首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
RAG-1 and RAG-2 initiate V(D)J recombination by introducing DNA breaks at recombination signal sequences flanking a pair of antigen receptor gene segments. Occasionally, the RAG proteins mediate two other alternative DNA rearrangements in vivo: the rejoining of signal and coding ends and the transposition of signal ends into unrelated DNA. In contrast, truncated, catalytically active "core" RAG proteins readily catalyze these reactions in vitro, suggesting that full-length RAG proteins directly or indirectly suppress these undesired reactions in vivo. To discriminate between direct and indirect suppression models, full-length RAG proteins were purified and characterized in vitro. From mammalian cells, full-length RAG-1 is readily purified with core RAG-2 but not full-length RAG-2 and vice versa. Despite differences in DNA binding activity, recombinase containing either core or full-length RAG-1 or RAG-2 possess comparable cleavage, rejoining, and end-processing activity, as well as similar usage preferences for canonical versus cryptic recombination signals. However, recombinase containing full-length RAG-2, but not full-length RAG-1, exhibits dramatically reduced transposition activity in vitro. These data suggest RAG-mediated transposition and rejoining are differentially regulated by the full-length RAG proteins in vivo (the former directly by RAG-2 and the latter indirectly through other factors) and argue that noncore portions of the RAG proteins have little or no direct influence over V(D)J recombinase site specificity.  相似文献   

2.
The assembly of antigen receptor genes by V(D)J recombination is initiated by the RAG1/RAG2 protein complex, which introduces double-strand breaks between recombination signal sequences and their coding DNA. Truncated forms of RAG1 and RAG2 are functional in vivo and have been used to study V(D)J cleavage, hybrid joint formation and transposition in vitro. Here we have characterized the activities of the full-length proteins. Unlike core RAG2, which supports robust transposition in vitro, full-length RAG2 blocks transposition of signal ends following V(D)J cleavage. Thus, one role of this non-catalytic domain may be to prevent transposition in developing lymphoid cells. Although full-length RAG1 and RAG2 proteins rarely form hybrid joints in vivo in the absence of non-homologous end-joining factors, we show that the full-length proteins alone can catalyze this reaction in vitro.  相似文献   

3.
V(D)J recombination is initiated by introduction of site-specific double-stranded DNA breaks by the RAG-1 and RAG-2 proteins. The broken DNA ends are then joined by the cellular double-strand break repair machinery. Previous work has shown that truncated (core) versions of the RAG proteins can catalyze V(D)J recombination, although less efficiently than their full-length counterparts. It is not known whether truncating RAG-1 and/or RAG-2 affects the cleavage step or the joining step of recombination. Here we examine the effects of truncated RAG proteins on recombination intermediates and products. We found that while truncated RAG proteins generate lower levels of recombination products than their full-length counterparts, they consistently generate 10-fold higher levels of one class of recombination intermediates, termed signal ends. Our results suggest that this increase in signal ends does not result from increased cleavage, since levels of the corresponding intermediates, coding ends, are not elevated. Thus, removal of the "dispensable" regions of the RAG proteins impairs proper processing of recombination intermediates. Furthermore, we found that removal of portions of the dispensable regions of RAG-1 and RAG-2 affects the efficiency of product formation without altering the levels of recombination intermediates. Thus, these evolutionarily conserved sequences play multiple, important roles in V(D)J recombination.  相似文献   

4.
The rearrangement of immunoglobulin (Ig) and T-cell receptor (TCR) genes in lymphocytes by V(D)J recombinase is essential for immunological diversity in humans. These DNA rearrangements involve cleavage by the RAG1 and RAG2 (RAG1/2) recombinase enzymes at recombination signal sequences (RSS). This reaction generates two products, cleaved signal ends and coding ends. Coding ends are ligated by non-homologous end-joining proteins to form a functional Ig or TCR gene product, while the signal ends form a signal joint. In vitro studies have demonstrated that RAG1/2 are capable of mediating the transposition of cleaved signal ends into non-specific sites of a target DNA molecule. However, to date, in vivo transposition of signal ends has not been demonstrated. We present evidence of in vivo inter-chromosomal transposition in humans mediated by V(D)J recombinase. T-cell isolates were shown to contain TCRalpha signal ends from chromosome 14 inserted into the X-linked hypo xanthine-guanine phosphoribosyl transferase locus, resulting in gene inactivation. These findings implicate V(D)J recombinase-mediated transposition as a mutagenic mechanism capable of deleterious genetic rearrangements in humans.  相似文献   

5.
Initiation of V(D)J recombination involves the synapsis and cleavage of a 12/23 pair of recombination signal sequences by RAG-1 and RAG-2. Ubiquitous nonspecific DNA-bending factors of the HMG box family, such as HMG-1, are known to assist in these processes. After cleavage, the RAG proteins remain bound to the cut signal ends and, at least in vitro, support the integration of these ends into unrelated target DNA via a transposition-like mechanism. To investigate whether the protein complex supporting synapsis, cleavage, and transposition of V(D)J recombination signals utilized the same complement of RAG and HMG proteins, I compared the RAG protein stoichiometries and activities of discrete protein-DNA complexes assembled on intact, prenicked, or precleaved recombination signal sequence (RSS) substrates in the absence and presence of HMG-1. In the absence of HMG-1, I found that two discrete RAG-1/RAG-2 complexes are detected by mobility shift assay on all RSS substrates tested. Both contain dimeric RAG-1 and either one or two RAG-2 subunits. The addition of HMG-1 supershifts both complexes without altering the RAG protein stoichiometry. I find that 12/23-regulated recombination signal synapsis and cleavage are only supported in a protein-DNA complex containing HMG-1 and a RAG-1/RAG-2 tetramer. Interestingly, the RAG-1/RAG-2 tetramer also supports transposition, but HMG-1 is dispensable for its activity.  相似文献   

6.
RAG-1 and RAG-2 initiate V(D)J recombination by cleaving DNA at recombination signal sequences through sequential nicking and transesterification reactions to yield blunt signal ends and coding ends terminating in a DNA hairpin structure. Ubiquitous DNA repair factors then mediate the rejoining of broken DNA. V(D)J recombination adheres to the 12/23 rule, which limits rearrangement to signal sequences bearing different lengths of DNA (12 or 23 base pairs) between the conserved heptamer and nonamer sequences to which the RAG proteins bind. Both RAG proteins have been subjected to extensive mutagenesis, revealing residues required for one or both cleavage steps or involved in the DNA end-joining process. Gain-of-function RAG mutants remain unidentified. Here, we report a novel RAG-1 mutation, E649A, that supports elevated cleavage activity in vitro by preferentially enhancing hairpin formation. DNA binding activity and the catalysis of other DNA strand transfer reactions, such as transposition, are not substantially affected by the RAG-1 mutation. However, 12/23-regulated synapsis does not strongly stimulate the cleavage activity of a RAG complex containing E649A RAG-1, unlike its wild-type counterpart. Interestingly, wild-type and E649A RAG-1 support similar levels of cleavage and recombination of plasmid substrates containing a 12/23 pair of signal sequences in cell culture; however, E649A RAG-1 supports about threefold more cleavage and recombination than wild-type RAG-1 on 12/12 plasmid substrates. These data suggest that the E649A RAG-1 mutation may interfere with the RAG proteins' ability to sense 12/23-regulated synapsis.  相似文献   

7.
The lymphoid-specific proteins RAG1 and RAG2 initiate V(D)J recombination by introducing DNA double-strand breaks at the recombination signal sequences (RSSs). In addition to DNA cleavage, the versatile RAG1/2 complex is capable of catalyzing several other reactions, including hybrid joint formation and the transposition of signal ends into a second DNA. Here we show that the RAG1/2 complex also mediates an unusual strand transfer reaction, inverse transposition, in which non-RSS DNA is cleaved and subsequently transferred to an RSS sequence by direct transesterification. Characterization of the reaction products and requirements suggests that inverse transposition is related to both hybrid joint formation and signal-end transposition. This aberrant activity provides another possible mechanism for some chromosomal translocations present in lymphoid tumors.  相似文献   

8.
Targeted transposition by the V(D)J recombinase   总被引:6,自引:0,他引:6       下载免费PDF全文
Cleavage by the V(D)J recombinase at a pair of recombination signal sequences creates two coding ends and two signal ends. The RAG proteins can integrate these signal ends, without sequence specificity, into an unrelated target DNA molecule. Here we demonstrate that such transposition events are greatly stimulated by--and specifically targeted to--hairpins and other distorted DNA structures. The mechanism of target selection by the RAG proteins thus appears to involve recognition of distorted DNA. These data also suggest a novel mechanism for the formation of alternative recombination products termed hybrid joints, in which a signal end is joined to a hairpin coding end. We suggest that hybrid joints may arise by transposition in vivo and propose a new model to account for some recurrent chromosome translocations found in human lymphomas. According to this model, transposition can join antigen receptor loci to partner sites that lack recombination signal sequence elements but bear particular structural features. The RAG proteins are capable of mediating all necessary breakage and joining events on both partner chromosomes; thus, the V(D)J recombinase may be far more culpable for oncogenic translocations than has been suspected.  相似文献   

9.
In addition to their essential roles in V(D)J recombination, the RAG proteins have been found to catalyze transposition in vitro, but it has been difficult to demonstrate transposition by the RAG proteins in vivo in vertebrate cells. As genomic instability and chromosomal translocations are common outcomes of transposition in other species, it is critical to understand if the RAG proteins behave as a transposase in vertebrate cells. To facilitate this, we have developed an episome-based assay to detect products of RAG-mediated transposition in the human embryonic kidney cell line 293T. Transposition events into the target episome, accompanied by characteristic target site duplications, were detected at a low frequency using RAG1 and either truncated "core" RAG2 or full-length RAG2. More frequently, insertion of the RAG-generated signal end fragment into the target was accompanied by deletions or more complex rearrangements, and our data indicate that these events occur by a mechanism that is distinct from transposition. An assay to detect transposition from an episome into the human genome failed to detect bona fide transposition events but instead yielded chromosome deletion and translocation events involving the signal end fragment mobilized by the RAG proteins. These assays provide a means of assessing RAG-mediated transposition in vivo, and our findings provide insight into the potential for the products of RAG-mediated DNA cleavage to cause genome instability.  相似文献   

10.
Antigen receptor genes are assembled during lymphoid development by a specialized recombination reaction normally observed only in cells of the vertebrate immune system. Here, we show that expression in Saccharomyces cerevisiae of murine RAG1 and RAG2, the lymphoid-specific components of the V(D)J recombinase, is sufficient to induce V(D)J cleavage and rejoining in this lower eukaryote. The RAG proteins cleave recombination substrates introduced into yeast cells, generating signal ends that can be joined to form signal joints. These signal joints are precise, as in mammalian cells, and their formation is dependent on a yeast nonhomologous end-joining protein, the XRCC4 homolog LIF1. Moreover, joining of SmaI-generated blunt ends is generally imprecise in the yeast strain used here, suggesting that the RAG proteins influence signal-end joining. Cleaved signal ends are also transposed into new sites in DNA, allowing RAG-induced transposition to be studied in vivo.  相似文献   

11.
Tsai CL  Schatz DG 《The EMBO journal》2003,22(8):1922-1930
The RAG1 and RAG2 proteins perform critical DNA recognition and cleavage functions in V(D)J recombination, and also catalyze efficient DNA transposition in vitro. No transposition in vivo by the RAG proteins has been reported, suggesting regulation of the reaction by as yet unknown mechanisms. Here we report that RAG-mediated transposition is suppressed by physiological concentrations of the guanine nucleotide GTP, and by the full-length RAG2 protein. Both GTP and full-length RAG2 inhibit transposition by blocking the non-covalent 'capture' of target DNA, and both are capable of inhibiting RAG-mediated hybrid joint formation in vitro. We also observe that another intracellular signaling molecule, Ca(2+), stimulates RAG-mediated transposition and is capable of activating transposition even in reactions containing full-length RAG2 and GTP. RAG-mediated transposition has been proposed to contribute to the chromosomal translocations that underlie the development of lymphoid malignancies, and our findings highlight regulatory mechanisms that might prevent such occurrences, and circumstances in which these regulatory mechanisms could be overcome.  相似文献   

12.
RAG1 and RAG2 (RAGs) initiate V(D)J recombination by introducing breaks between two coding segments and flanking recombination signals (RSs). Nonhomologous end-joining (NHEJ) proteins then join the coding segments and join the RSs. In wild-type cells, both full-length and truncated ("core") RAGs lead to accumulation of "hybrid" V(D)J joins, in which an RS is appended to a different coding sequence. We now show that while hybrid joins do not accumulate in NHEJ-deficient cells that express full-length RAGs, they do accumulate in NHEJ-deficient cells that express the core RAGS; like those catalyzed by core RAGs in vitro, however, they are sealed on just one DNA strand. These results suggest a potential role for the non-core regions in repressing potentially harmful transposition events.  相似文献   

13.
The V(D)J recombinase efficiently cleaves and transposes signal joints   总被引:4,自引:0,他引:4  
V(D)J recombination generates two types of products: coding joints, which constitute the rearranged variable regions of antigen receptor genes, and signal joints, which often form on immunologically irrelevant, excised circular molecules that are lost during cell division. It has been widely believed that signal joints simply convert reactive broken DNA ends into safe, inert products. Yet two curious in vivo observations made us question this assumption: signal ends are far more abundant than coding ends, and signal joints form only after RAG expression is downregulated. In fact, we find that signal joints are not at all inert; they are cleaved quite efficiently in vivo and in vitro by a nick-nick mechanism and form an excellent substrate for RAG-mediated transposition in vitro, possibly explaining how genomic stability in lymphocytes may be compromised.  相似文献   

14.
The RAG proteins cleave at V(D)J recombination signal sequences then form a postcleavage complex with the broken ends. The role of this complex in end processing and joining, if any, is undefined. We have identified two RAG1 mutants proficient for DNA cleavage but severely defective for coding and signal joint formation, providing direct evidence that RAG1 is critical for joining in vivo and strongly suggesting that the postcleavage complex is important in end joining. We have also identified a RAG1 mutant that is severely defective for both hairpin opening in vitro and coding joint formation in vivo. These data suggest that the hairpin opening activity of the RAG proteins plays an important physiological role in V(D)J recombination.  相似文献   

15.
V(D)J recombination is a site-specific gene rearrangement process that contributes to the diversity of antigen receptor repertoires. Two lymphoid-specific proteins, RAG1 and RAG2, initiate this process at two recombination signal sequences. Due to the recent development of an in vitro assay for V(D)J cleavage, the mechanism of cleavage has been elucidated clearly. The RAG complex recognizes a recombination signal sequence, makes a nick at the border between signal and coding sequence, and carries out a transesterification reaction, resulting in the production of a hairpin structure at the coding sequence and DNA double-strand breaks at the signal ends. RAG1 possesses the active site of the V(D)J recombinase although RAG2 is essential for signal binding and cleavage. After DNA cleavage by the RAG complex, the broken DNA ends are rejoined by the coordinated action of DNA double-strand break repair proteins as well as the RAG complex. The junctional variability resulting from imprecise joining of the coding sequences contributes additional diversity to the antigen receptors.  相似文献   

16.
Two lymphoid-specific proteins, RAG1 and RAG2, are required for the initiation of the V(D)J recombination in vitro. The V(D)J cleavage that is mediated by RAG proteins at the border between the coding and signal sequences results in the production of a hairpin at the coding end and a double-stranded break at the signal end. Two hairpin coding ends are re-opened, modified, and sealed; whereas, the signal ends are directly ligated. Here I report that only RAG1 can carry out a distinct endonucleolytic activity in vitro using an oligonucleotide substrate that is tethered by a short single-stranded DNA. The purified RAG1 protein alone formed a nick at the near position to the recombination signal sequence. This endonucleolytic activity was eliminated by immunoprecipitation using the RAG1-specific antibody, and required the 3'-hydroxy group. All of the RAG1 mutants that were incapable of the nick and hairpin formation in the V(D)J cleavage analysis also showed this new endonucleolytic activity. This suggests that the nicking activity that was observed might be functionally different from the nick formation in the V(D)J cleavage.  相似文献   

17.
V(D)J recombination, a site-specific gene rearrangement process, requires two RAG1 and RAG2 proteins specifically recognizing recombination signal sequences and forming DNA double-strand breaks. The broken DNA ends tightly bound to RAG proteins are joined by repair proteins. Here, we found that heat shock protein 70 was associated with RAG2 following two-step affinity chromatography purification. It was also co-immunoprecipitated with RAG2 in pro-B cells. Purified HSP70 protein disrupted RAG/DNA complexes assembled in vitro and also inhibited the V(D)J cleavage (both nick and hairpin formation) in a dose-dependent manner. This HSP70 action required ATP energy. These data suggest that HSP70 might play a crucial role in disassembling RAG/DNA complexes stably formed during V(D)J recombination.  相似文献   

18.
V(D)J recombination is a process integral to lymphocyte development. However, this process is not always benign, since certain lymphoid malignancies exhibit recurrent chromosomal abnormalities, such as translocations and deletions, that harbor molecular signatures suggesting an origin from aberrant V(D)J recombination. Translocations involving LMO2, TAL1, Ttg-1, and Hox11, as well as a recurrent interstitial deletion at 1p32 involving SIL/SCL, are cited examples of illegitimate V(D)J recombination. Previous studies using extrachromosomal substrates reveal that cryptic recombination signal sequences (cRSSs) identified near the translocation breakpoint in these examples support V(D)J recombination with efficiencies ranging from about 30- to 20,000-fold less than bona fide V(D)J recombination signals. To understand the molecular basis for these large differences, we investigated the binding and cleavage of these cRSSs by the RAG1/2 proteins that initiate V(D)J recombination. We find that the RAG proteins comparably bind all cRSSs tested, albeit more poorly than a consensus RSS. We show that four cRSSs that support levels of V(D)J recombination above background levels in cell culture (LMO2, TAL1, Ttg-1, and SIL) are also cleaved by the RAG proteins in vitro with efficiencies ranging from 18 to 70% of a consensus RSS. Cleavage of LMO2 and Ttg-1 by the RAG proteins can also be detected in cell culture using ligation-mediated PCR. In contrast, Hox11 and SCL are nicked but not cleaved efficiently in vitro, and cleavage at other adventitious sites in plasmid substrates may also limit the ability to detect recombination activity at these cRSSs in cell culture.  相似文献   

19.
During V(D)J recombination, the RAG1/2 recombinase is thought to play an active role in transferring newly excised recombination ends from the RAG post-cleavage complex (PCC) to the non-homologous end joining (NHEJ) machinery to promote appropriate antigen receptor gene assembly. However, this transfer mechanism is poorly understood, partly because of the technical difficulty in revealing weak association of coding ends (CEs) with one of the PCCs, coding end complex (CEC). Using fluorescence resonance energy transfer (FRET) and anisotropy measurement, we present here real-time monitoring of the RAG1/2-catalyzed cleavage reaction, and provide unequivocal evidence that CEs are retained within the CEC in the presence of Mg(2+). By examining the dynamic fluorescence changes during the cleavage reaction, we compared the stability of CEC assembled with core RAG1 paired with full-length RAG2, core RAG2 or a frameshift RAG2 mutant that was speculated to destabilize the PCC, leading to increased aberrant joining. While the latter two CECs exhibit similar stability, the full-length RAG2 renders a less stable CEC unless H3K4me3 peptides are added. Interestingly, the RAG2 mutant appears to modulate the structure of the RAG-12RSS pre-cleavage complex. Thus, the fluorescence-based detection offers a sensitive, quantitative and continuous assessment of pre-cleavage complex assembly and CEC stability.  相似文献   

20.
The postcleavage complex involved in V(D)J joining is known to possess a transpositional strand transfer activity, whose physiological role is yet to be clarified. Here we report that RAG1 and RAG2 proteins in the signal end (SE) complex cleave the 3'-overhanging structure of the synthetic coding-end (CE) DNA in two successive steps in vitro. The 3'-overhanging structure is attacked by the SE complex imprecisely, near the double-stranded/single-stranded (ds/ss) junction, and transferred to the SE. The transferred overhang is then resolved and cleaved precisely at the ds/ss junction, generating either the linear or the circular cleavage products. Thus, the blunt-end structure is restored for the SE and variably processed ends are generated for the synthetic CE. This 3'-processing activity is observed not only with the core RAG2 but also with the full-length protein.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号