首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Chromatic adaptation and the events involved in phycobilisome biosynthesis   总被引:1,自引:0,他引:1  
Abstract. The major light-harvesting complex in cyanobacteria and red algae is the phycobilisome, a macromolecular complex that is attached to the surface of the photosynthetic membranes. The phycobilisome is composed of a number of different chromophoric polypeptides called phycobiliproteins and nonchromophoric polypeptides called linker proteins. Several environmental parameters modulate the synthesis, assembly and degradation of phycobilisome components. In many cyanobacteria, the composition of the phycobilisome can change to accommodate the prevalent wavelengths of light in the environment. This phenomenon is called complementary chromatic adaptation. Organisms that exhibit complementary chromatic adaptation must perceive the wavelengths of light in the environment and transduce the light signals into a sequence of biochemical events that result in altering the activities of genes encoding specific phycobiliprotein and linker polypeptides. Other environmental parameters such as light intensity and nutrient status can also have marked effects on both the number and composition of the phycobilisomes. The major concern of this article is the molecular events involved in chromatic adaptation. Most of the information concerning this process has been gained from studies involving the filamentous cyanobacterium Fremyella diplosiphon . However, also briefly considered are some of the complexities involved in phycobilisome biosynthesis and degradation; they include post-translational modification of phycobilisome polypeptides, the coordinate expression of chromophore and apobiliprotein, the specific degradation of phycobilisomes when cyanobacteria are deprived of macronutrients such as nitrogen, sulphur and phosphorus, and the assembly of the individual phycobilisome components into substructures of the light harvesting complex.  相似文献   

2.
Hu IC  Lee TR  Lin HF  Chiueh CC  Lyu PC 《Biochemistry》2006,45(23):7092-7099
Allophycocyanin (APC) is one of the phycobiliproteins expressed in cyanobacteria. Phycobiliproteins contain a covalently bound chromophore, and thus, they are valuable as fluorescent probes. Biosynthesis of a functional phycobiliprotein is achieved by a bilin attachment process between the chromophore and apoprotein. Chromophore lyases are necessary to catalyze the chromophorylation of cyanobacterial phycobiliproteins, such as C-phycocyanin, and phycoerythrocyanin. To identify the lyase that catalyzes the chromophorylation of the APC alpha-subunit (ApcA), we searched the entire genomes of two cyanobacteria, Synechocystis sp. PCC6803 and Anabaena sp. PCC 7120; however, these genomes do not appear to encode an APC-specific chromophore lyase. In this study, chromophorylated ApcA (chromo-ApcA) was obtained via a spontaneous bilin attachment reaction. The absorption and fluorescence characteristics of chromo-ApcA were similar to those of the native APC alpha-subunit. The extent of chromophore attachment to apo-ApcA was comparable to that of the lyase-catalyzed reactions for other phycobiliproteins. These results indicate that ApcA has autocatalytic bilin:biliprotein lyase activity.  相似文献   

3.
《BBA》2020,1861(8):148215
Marine Synechococcus are widespread in part because they are efficient at harvesting available light using their complex antenna, or phycobilisome, composed of multiple phycobiliproteins and bilin chromophores. Over 40% of Synechococcus strains are predicted to perform a type of chromatic acclimation that alters the ratio of two chromophores, green-light–absorbing phycoerythrobilin and blue-light–absorbing phycourobilin, to optimize light capture by phycoerythrin in the phycobilisome. Lyases are enzymes which catalyze the addition of bilin chromophores to specific cysteine residues on phycobiliproteins and are involved in chromatic acclimation. CpeY, a candidate lyase in the model strain Synechococcus sp. RS9916, added phycoerythrobilin to cysteine 82 of only the α subunit of phycoerythrin I (CpeA) in the presence or absence of the chaperone-like protein CpeZ in a recombinant protein expression system. These studies demonstrated that recombinant CpeY attaches phycoerythrobilin to as much as 72% of CpeA, making it one of the most efficient phycoerythrin lyases characterized to date. Phycobilisomes from a cpeY mutant showed a near native bilin composition in all light conditions except for a slight replacement of phycoerythrobilin by phycourobilin at CpeA cysteine 82. This demonstrates that CpeY is not involved in any chromatic acclimation-driven chromophore changes and suggests that the chromophore attached at cysteine 82 of CpeA in the cpeY mutant is ligated by an alternative phycoerythrobilin lyase. Although loss of CpeY does not greatly inhibit native phycobilisome assembly in vivo, the highly active recombinant CpeY can be used to generate large amounts of fluorescent CpeA for biotechnological uses.  相似文献   

4.
Erhard Mörschel 《Planta》1982,154(3):251-258
Phycobilisomes of red algae and cyanobacteria contain small amounts of nonpigmented polypeptides in addition to the major constituent biliprotein pigments. The localization of these polypeptides is analyzed by gel electrophoresis of phycobilisome fragments obtained by selective dissociation and subsequent separation. Five groups of biliprotein aggregates are determined, belonging to the 6, 11, 16, 18 and 23 S categories. Accessory nonpigmented high molecular weight proteins (80,000 MW) are exclusively bound to phycobilisome core fractions and thylakoids, thus apparently serving as links between the phycobilisomes and the photosynthetic units of the thylakoids. In contrast, smaller nonpigmented accessory polypeptides of 20,000 to 60,000 MW are preferably found in the peripheral biliprotein stacks. They may either form a compatible link between the phycobilisome core and periphery or bind and co-polymerize with hexameric biliproteins in the peripheral stacks to enhance or effect binding of the aggregates. Furthermore, they may determine the arrangement and composition of the phycobilisomes during development and chromatic adaptation.Abbreviations PE phycoerythrin - PEC phycoerythrocyanin - PC phycocyanin - APC allophycocyanin  相似文献   

5.
6.
Phycobiliproteins are a group of colored proteins commonly present in cyanobacteria and red algae possessing a spectrum of applications. They are extensively commercialized for fluorescent applications in clinical and immunological analysis. They are also used as a colorant, and their therapeutic value has also been categorically demonstrated. However, a comprehensive knowledge and technological base for augmenting their commercial utilities is lacking. Hence, this work is focused towards this objective by means of analyzing global patents and commercial activities with application oriented research. Strategic mining of patents was performed from global patent databases resulting in the identification of 297 patents on phycobiliproteins. The majority of the patents are from USA, Japan and Europe. Patents are grouped into fluorescent applications, general applications and production aspects of phycobiliproteins and the features of each group are discussed. Commercial and applied research activities are compared in parallel. It revealed that US patents are mostly related to fluorescent applications while Japanese are on the production, purification and application for therapeutic and diagnostic purposes. Fluorescent applications are well represented in research, patents and commercial sectors. Biomedical properties documented in research and patents are not ventured commercially. Several novel applications are reported only in patents. The paper further pinpoints the plethora of techniques used for cell breakage and for extraction and purification of phycobiliproteins. The analysis identifies the lacuna and suggests means for improvements in the application and production of phycobiliproteins.  相似文献   

7.
Phycobilisome structure and function   总被引:3,自引:0,他引:3  
Phycobilisomes are aggregates of light-harvesting proteins attached to the stroma side of the thylakoid membranes of the cyanobacteria (blue-green algae) and red algae. The water-soluble phycobiliproteins, of which there are three major groups, tetrapyrrole chromophores covalently bound to apoprotein. Several additional protiens are found within the phycobilisome and serve to link the phycobiliproteins to each other in an ordered fashion and also to attach the phycobilisome to the thylakoid membrane. Excitation energy absorbed by phycoerythrin is transferred through phycocyanin to allophycocyanin with an efficiency approximating 100%. This pathway of excitation energy transfer, directly confirmed by time-resolved spectroscopic measurements, has been incorporated into models describing the ultrastructure of the phycobilisome. The model for the most typical type of phycobilisome describes an allophycocyanin-containing core composed of three cylinders arranged so that their longitudinal axes are parallel and their ends form a triangle. Attached to this core are six rod structures which contain phycocyanin proximal to the core and phycoerythrin distal to the core. The axes of these rods are perpendicular to the longitudinal axis of the core. This arrangement ensures a very efficient transfer of energy. The association of phycoerythrin and phycocyanin within the rods and the attachment of the rods to the core and the core to the thylakoid require the presence of several linker polypeptides. It is recently possible to assemble functionally and structurally intact phycobilisomes in vitro from separated components as well as to reassociate phycobilisomes with stripped thylakoids. Understanding of the biosynthesis and in vivo assembly of phycobilisomes will be greatly aided by the current advances in molecular genetics, as exemplified by recent identification of several genes encoding phycobilisome components.Combined ultrastructural, biochemical and biophysical approaches to the study of cyanobacterial and red algal cells and isolated phycobilisome-thylakoid fractions are leading to a clearer understanding of the phycobilisome-thylakoid structural interactions, energy transfer to the reaction centers and regulation of excitation energy distribution. However, compared to our current knowledge concerning the structural and functional organization of the isolated phycobilisome, this research area is relatively unexplored.  相似文献   

8.
The core-membrane linker, LCM, connects functionally the extramembraneous light-harvesting complex of cyanobacteria, the phycobilisome, to the chlorophyll-containing core-complexes in the photosynthetic membrane. Genes coding for the apoprotein, ApcE, from Nostoc sp. PCC 7120 and for a C-terminally truncated fragment ApcE(1-240) containing the chromophore binding cysteine-195 were overexpressed in Escherichia coli. Both bind covalently phycocyanobilin (PCB) in an autocatalytic reaction, in the presence of 4M urea necessary to solubilize the proteins. If judged from the intense, red-shifted absorption and fluorescence, both products have the features of the native core-membrane linker LCM, demonstrating that the lyase function, the dimerization motif, and the capacity to extremely red-shift the chromophore are all contained in the N-terminal phycobilin domain of ApcE. The red-shift is, however, not the result of excitonic interactions: Although the chromoprotein dimerizes, the circular dichroism shows no indication of excitonic coupling. The lack of homologies with the autocatalytically chromophorylating phytochromes, as well as with the heterodimeric cysteine-alpha84 lyases, indicates that ApcE constitutes a third type of bilin:biliprotein lyase.  相似文献   

9.
Ana A. Arteni  Ghada Ajlani 《BBA》2009,1787(4):272-3065
In cyanobacteria, the harvesting of light energy for photosynthesis is mainly carried out by the phycobilisome — a giant, multi-subunit pigment-protein complex. This complex is composed of heterodimeric phycobiliproteins that are assembled with the aid of linker polypeptides such that light absorption and energy transfer to photosystem II are optimised. In this work we have studied, using single particle electron microscopy, the phycobilisome structure in mutants lacking either two or all three of the phycocyanin hexamers. The images presented give much greater detail than those previously published, and in the best two-dimensional projection maps a resolution of 13 Å was achieved. As well as giving a better overall picture of the assembly of phycobilisomes, these results reveal new details of the association of allophycocyanin trimers within the core. Insights are gained into the attachment of this core to the membrane surface, essential for efficient energy transfer to photosystem II. Comparison of projection maps of phycobilisomes with and without reconstituted ferredoxin:NADP oxidoreductase suggests a location for this enzyme within the complex at the rod-core interface.  相似文献   

10.
The phycobilisome (PBS) is an extra-membrane supramolecular complex composed of many chromophore (bilin)-binding proteins (phycobiliproteins) and linker proteins, which generally are colorless. PBS collects light energy of a wide range of wavelengths, funnels it to the central core, and then transfers it to photosystems. Although phycobiliproteins are evolutionarily related to each other, the binding of different bilin pigments ensures the ability to collect energy over a wide range of wavelengths. Spatial arrangement and functional tuning of the different phycobiliproteins, which are mediated primarily by linker proteins, yield PBS that is efficient and versatile light-harvesting systems. In this review, we discuss the functional and spatial tuning of phycobiliproteins with a focus on linker proteins.  相似文献   

11.
The enormous macromolecular phycobilisome antenna complex (>4 MDa) in cyanobacteria and red algae undergoes controlled degradation during certain forms of nutrient starvation. The NblA protein (approximately 6 kDa) has been identified as an essential component in this process. We have used structural, biochemical, and genetic methods to obtain molecular details on the mode of action of the NblA protein. We have determined the three-dimensional structure of the NblA protein from both the thermophilic cyanobacterium Thermosynechococcus vulcanus and the mesophilic cyanobacterium Synechococcus elongatus sp. PCC 7942. The NblA monomer has a helix-loop-helix motif which dimerizes into an open, four-helical bundle, identical to the previously determined NblA structure from Anabaena. Previous studies indicated that mutations to NblA residues near the C terminus impaired its binding to phycobilisome proteins in vitro, whereas the only mutation known to affect NblA function in vivo is located near the protein N terminus. We performed random mutagenesis of the S. elongatus nblA gene which enabled the identification of four additional amino acids crucial for NblA function in vivo. This data shows that essential amino acids are not confined to the protein termini. We also show that expression of the Anabaena nblA gene complements phycobilisome degradation in an S. elongatus NblA-null mutant despite the low homology between NblAs of these cyanobacteria. We propose that the NblA interacts with the phycobilisome via "structural mimicry" due to similarity in structural motifs found in all phycobiliproteins. This suggestion leads to a new model for the mode of NblA action which involves the entire NblA protein.  相似文献   

12.
All phycobiliproteins contain a conserved, post-translational modification on asparagine 72 of their beta-subunits. Methylation of this Asn to produce gamma-N-methylasparagine has been shown to increase energy transfer efficiency within the phycobilisome and to prevent photoinhibition. We report here the biochemical characterization of the product of sll0487, which we have named cpcM, from the cyanobacterium Synechocystis sp. PCC 6803. Recombinant apo-phycocyanin and apo-allophycocyanin subunits were used as the substrates for assays with [methyl-3H]S-adenosylmethionine and recombinant CpcM. CpcM methylated the beta-subunits of phycobiliproteins (CpcB, ApcB, and ApcF) and did not methylate the corresponding alpha-subunits (CpcA, ApcA, and ApcD), although they are similar in primary and tertiary structure. CpcM preferentially methylated its CpcB substrate after chromophorylation had occurred at Cys82. CpcM exhibited lower activity on trimeric phycocyanin after complete chromophorylation and oligomerization had occurred. Based upon these in vitro studies, we conclude that this post-translational modification probably occurs after chromophorylation but before trimer assembly in vivo.  相似文献   

13.
14.
Derks AK  Vasiliev S  Bruce D 《Biochemistry》2008,47(45):11877-11884
Phycobilisomes are the major light-harvesting complexes for cyanobacteria, and phycocyanin is the primary phycobiliprotein of the phycobilisome rod. Phycocyanobilin chromophores are covalently bonded to the phycocyanin beta subunit (CpcB) by specific lyases which have been recently identified in the cyanobacterium Synechococcus sp. PCC 7002. Surprisingly, we found that mutants missing the CpcB lyases were nevertheless capable of producing pigmented phycocyanin when grown under low-light conditions. Absorbance measurements at 10 K revealed the energy states of the beta phycocyanin chromophores to be slightly shifted, and 77 K steady state fluorescence emission spectroscopy showed that excitation energy transfer involving the targeted chromophores was disrupted. This evidence indicates that the position of the phycocyanobilin chromophore within the binding domain of the phycocyanin beta subunit had been modified. We hypothesize that alternate, less specific lyases are able to add chromophores, with varying effectiveness, to the beta binding sites.  相似文献   

15.
16.
Photosynthetic organisms can acclimate to their environment by changing many cellular processes, including the biosynthesis of the photosynthetic apparatus. In this article we discuss the phycobilisome, the light-harvesting apparatus of cyanobacteria and red algae. Unlike most light-harvesting antenna complexes, the phycobilisome is not an integral membrane complex but is attached to the surface of the photosynthetic membranes. It is composed of both the pigmented phycobiliproteins and the nonpigmented linker polypeptides; the former are important for absorbing light energy, while the latter are important for stability and assembly of the complex. The composition of the phycobilisome is very sensitive to a number of different environmental factors. Some of the filamentous cyanobacteria can alter the composition of the phycobilisome in response to the prevalent wavelengths of light in the environment. This process, called complementary chromatic adaptation, allows these organisms to efficiently utilize available light energy to drive photosynthetic electron transport and CO2 fixation. Under conditions of macronutrient limitation, many cyanobacteria degrade their phycobilisomes in a rapid and orderly fashion. Since the phycobilisome is an abundant component of the cell, its degradation may provide a substantial amount of nitrogen to nitrogen-limited cells. Furthermore, degradation of the phycobilisome during nutrient-limited growth may prevent photodamage that would occur if the cells were to absorb light under conditions of metabolic arrest. The interplay of various environmental parameters in determining the number of phycobilisomes and their structural characteristics and the ways in which these parameters control phycobilisome biosynthesis are fertile areas for investigation.  相似文献   

17.
Molecular morphology of cyanobacterial phycobilisomes   总被引:5,自引:3,他引:2       下载免费PDF全文
Phycobilisomes were isolated from several cyanobacteria following cell lysis with Triton X-100. They were purified by phosphate precipitation and hydrophobic-interaction chromatography. Their phycobiliprotein compositions were quantitatively determined by application of sets of simultaneous absorbance equations to gel chromatographic separations of the chromoproteins. Phycobilisomes purified from several cyanobacteria had characteristic elution times on agarose gel chromatography. Combining electron microscope observations of phycobilisome structure, phycobiliprotein composition, and agarose gel chromatography estimates of molecular weight permitted the calculation of many details of phycobilisome molecular structure. Complementary chromatic adaptation resulted in a change of phycobilisome composition and structure. The polypeptide compositions of phycobilisomes were examined by sodium dodecyl sulfate-agarose gel chromatography and sodium dodecyl sulfate-polyacrylamide gel electrophoresis. The phycobilisomes were composed of phycobilipeptides derived from the constituent phycobiliproteins. Higher molecular-weight phycobilipeptide aggregates were also observed. The dominant forces responsible for the maintenance of phycobilisome structure are concluded to be hydrophobic interactions.  相似文献   

18.
19.
Environmental parameters are known to affect phycobilisomes. Variations of their structure and relative composition in phycobiliproteins have been observed. We studied the effect of irradiance variations on the phycobilisome structure in the cyanobacterium Spirulina maxima and discovered the appearance of new polypeptides associated with the phycobilisomes under an increased light intensity. In high light, the six rods of phycocyanin associated with the central core of allophycocyanin contained only one to two phycocyanin hexamers instead of the two to three they contained in low light. The concomitant disappearance of a 33-kD linker polypeptide was observed. Moreover, in high light three polypeptides of 29, 30, and 47 kD, clearly unrelated to linkers, were found to be associated with the phycobilisome fraction: protein labeling showed that a specific association of these polypeptides was induced by high light. One polypeptide, at least, would play the role of a chaperone protein. Not only the synthesis of these proteins, which appeared slightly increased in high light, but also their association with phycobilisome structure are light intensity dependent.  相似文献   

20.
Biological self-assembly is remarkable in its fidelity and in the efficient production of intricate molecular machines and functional materials from a heterogeneous mixture of macromolecules. The phycobilisome, a light-harvesting structure of cyanobacteria, presents the opportunity to study an in vivo assembly process in detail. The phycobilisome molecular architecture is defined, and crystal structures are available for all major proteins, as are a large sequence database (including a genome sequence) and effective genetic systems exist for some cyanobacteria. Recent studies on subunit interaction, covalent modification, and protein stability suggest a model for the earliest events in the phycobilisome assembly pathway. Partitioning of phycobilisome proteins between degradation and assembly is proposed to be controlled by the interaction equilibria between phycobilisome assembly partners, processing enzymes and chaperones. The model provides plausible explanations for existing observations and makes predictions that are amenable to direct experimental investigation.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号