首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Previous studies revealed that polydatin, a natural small compound, possessed protective effect against ischemia/reperfusion injury and inflammation. However, the action and molecular mechanism of its potent anti-cancer activity remain poorly understood. In the present study, polydatin significantly killed several human tumor cell lines in a dose- and time-dependent manner. The compound also dose-dependently caused mitochondrial apoptosis in human nasopharyngeal carcinoma CNE cells. In addition, polydatin triggered endoplasmic reticulum (ER) stress and down-regulated the phosphorylation of Akt in CNE cells, while knock-down of CCAAT/enhancer-binding protein homologous protein (CHOP) dramatically abrogated the inactivation of Akt and reversed the pro-apoptotic effect of polydatin. Furthermore, polydatin provoked the generation of reactive oxygen species in CNE cells, while the antioxidant N-acetyl cysteine almost completely blocked the activation of ER stress and apoptosis, suggesting polydatin-induced reactive oxygen species is an early event that triggers ER stress mitochondrial apoptotic pathways in CNE cells. Taken together, these findings strongly suggest that polydatin might be a promising anti-tumor drug and our data provide the molecular theoretical basis for clinical application of polydatin.  相似文献   

2.

Background

Despite the recent progress in screening and therapy, a majority of prostate cancer cases eventually attain hormone refractory and chemo-resistant attributes. Conventional chemotherapeutic strategies are effective at very high doses for only palliative management of these prostate cancers. Therefore chemo-sensitization of prostate cancer cells could be a promising strategy for increasing efficacy of the conventional chemotherapeutic agents in prostate cancer patients. Recent studies have indicated that the chemo-preventive natural agents restore the pro-apoptotic protein expression and induce endoplasmic reticulum stress (ER stress) leading to the inhibition of cellular proliferation and activation of the mitochondrial apoptosis in prostate cancer cells. Therefore reprogramming ER stress-mitochondrial dependent apoptosis could be a potential approach for management of hormone refractory chemoresistant prostate cancers. We aimed to study the effects of the natural naphthoquinone Shikonin in human prostate cancer cells.

Results

The results indicated that Shikonin induces apoptosis in prostate cancer cells through the dual induction of the endoplasmic reticulum stress and mitochondrial dysfunction. Shikonin induced ROS generation and activated ER stress and calpain activity. Moreover, addition of antioxidants attenuated these effects. Shikonin also induced the mitochondrial apoptotic pathway mediated through the enhanced expression of the pro-apoptotic Bax and inhibition of Bcl-2, disruption of the mitochondrial membrane potential (MMP) followed by the activation of caspase-9, caspase-3, and PARP cleavage.

Conclusion

The results suggest that shikonin could be useful in the therapeutic management of hormone refractory prostate cancers due to its modulation of the pro-apoptotic ER stress and mitochondrial apoptotic pathways.

Electronic supplementary material

The online version of this article (doi:10.1186/s12929-015-0127-1) contains supplementary material, which is available to authorized users.  相似文献   

3.
Accumulation of abnormal proteins occurs in many neurodegenerative diseases including Huntington's disease (HD). However, the precise role of protein aggregation in neuronal cell death remains unclear. We show here that the expression of N-terminal huntingtin proteins with expanded polyglutamine (polyQ) repeats causes cell death in neuronal PC6.3 cell that involves endoplasmic reticulum (ER) stress. These mutant huntingtin fragment proteins elevated Bip, an ER chaperone, and increased Chop and the phosphorylation of c-Jun-N-terminal kinase (JNK) that are involved in cell death regulation. Caspase-12, residing in the ER, was cleaved in mutant huntingtin expressing cells, as was caspase-3 mediating cell death. In contrast, cytochrome-c or apoptosis inducing factor (AIF) was not released from mitochondria after the expression of these proteins. Treatment with salubrinal that inhibits ER stress counteracted cell death and reduced protein aggregations in the PC6.3 cells caused by the mutant huntingtin fragment proteins. Salubrinal upregulated Bip, reduced cleavage of caspase-12 and increased the phosphorylation of eukaryotic translation initiation factor-2 subunit-alpha (eIF2alpha) that are neuroprotective. These results show that N-terminal mutant huntingtin proteins activate cellular pathways linked to ER stress, and that inhibition of ER stress by salubrinal increases cell survival. The data suggests that compounds targeting ER stress may be considered in designing novel approaches for treatment of HD and possibly other polyQ diseases.  相似文献   

4.
The microenvironment of cancerous cells includes endoplasmic reticulum (ER) stress the resistance to which is required for the survival and growth of tumors. Acute ER stress triggers the induction of a family of ER stress proteins that promotes survival and/or growth of the cancer cells, and also confers resistance to radiation and chemotherapy. Prolonged or severe ER stress, however, may ultimately overwhelm the cellular protective mechanisms, triggering cell death through specific programmed cell death (pcd) pathways. Thus, downregulation of the protective stress proteins may offer a new therapeutic approach to cancer treatment. In this regard, recent reports have demonstrated the roles of the phytochemical curcumin in the inhibition of proteasomal activity and triggering the accumulation of cytosolic Ca2+ by inhibiting the Ca2+-ATPase pump, both of which enhance ER stress. Using a mouse melanoma cell line, we investigated the possibility that curcumin may trigger ER stress leading to programmed cell death. Our studies demonstrate that curcumin triggers ER stress and the activation of specific cell death pathways that feature caspase cleavage and activation, p23 cleavage, and downregulation of the anti-apoptotic Mcl-1 protein.  相似文献   

5.
Gaucher disease (GD) is the most common lysosomal storage disorder (LSD) and is divided into three phenotypes, I, II, and III. Type I is the most prevalent form and has its onset in adulthood. The degree of endoplasmic reticulum (ER) stress is one of the factors that determine GD severity. It has recently been reported that antioxidants reduce ER stress and apoptosis by scavenging the oxidants that cause oxidative stress. For this report, we investigated the possibility that catechin can act on type I GD patient cells to alleviate the pathogenic conditions of GD. We treated GD cells with catechin and examined the expression level of GRP78/BiP (an ER stress marker) by western blots and fluorescence microscopy, the proliferation rate of GD cells, and scratch-induced wound healing activity. Our results show that catechin reduces the expression level of GRP78/BiP, leads to cell proliferation rates of GD cells similar levels to normal cells, and improves wound healing activity. We conclude that catechin protects against ER stress in GD cells and catechin-mediated reductions in ER stress may be associated with enhanced cell survival.  相似文献   

6.
Colorectal cancer is a multi-factorial disease involving genetic, environmental and lifestyle risk factors. In recent years, many changes in the bacterial composition of the intestinal microflora have been reported in colorectal cancer, suggesting the involvement of the intestinal microflora in the development and progression of colorectal cancer. Along with these reports, research on lactic acid bacteria that have a beneficial effect on the human body for the purpose of improving the intestinal environment and treating intestinal diseases has advanced. Among these studies, biogenics (defined as a component derived from lactic acid bacteria that acts directly on diseases regardless of the state of intestinal microflora) is a recent concept derived from the work on probiotics. Based on this concept, it is important to evaluate the effectiveness of various components derived from lactic acid bacteria in the treatment to diseases from and apply them in prevention and treatment. In this study, we investigated the antitumor effect of an extract obtained from Lactobacillus plantarum strain 06CC2 on colorectal cancer cells. In in vitro experiments, the extract derived from Lactobacillus plantarum 06CC2 significantly suppressed the proliferation of Caco2 colorectal cancer cells in comparison to control and non-cancer cells. Furthermore, we found that endoplasmic reticulum stress and the JNK/p38 MAPK signaling system are involved in the induction of apoptosis. These findings indicate the direct antitumor effect of the Lactobacillus plantarum 06CC2 extract on Caco2 colorectal cancer cells, and that this extract may have potential application as a biogenics.  相似文献   

7.
Arsenic trioxide has been proven to trigger apoptosis in human hepatocellular carcinoma cells. Endoplasmic reticulum stress has been known to be involved in apoptosis through the induction of CCAAT/enhancer-binding protein homologous protein. However, it is unknown whether endoplasmic reticulum stress mediates arsenic trioxide-induced apoptosis in human hepatocellular carcinoma cells. Our data showed that arsenic trioxide significantly induced apoptosis in human hepatocellular carcinoma cells. Furthermore, arsenic trioxide triggered endoplasmic reticulum stress, as indicated by endoplasmic reticulum dilation, upregulation of glucose-regulated protein 78 and CCAAT/enhancer-binding protein homologous protein. We further found that 4-phenylbutyric acid, an inhibitor of endoplasmic reticulum stress, alleviated arsenic trioxide-induced expression of CCAAT/enhancer-binding protein homologous protein. More important, knockdown of CCAAT/enhancer-binding protein homologous protein by siRNA or inhibition of endoplasmic reticulum stress by 4-phenylbutyric acid alleviated apoptosis induced by arsenic trioxide. Consequently, our results suggested that arsenic trioxide could induce endoplasmic reticulum stress-mediated apoptosis in hepatocellular carcinoma cells, and that CCAAT/enhancer-binding protein homologous protein might play an important role in this process.  相似文献   

8.
The effect of lipopolysaccharide (LPS) on the cell death induced by endoplasmic reticulum (ER) stress agents in RAW 264.7 cells was studied. LPS prevented the cell death by brefeldin A, but not thapsigargin and tunicamycin. CpG DNA as well as LPS prevented brefeldin A-induced cell death whereas tumor necrosis factor-alpha or interferon-gamma did not. Brefeldin A-induced cell death was mediated with apoptotic cell death and it was significantly inhibited by LPS. LPS abolished the activation of ER stress-related caspases, such as caspases 1, 3, and 4. LPS prevented brefeldin A-induced morphological changes in RAW 264.7 cells. Further, LPS prevented brefeldin A-induced Golgi dispersion. Therefore, LPS was suggested to diminish the stress of ER/Golgi complexes induced by brefeldin A and inhibit apoptosis. The preventive action of LPS on brefeldin A-induced apoptosis is discussed.  相似文献   

9.
10.
Diabetic nephropathy (DN) is acknowledged as a serious chronic complication of diabetes mellitus. Nevertheless, its pathogenesis is complicated and unclear. Thus, in this study, the role of miR‐27a‐3p‐prohibitin/TMBIM6 signaling axis in the progression of DN was elucidated. Type 2 diabetic db/db mice and high glucose (HG)‐challenged HK‐2 cells were used as in vivo and in vitro models. Our results showed that miR‐27a‐3p was upregulated and prohibitin or transmembrane BAX inhibitor motif containing 6 (TMBIM6) was downregulated in the kidney tissues of db/db mice and HG‐treated HK‐2 cells. Silencing miR‐27a‐3p enhanced the expression of prohibitin and TMBIM6 in the kidney tissues and HK‐2 cells. Inhibition of miR‐27a‐3p improved functional injury, as evidenced by decreased blood glucose, urinary albumin, serum creatinine, and blood urea nitrogen levels. MiR‐27a‐3p silencing ameliorated renal fibrosis, reflected by reduced profibrogenic genes (e.g., transforming growth factor β1, fibronectin, collagen I and III, and α‐smooth muscle actin). Furthermore, inhibition of miR‐27a‐3p relieved mitochondrial dysfunction in the kidney of db/db mice, including upregulation of mitochondrial membrane potential, complex I and III activities, adenosine triphosphate, and mitochondrial cytochrome C, as well as suppressing reactive oxygen species production. In addition, miR‐27a‐3p silencing attenuated endoplasmic reticulum (ER) stress, reflected by reduced expression of p‐IRE1α, p‐eIF2α, XBP1s, and CHOP. Mechanically, we identified prohibitin and TMBIM6 as direct targets of miR‐27a‐3p. Inhibition of miR‐27a‐3p protected HG‐treated HK‐2 cells from apoptosis, extracellular matrix accumulation, mitochondrial dysfunction, and ER stress by regulating prohibitin or TMBIM6. Taken together, we reveal that miR‐27a‐3p‐prohibitin/TMBIM6 signaling axis regulates the progression of DN, which can be a potential therapeutic target.  相似文献   

11.
目的:研究在高温高湿应激状态下拉西地平对葡萄糖调节蛋白(glucose-regulated protein78,GRP78)和C/EBP环磷酸腺苷反应元件结合转录因子同源蛋白(C/EBP-homologous protein,CHOP)在大鼠心肌中表达及对心室重塑的影响。方法:将30只雄性Sprague-Dawly(SD)大鼠随机分为对照组、高温高湿组、拉西地平干预组,每组10只。喂养6周后颈动脉插管测定平均动脉压及心率。B超检测左室形态结构。免疫组化法检测大鼠心肌GRP78及CHOP蛋白及表达水平。结果:高温高湿组的大鼠平均动脉压(MBP)、隔厚度(IVST)、左室后壁厚度(LPWT)、左室重量指数(LVWI),GRP78及CHOP蛋白表达水平与对照组相比均有显著升高(p〈0.01),拉西地平干预组能显著降低大鼠平均动脉压(MBP)、室间隔厚度(IVST)、左室重量指数(LVWI),GRP78及CHOP蛋白的表达水平(p〈0.05)。结论:内质网应激可能参与了高温高湿诱导的左室重构;拉西地平可能通过降低GRP78及CHOP的表达干预了ERS介导的心肌肥厚通路,从而改善心脏功能。  相似文献   

12.
The possible protection provided by enhancement of the cAMP signal in the process of lipopolysaccharide (LPS)-induced endothelial cell death has been addressed, with special emphasis on the endoplasmic initiation of caspase-12-mediated apoptosis. Human umbilical vein endothelial cells were challenged with LPS to reduce viability after 12 h to less than 20% that of the control. Cell death was preceded by ultrastructural disintegration at the endoplasmic reticulum, PERK-phosphorylation, degradation of caspase-12-like protein and cleavage of caspase 9, resulting in apoptosis through the activation of caspase 3. Treatment with a cell-permeable cAMP analogue led to a dose-dependent reduction of cell death over time, mitigated endoplasmic reticulum disturbances, reduced phosphorylation of PERK, and the degradation of caspases 12, 9 and 3. The selective inhibition of caspase 9 completely supplanted the anti-apoptotic effects obtained by cAMP, while being without any influence on caspase 12 degradation. The data suggest that cAMP positively modulates early endoplasmic alterations and caspase activation in LPS-induced apoptosis.This study was supported in part by a grant from the Herbert Reeck Stiftung.  相似文献   

13.
Curcumin from the rhizome of the Curcuma longa plant has been noted for its chemo-preventative and chemo-therapy activities, and it inhibits the growth of many types of human cancer cell lines. In this study, the mechanisms of cell death involved in curcumin-induced growth inhibition, including cell cycle arrest and induction of apoptosis in human tongue cancer SCC-4 cells, were investigated. Herein, we observed that curcumin inhibited cell growth of SCC-4 cells and induced cell death in a dose-dependent manner. Treatment of SCC-4 cells with curcumin caused a moderate and promoted the G(2) /M phase arrest, which was accompanied with decreases in cyclin B/CDK1 and CDC25C protein levels. Moreover, curcumin significantly induced apoptosis of SCC-4 cells with a decrease of the Bcl-2 level, reduction of mitochondrial membrane potential (ΔΨ(m) ), and promoted the active forms of caspase-3. Curcumin also promoted the releases of AIF and Endo G from the mitochondria in SCC-4 cells by using confocal laser microscope. Therefore, we suggest that curcumin induced apoptosis through a mitochondria-dependent pathway in SCC-4 cells. In addition, we also found that curcumin-induced apoptosis of SCC-4 cells was partly through endoplasmic reticulum stress. In conclusion, curcumin increased G(2) /M phase arrest and induced apoptosis through ER stress and mitochondria-dependent pathways in SCC-4 cells.  相似文献   

14.
15.
Subtilase cytotoxin (SubAB) is the prototype of a distinct AB5 toxin family produced by Shiga toxigenic Escherichia coli. Recent reports disclosed pro-apoptotic pathways triggered by SubAB, whereas its anti-apoptotic signals have not been elucidated. In the present study, we investigated pro-survival signaling elicited by SubAB, especially focusing on extracellular signal-regulated kinase (ERK) and Akt. We found that SubAB activated ERK and Akt, and inhibition of individual kinases enhanced SubAB-triggered apoptosis. SubAB induced endoplasmic reticulum (ER) stress, and other ER stress inducers mimicked the stimulatory effects of SubAB on ERK and Akt. Attenuation of ER stress reduced SubAB-induced phosphorylation of these kinases, suggesting involvement of the unfolded protein response (UPR). SubAB induced activation of protein kinase-like ER kinase (PERK) and phosphorylation of eukaryotic translation initiation factor 2α (eIF2α), and phosphorylation of eIF2α by salubrinal caused activation of ERK and Akt, leading to cell survival. Dominant-negative inhibition of PERK enhanced SubAB-induced apoptosis and reduced phosphorylation of ERK and Akt. Furthermore, the anti-apoptotic effect of eIF2α was significantly reversed by inhibition of ERK and Akt. These results suggest cytoprotective roles of ERK and Akt in SubAB-triggered, ER stress-mediated apoptosis.  相似文献   

16.
目的:研究阿霉素损伤心肌细胞miRNA378与网腔钙结合蛋白(calumenin)、内质网应激相关性。方法:原代培养乳鼠心肌细胞分为6组:对照组、阿霉素组、miRNA378过表达对照组、miRNA378过表达组、miRNA378沉默对照组、miRNA378沉默组,采用免疫组化法检测细胞α-SMA蛋白;慢病毒质粒转染心室肌细胞,实时荧光定量PCR技术检测各组心肌细胞miRNA378、calumenin及葡萄糖调节蛋白78(GRP78) mRNA表达。结果:与阿霉素组相比较,miRNA378过表达组心肌细胞calumenin mRNA表达增加(P<0.01),而GRP78 mRNA表达减少(P<0.01);与阿霉素组相比较,miRNA378沉默组calumenin及GRP78 mRNA表达无统计学差异。结论:阿霉素损伤乳鼠心肌细胞是通过减少calumenin蛋白表达进而引起内质网应激,该作用通过上调miRNA378得到缓解。  相似文献   

17.
Chrysin is a natural compound derived from honey, propolis, or passion flowers and has many functional roles, such as antiinflammatory and antiangiogenesis effects. Although endometriosis is a benign gynecological disease, there is a need to identify the pathology and develop a therapy for endometriosis. Elucidating the biological mechanism of chrysin on endometriosis will improve the understanding of endometriosis. In this study, we confirmed the apoptotic effects of chrysin in human endometriotic cells using End1/E6E7 (endocervix-derived endometriotic cells) and VK2/E6E7 (vaginal mucosa-derived epithelial endometriotic cells). The results showed that chrysin suppressed the proliferation of endometriosis and induced programmed cell death through changing the cell cycle proportion and increasing the cytosolic calcium level and generation of reactive oxygen species. In addition, chrysin activated endoplasmic reticulum (ER) stress by stimulating the unfolded protein response proteins, especially the 78-kDa glucose-regulated protein–PRKR-like ER kinase (PERK)–eukaryotic translation initiation factor 2α (eIF2α) pathway in both endometriotic cell lines. Furthermore, chrysin inactivated the intracellular phosphoinositide 3-kinase (PI3K)/protein kinase B (PKB, also known as AKT) signaling pathway in a dose-dependent manner. Collectively, the results of this study indicated that chrysin induced programmed cell death by activating the ER stress response and inactivating the PI3K signaling pathways in human endometriotic cells.  相似文献   

18.
Introduction  In this study, we delineated the apoptotic signaling pathways activated by sodium selenite in NB4 cells. Materials and methods  NB4 cells were treated with 20 μM sodium selenite for different times. The activation of caspases and ER stress markers, ROS levels, mitochondrial membrane potential and cell apoptosis induced by sodium selenite were analyzed by immunoblotting analysis, DCF fluorescence and flow cytometric respectively. siRNA was used to detect the effect of GADD153 on selenite-induced cell apoptosis. Conclusions  Sodium selenite-induced reactive oxygen species generation is an early event that triggers endoplasmic reticulum stress mitochondrial apoptotic pathways in NB4 cells.  相似文献   

19.
HAP (a homologue of the ASY/Nogo-B protein), a novel human apoptosis-inducing protein, was found to be identical to RTN3. In an earlier study, we demonstrated that HAP localized exclusively to the endoplasmic reticulum (ER) and that its overexpression could induce cell apoptosis via a depletion of endoplasmic reticulum (ER) Ca2+ stores. In this study, we show that overexpression of HAP causes the activation of caspase-12 and caspase-3. We still detected the collapse of mitochondrial membrane potential (Δωm) and the release of cytochrome c in HAP-overexpressing HeLa cells. All the results indicate that both the mitochondria and the ER are involved in apoptosis caused by HAP overexpression, and suggest that HAP overexpression may initiate an ER overload response (EOR) and bring about the downstream apoptotic events. Equal contribution to this paper  相似文献   

20.
Poor survival of mesenchymal stem cells (MSCs) compromised the efficacy of stem cell therapy for myocardial infarction. The increase of exogenous reactive oxygen species (ROS) in infracted heart is one of the important factors that challenged the survival of donor MSCs. In the study we aimed to evaluate the effect of oxidative stress on the cell death of MSCs and investigate its mechanisms in order to help with the identification of new biological compounds to reduce donor cells damage. Apoptosis of MSCs were evaluated with Hoechst 33342 staining and flow cytometry analysis. The mitochondrial membrane potential of MSCs was analyzed with JC‐1 staining. Signaling pathways involved in H2O2 induced apoptosis were analyzed with Western blot. H2O2 induced apoptosis of MSCs in a dose‐ and time‐dependent manner. H2O2 induced apoptosis of MSCs via both endoplasmic reticulum (ER) and mitochondrial pathways rather than extrinsic apoptosis pathway. H2O2 caused transient rather than sustained activation of p38 and JNK with no effect on ERK1/2 pathway. P38 was involved in the regulation of early apoptosis of MSCs while JNK was involved in the late apoptosis. P38 directed both ER stress and mitochondria death pathway in the early apoptosis. In conclusion, exogenous ROS was a major factor to induce apoptosis of MSCs. Both ER stress and mitochondria death pathway were involved in the apoptosis of MSCs. H2O2 activated p38 that directed the above two pathways in the regulation of early apoptosis of MSCs while JNK was involved in the late apoptosis of MSCs. J. Cell. Biochem. 111: 967–978, 2010. © 2010 Wiley‐Liss, Inc.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号