degrees C) and pressure (0. 001-2 kbar) on the catalytic activity of wild-type human butyrylcholinesterase (BuChE) and its D70G mutant was investigated at pH 7.0 using butyrylthiocholine as the substrate. The residue D70, located at the mouth of the active site gorge, is an essential component of the peripheral substrate binding site of BuChE. Results showed a break in Arrhenius plots of wild-type BuChE (at Tt approximately 22 degrees C) whatever the pressure (dTt/dP = 1.6 +/- 1.5 degrees C.kbar-1), whereas no break was observed in Arrhenius plots of the D70G mutant. These results suggested a temperature-induced conformational change of the wild-type BuChE which did not occur for the D70G mutant. For the wild-type BuChE, at around a pressure of 1 kbar, an intermediate state, whose affinity for substrate was increased, appeared. This intermediate state was not seen for the mutant enzyme. The wild-type BuChE remained active up to a pressure of 2 kbar whatever the temperature, whereas the D70G mutant was found to be more sensitive to pressure inactivation (at pressures higher than 1.5 kbar the mutant enzyme lost its activity at temperatures lower than 25 degrees C). The results indicate that the residue D70 controls the conformational plasticity of the active site gorge of BuChE, and is involved in regulation of the catalytic activity as a function of temperature.  相似文献   

13.
Glycogen synthase I (UDP glucose: glycogen alpha-4-glycosyltransferase, EC2.4.1.11) of the tapeworm Hymenolepis diminuta is the form of the enzyme which is active in vivo, while the D-form represents an inactive "storage form." Utilizing the differential effect of inorganic phosphate (Pi) on the I and D-forms, the ratio of the 2 forms in vivo has been determined under conditions of starvation of the host and refeeding of the parasite with glucose. This procedure reveals that conversion of the inactive D-form to the active I-form takes place when glycogen-depleted worms are incubated in glucose. The activity of glycogen synthase I also is affected by the molecular weight of the primer glycogen. With certain molecular weight fractions, enzymatic activity is higher than with others. This specificity of the glycogen primer could explain the relatively low concentrations of those molecular weight fractions which confer the highest synthase activity.  相似文献   

14.
Glycogenin, a Mn2+-dependent, self-glucosylating protein, is considered to catalyze the initial glucosyl transfer steps in glycogen biogenesis. To study the physiologic significance of this enzyme, measurements of glycogenin mediated glucose transfer to endogenous trichloroacetic acid precipitable material (protein-bound glycogen, i.e., glycoproteins) in human skeletal muscle were attempted. Although glycogenin protein was detected in muscle extracts, activity was not, even after exercise that resulted in marked glycogen depletion. Instead, a MnSO4-dependent glucose transfer to glycoproteins, inhibited by glycogen and UDP-pyridoxal (which do not affect glycogenin), and unaffected by CDP (a potent inhibitor of glycogenin), was consistently detected. MnSO4-dependent activity increased in concert with glycogen synthase fractional activity after prolonged exercise, and the MnSO4-dependent enzyme stimulated glucosylation of glycoproteins with molecular masses lower than those glucosylated by glucose 6-P-dependent glycogen synthase. Addition of purified glucose 6-P-dependent glycogen synthase to the muscle extract did not affect MnSO4-dependent glucose transfer, whereas glycogen synthase antibody completely abolished MnSO4-dependent activity. It is concluded that: (1) MnSO4-dependent glucose transfer to glycoproteins is catalyzed by a nonglucose 6-P-dependent form of glycogen synthase; (2) MnSO4-dependent glycogen synthase has a greater affinity for low molecular mass glycoproteins and may thus play a more important role than glucose 6-P-dependent glycogen synthase in the initial stages of glycogen biogenesis; and (3) glycogenin is generally inactive in human muscle in vivo.  相似文献   

15.
It has been suggested that the lysine residue in the conserved K-T-G-G motif could be the substrate ADP-glucose binding site of Escherichia coli glycogen synthase (GS). Since the K-X-G-G motif is highly conserved between E. coli GS and all the maize starch synthase (SS) isozymes, it has become widely accepted that the lysine in the conserved K-T-G-G motif may also function as the ADPGlc binding site of maize SS. We have used chemical modification and site-directed mutagenesis to study the function of lysine residues in SS. Pyridoxal-5'-phosphate inactivated maize SSIIa activity in a time and concentration dependent manner. ADPGlc completely protected SSIIa from inactivation by pyridoxal-5'-phosphate, indicating that lysine residue(s) could be important for ADPGlc binding and enzyme catalysis. In contrast to E. coli GS, mutation of conserved lysine193 (K-T-G-G) in maize SS did not alter the ADPGlc binding while significantly changing the enzyme activity toward different primers. Our results suggest that lysine-193 (K-T-G-G) is not directly involved in ADPGlc binding, instead mutation in the conserved lysine position affected the primer preference.  相似文献   

16.
UDP-Galactopyranose mutase (UGM) is a flavoenzyme that catalyzes interconversion of UDP-galactopyranose (UDP-Galp) and UDP-galactofuranose (UDP-Galf); its activity depends on FAD redox state. The enzyme is vital to many pathogens, not native to mammals, and is an important drug target. We have probed binding of substrate, UDP-Galp, and UDP to wild type and W160A UGM from K. pneumoniae, and propose that substrate directs recognition loop dynamics by bridging distal FAD and W160 sites; W160 interacts with uracil of the substrate and is functionally essential. Enhanced Trp fluorescence upon substrate binding to UGM indicates conformational changes remote from the binding site because the fluorescence is unchanged upon binding to W70F/W290F UGM where W160 is the sole Trp. MD simulations map these changes to recognition loop closure to coordinate substrate. This requires galactose-FAD interactions as Trp fluorescence is unchanged upon substrate binding to oxidized UGM, or binding of UDP to either form of the enzyme, and MD show heightened recognition loop mobility in complexes with UDP. Consistent with substrate-directed loop closure, UDP binds 10-fold more tightly to oxidized UGM, yet substrate binds tighter to reduced UGM. This requires the W160-U interaction because redox-switched binding affinity of substrate reverses in the W160A mutant where it only binds when oxidized. Without the anchoring W160-U interaction, an alternative binding mode for UDP is detected, and STD-NMR experiments show simultaneous binding of UDP-Galp and UDP to different subsites in oxidized W160A UGM: Substrate no longer directs recognition loop dynamics to coordinate tight binding to the reduced enzyme.  相似文献   

17.
In the previous paper we demonstrated that uridine-5'-beta-1-(5-sulfonic acid) naphthylamidate (UDPAmNS) is a stacked and quenched fluorophore that shows severalfold enhancement of fluorescence in a stretched conformation. UDPAmNS was found to be a powerful competitive inhibitor (Ki = 0.2 mM) for UDP-glucose-4-epimerase from Escherichia coli. This active site-directed fluorophore assumed a stretched conformation on the enzyme surface, as was evidenced by full enhancement of fluorescence in saturating enzyme concentration. Complete displacement of the fluorophore by UDP suggested it to bind to the substrate binding site of the active site. Analysis of inactivation kinetics in presence of alpha,beta-diones such as phenylglyoxal, cyclohaxanedione, and 2,3-butadione suggested involvement of the essential arginine residue in the overall catalytic process. From spectral analysis, loss of activity could also be directly correlated with modification of only one arginine residue. Protection experiments with UDP showed the arginine residue to be located in the uridyl phosphate binding subsite. Unlike the native enzyme, the modified enzyme failed to show any enhancement of fluorescence with UDPAmNS clearly demonstrating the role of the essential arginine residue in stretching and binding of the substrate. The potential usefulness of such stacked and quenched nucleotide fluorophores has been discussed.  相似文献   

18.
Glycogen synthase (UDP glucose: glycogen alpha-4-glycosyltransferase, EC2.4.1.11) of the tapeworm Hymenolepis diminuta exists in 2 forms: 1) the I-form (independent), which has significant activity in the absence of glucose 6-phosphate (G6P); and 2) the phosphorylated D-form (dependent), which has no enzymatic activity unless G6P is present. The activity of the I-form is greatly enhanced by a variety of allosteric effectors which have, as their common feature, 1 or more phosphate groups. These include inorganic phosphate (Pi), several sugar phosphates, some phosphorylated glycolytic intermediates, and nucleoside mono- and triphosphates. Competition studies suggest that while most of the positive effectors act at the same site on the enzyme (the "G6P site"), fructose 1,6-diphosphate (FDP) and 2,3-diphosphoglyceric acid (2,3DPG) act at low concentrations to stimulate the enzyme at another locus (the "diphosphate site"), while at high concentrations they competitively inhibit the binding of G6P and of the other activators. The inhibition by high uridine monophosphate (UMP) concentrations is competitive only with the activator uridine triphosphate (UTP), suggesting the existence of a third type of allosteric site (the "uridine nucleotide site"). This third site may be the locus for feedback inhibition by the product uridine diphosphate (UDP), a control mechanism which has been observed to occur in mammalian systems. The allosteric control of the D-form of the enzyme is comparatively simple, apparently involving only one site (the "G6P site") that binds a few effects with greatly reduced affinity. Pi reverses the activation of the D-form by G6P.  相似文献   

19.
Glycogen synthase kinase-5 (casein kinase-II) phosphorylates glycogen synthase on a serine termed site 5. This residue is just C-terminal to the 3 serines phosphorylated by glycogen synthase kinase-3, which are critical for the hormonal regulation of glycogen synthase in vivo. Although phosphorylation of site 5 does not affect the catalytic activity, it is demonstrated that this modification is a prerequisite for phosphorylation by glycogen synthase kinase-3. Since site 5 is almost fully phosphorylated in vivo under all conditions, the role of glycogen synthase kinase-5 would appear to be a novel one in forming the recognition site for another protein kinase  相似文献   

20.
The role of increased glucose transport in the hormonal regulation of glycogen synthase by insulin was investigated in 3T3-L1 adipocytes. Insulin treatment stimulated glycogen synthase activity 4-5-fold in these cells. Cytosolic glycogen synthase levels decreased by 75% in response to insulin, whereas, conversely, the glycogenolytic agent isoproterenol increased cytosolic enzyme levels by 200%. Removal of extracellular glucose reduced glycogen synthase activation by 40% and completely blocked enzymatic translocation. Addition of 5 mM 2-deoxyglucose did not restore glycogen synthase translocation but did augment dephosphorylation of the protein by insulin. The translocation event could be reconstituted in vitro only by the addition of UDP-glucose to basal cell lysates. Amylase pretreatment of the extracts suppressed glycogen synthase translocation, indicating that the enzyme was binding to glycogen. Incubation of 3T3-L1 adipocytes with 10 mM glucosamine induced a state of insulin resistance, blocked the translocation of glycogen synthase, and inhibited insulin-stimulated glycogen synthesis by 50%. Surprisingly, glycogen synthase activation by insulin was enhanced 4-fold, in part due to allosteric activation by a glucosamine metabolite. In vitro, glucosamine 6-phosphate and glucose 6-phosphate stimulated glycogen synthase activity with similar concentration curves. These results indicate that glucose metabolites have an impact on the regulation of glycogen synthase activation and localization by insulin.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号