共查询到20条相似文献,搜索用时 0 毫秒
1.
2.
Matej Orešič 《Biochimica et Biophysica Acta (BBA)/Molecular and Cell Biology of Lipids》2010,1801(3):235-239
Systems biology views and studies the biological systems in the context of complex interactions between their building blocks and processes. Given its multi-level complexity, metabolic syndrome (MetS) makes a strong case for adopting the systems biology approach. Despite many MetS traits being highly heritable, it is becoming evident that the genetic contribution to these traits is mediated via gene–gene and gene–environment interactions across several spatial and temporal scales, and that some of these traits such as lipotoxicity may even be a product of long-term dynamic changes of the underlying genetic and molecular networks. This presents several conceptual as well as methodological challenges and may demand a paradigm shift in how we study the undeniably strong genetic component of complex diseases such as MetS. The argument is made here that for adopting systems biology approaches to MetS an integrative framework is needed which glues the biological processes of MetS with specific physiological mechanisms and principles and that lipotoxicity is one such framework. The metabolic phenotypes, molecular and genetic networks can be modeled within the context of such integrative framework and the underlying physiology. 相似文献
3.
Dr. Eunjung Kim 《Biotechnology journal》2010,5(9):919-929
Recently, it has been suggested that insulin resistance is a better predictor of metabolic syndrome than obesity. Numerous studies have been conducted to identify insulin resistance susceptibility genes in various model systems. This review focuses on recent findings in microarray analyses, which have indicated that (i) in the liver, genes involved in lipid synthesis and gluconeogenesis are increased in an animal model of insulin resistance that leads into liver steatosis and hyperglycemia; (ii) in adipose tissues, genes involved in fatty acid synthesis and adipogenesis are down-regulated both in insulin-resistant humans and in animals; and (iii) in muscle, overall gene expression, including genes involved in fatty acid oxidation and biosynthesis, is either decreased or unresponsive compared to that of insulin-sensitive control human subjects or animals. Considering the multifaceted effects of insulin resistance in various tissues, aiming at multi-targets rather than a single target will be a more promising strategy for the prevention or treatment of insulin resistance. 相似文献
4.
5.
The major cell signaling pathways, and their specific mechanisms of transduction, have been a subject of investigation for many years. As our understanding of these pathways advances, we find that they are evolutionarily well-conserved not only individually, but also at the level of their crosstalk and signal integration. Productive interactions within the key signal transduction networks determine success in embryonic organogenesis, and postnatal tissue repair throughout adulthood. However, aside from clues revealed through examining age-related degenerative diseases, much remains uncertain about imbalances within these pathways during normal aging. Further, little is known about the molecular mechanisms by which alterations in the major cell signal transduction networks cause age-related pathologies. The aim of this review is to describe the complex interplay between the Notch, TGFβ, WNT, RTK-Ras and Hh signaling pathways, with a specific focus on the changes introduced within these networks by the aging process, and those typical of age-associated human pathologies. 相似文献
6.
《Autophagy》2013,9(3):433-434
Reactive oxygen species (ROS) that accumulate under oxidative pressure cause severe damage to cellular components, and induce various cellular responses, including apoptosis, programmed necrosis and autophagy, depending on the cellular setting. Various studies have described ROS-induced autophagy, but only a few direct factors that regulate autophagy under oxidative stress are known to date. We have identified DAPK and PKD as such regulators by demonstrating their role in the process of autophagy in general, and specifically during oxidative stress. PKD acts as a downstream effector of DAPk in the regulation of autophagy. Furthermore, PKD functions within the autophagic network as an activator of VPS34, by associating with and phosphorylating VPS34, leading to its activation. Significantly, PKD is recruited to the autophagosomal membranes, placing it within proximity of its autophagic target. 相似文献
7.
Ezetimibe improves liver steatosis and insulin resistance in obese rat model of metabolic syndrome 总被引:1,自引:0,他引:1
Deushi M Nomura M Kawakami A Haraguchi M Ito M Okazaki M Ishii H Yoshida M 《FEBS letters》2007,581(29):5664-5670
Non-alcoholic fatty liver disease (NAFLD) is associated with the metabolic syndrome characterized by dislipidemia and insulin resistance. We hypothesized that ezetimibe, an inhibitor of NPC1L1, improves these metabolic disorders in Zucker obese fatty rats (ZOF). Ezetimibe significantly lowered total cholesterol and triglycerides in ZOF with prominent reduction in the remnant lipoprotein fraction and small dense low density lipoprotein fraction. Moreover, lipid deposition and fibrosis of liver were decreased by ezetimibe. Interestingly, ezetimibe improved insulin and plasma glucose response after intraperitoneal glucose injection. Further, ezetimibe enhanced insulin signaling in cultured hepatocytes. Our results indicate the potential of ezetimibe in treating the metabolic syndrome and NAFLD. 相似文献
8.
Elise F. Hoek-van den Hil Evert M. van Schothorst Inge van der Stelt Hans J. M. Swarts Marjanne van Vliet Tom Amolo Jacques J. M. Vervoort Dini Venema Peter C. H. Hollman Ivonne M. C. M. Rietjens Jaap Keijer 《Genes & nutrition》2015,10(4)
Dietary flavonoid intake is associated with reduced risk of cardiovascular diseases, possibly by affecting metabolic health. The relative potency of different flavonoids in causing beneficial effects on energy and lipid metabolism has not been investigated. Effects of quercetin, hesperetin, epicatechin, apigenin and anthocyanins in mice fed a high-fat diet (HF) for 12 weeks were compared, relative to normal-fat diet. HF-induced body weight gain was significantly lowered by all flavonoids (17–29 %), but most by quercetin. Quercetin significantly lowered HF-induced hepatic lipid accumulation (71 %). Mesenteric adipose tissue weight and serum leptin levels were significantly lowered by quercetin, hesperetin and anthocyanins. Adipocyte cell size and adipose tissue inflammation were not affected. The effect on body weight and composition could not be explained by individual significant effects on energy intake, energy expenditure or activity. Lipid metabolism was not changed as measured by indirect calorimetry or expression of known lipid metabolic genes in liver and white adipose tissue. Hepatic expression of Cyp2b9 was strongly downregulated by all flavonoids. In conclusion, all flavonoids lowered parameters of HF-induced adiposity, with quercetin being most effective.
Electronic supplementary material
The online version of this article (doi:10.1007/s12263-015-0469-z) contains supplementary material, which is available to authorized users. 相似文献9.
Nasser M. Al-Daghri Omar S. Al-Attas Khalid M. Alkharfy Nasiruddin Khan Abdul Khader Mohammed Benjamin Vinodson Mohammed Ghouse Ahmed Ansari Amal Alenad Majed S. Alokail 《Gene》2014
The prevalence of metabolic syndrome (MetS) is rising alarmingly in the Saudi Arabian population. This study was conducted to assess the association between vitamin D receptor (VDR) polymorphisms and genetic susceptibility to components of the metabolic syndrome, type 2 diabetes mellitus (T2DM), and vitamin D deficiency in the Saudi Arabian population. Five-hundred-seventy Saudi individuals (285 MetS and 285 controls) were enrolled in this cross-sectional study. TaqI, BsmI, ApaI and FokI single nucleotide polymorphisms (SNPs) of the VDR gene were genotyped. The CT genotype and allele T of BsmI were associated with lower HDL-C levels [OR 0.60 (0.37, 0.96), p = 0.03] and obesity [OR 1.4 (1.0, 1.90), p = 0.04], respectively. The CT genotype and the dominant model CT + TT of BsmI were associated with increased risk of diabetes [OR 1.7 (1.2, 2.4), p = 0.007], and [OR 1.5 (1.1, 2.2), p = 0.01], respectively. On the contrary, the CT and CT + CC genotypes of FokI exhibited an association with a reduced risk of diabetes [OR 0.70 (0.49, 0.99), p = 0.05] and [OR 0.67 (0.48, 0.94), p = 0.02], respectively. The allele C of FokI was associated with lower risk of developing T2DM [OR 0.73 (0.56, 0.95), p = 0.02]. The prevalence of vitamin D deficiency was lower in subjects with the AC genotype of ApaI [OR, 0.34 (0.14, 0.80), p = 0.01]. Components of the MetS such as obesity, low HDL and T2DM were associated with the VDR gene. FokI and BsmI have protective and facilitative effects on the risk for T2DM, while the ApaI genotype was associated with reduced vitamin D deficiency. 相似文献
10.
Esther M. M. Ooi Theodore W. K. Ng Gerald F. Watts Dick C. Chan P. Hugh R. Barrett 《Journal of lipid research》2012,53(11):2443-2449
We examined the effects of fenofibrate and atorvastatin on very low density lipoprotein (VLDL) apolipoprotein (apo)E metabolism in the metabolic syndrome (MetS). We studied 11 MetS men in a randomized, double-blind, crossover trial. VLDL-apoE kinetics were examined using stable isotope methods and compartmental modeling. Compared with placebo, fenofibrate (200 mg/day) and atorvastatin (40 mg/day) decreased plasma apoE concentrations (P < 0.05). Fenofibrate decreased VLDL-apoE concentration and production rate (PR) and increased VLDL-apoE fractional catabolic rate (FCR) compared with placebo (P < 0.05). Compared with placebo, atorvastatin decreased VLDL-apoE concentration and increased VLDL-apoE FCR (P < 0.05). Fenofibrate and atorvastatin had comparable effects on VLDL-apoE concentration. The increase in VLDL-apoE FCR with fenofibrate was 22% less than that with atorvastatin (P < 0.01). With fenofibrate, the change in VLDL-apoE concentration was positively correlated with change in VLDL-apoB concentration, and negatively correlated with change in VLDL-apoB FCR. In MetS, fenofibrate and atorvastatin decreased plasma apoE concentrations. Fenofibrate decreased VLDL-apoE concentration by lowering VLDL-apoE production and increasing VLDL-apoE catabolism. By contrast, atorvastatin decreased VLDL-apoE concentration chiefly by increasing VLDL-apoE catabolism. Our study provides new insights into the mechanisms of action of two different lipid-lowering therapies on VLDL-apoE metabolism in MetS. 相似文献
11.
12.
BackgroundDiabetes may be associated with decreased prostate cancer (PCa) risk. However, previous studies have not always accounted for time since diabetes diagnosis or antidiabetic drug use. Futhermore, the role of metabolic syndrome (MetS) in PCa risk is still debated. We investigated the role of diabetes and MetS in PCa risk based on data from the Epidemiological study of PCa (EPICAP).MethodsEPICAP is a population-based case-control study that included 819 incident PCa cases in 2012–2013 and 879 controls frequency matched by age. MetS was characterized according to National Cholesterol Education Program Adult Treatment Panel III (NCEP-ATP III). Logistic regression models adjusted for age, family history of PCa and ethnicity, were used to assess odds ratios (ORs) and their 95%conficence intervals (CIs) for the associations between diabetes, MetS and PCa risk.ResultsWhereas we did not observed an association between diabetes and PCa, a decreased risk of PCa has been highlighted with an increasing treated diabetes duration (p-trend=0.008). No association has been observed between MetS, the number of MetS criteria and the risk of PCa. However, we suggested that NSAIDs use could modify the association between MetS and PCa risk.ConclusionOur results suggest an inverse association between the duration of diabetes and PCa risk. The role of metabolic factors, such as MetS and its components, in PCa risk remains unclear and requires further investigations. 相似文献
13.
Sphingosine-1-phosphate (S1P) is a bioactive sphingolipid that mediates a wide array of biologic effects through its interaction with a family of five G protein-coupled receptors. Cytokines and growth factors interact with this signaling pathway in a variety of ways, including both activation and regulation of the expression of the enzymes that regulate synthesis and degradation of S1P. Not only do many growth factors and cytokines stimulate S1P production, leading to transactivation of S1P receptors, ligation of S1P receptors by S1P can also transactivate growth factor tyrosine kinase receptors and stimulate growth factor and cytokine signaling cascades. This review discusses the mechanisms involved in cross-talk between S1P, cytokines, and growth factors and the impact of that cross-talk on cell signaling and cell biology. 相似文献
14.
Ever since Rudolf Virchow in 1858 publicly announced his apprehension of neuroglia being a true connective substance, this concept has been evolving to encompass a heterogeneous population of cells with various forms and functions. We briefly compare the 19th–20th century perspectives on neuroglia with the up-to-date view of these cells as an integral, and possibly integrating, component of brain metabolism and signalling in heath and disease. We conclude that the unifying property of otherwise diverse functions of various neuroglial cell sub-types is to maintain brain homoeostasis at different levels, from whole organ to molecular. 相似文献
15.
Catherine M. Phillips Louisa Goumidi Sandrine Bertrais Martyn R. Field L. Adrienne Cupples Jose M. Ordovas Catherine Defoort Julie A. Lovegrove Christian A. Drevon Michael J. Gibney Ellen E. Blaak Beata Kiec-Wilk Britta Karlstrom Jose Lopez-Miranda Ross McManus Serge Hercberg Denis Lairon Richard Planells Helen M. Roche 《Journal of lipid research》2010,51(7):1793-1800
Long-chain acyl CoA synthetase 1 (ACSL1) plays an important role in fatty acid metabolism and triacylglycerol (TAG) synthesis. Disturbance of these pathways may result in dyslipidemia and insulin resistance, hallmarks of the metabolic syndrome (MetS). Dietary fat is a key environmental factor that may interact with genetic determinants of lipid metabolism to affect MetS risk. We investigated the relationship between ACSL1 polymorphisms (rs4862417, rs6552828, rs13120078, rs9997745, and rs12503643) and MetS risk and determined potential interactions with dietary fat in the LIPGENE-SU.VI.MAX study of MetS cases and matched controls (n = 1,754). GG homozygotes for rs9997745 had increased MetS risk {odds ratio (OR) 1.90 [confidence interval (CI) 1.15, 3.13]; P = 0.01}, displayed elevated fasting glucose (P = 0.001) and insulin concentrations (P = 0.002) and increased insulin resistance (P = 0.03) relative to the A allele carriers. MetS risk was modulated by dietary fat, whereby the risk conferred by GG homozygosity was abolished among individuals consuming either a low-fat (<35% energy) or a high-PUFA diet (>5.5% energy). In conclusion, ACSL1 rs9997745 influences MetS risk, most likely via disturbances in fatty acid metabolism, which was modulated by dietary fat consumption, particularly PUFA intake, suggesting novel gene-nutrient interactions. 相似文献
16.
P M Tedeschi E K Markert M Gounder H Lin D Dvorzhinski S C Dolfi L L-Y Chan J Qiu R S DiPaola K M Hirshfield L G Boros J R Bertino Z N Oltvai A Vazquez 《Cell death & disease》2013,4(10):e877
Recent observations on cancer cell metabolism indicate increased serine synthesis from glucose as a marker of poor prognosis. We have predicted that a fraction of the synthesized serine is routed to a pathway for ATP production. The pathway is composed by reactions from serine synthesis, one-carbon (folate) metabolism and the glycine cleavage system (SOG pathway). Here we show that the SOG pathway is upregulated at the level of gene expression in a subset of human tumors and that its level of expression correlates with gene signatures of cell proliferation and Myc target activation. We have also estimated the SOG pathway metabolic flux in the NCI60 tumor-derived cell lines, using previously reported exchange fluxes and a personalized model of cell metabolism. We find that the estimated rates of reactions in the SOG pathway are highly correlated with the proliferation rates of these cell lines. We also observe that the SOG pathway contributes significantly to the energy requirements of biosynthesis, to the NADPH requirement for fatty acid synthesis and to the synthesis of purines. Finally, when the PC-3 prostate cancer cell line is treated with the antifolate methotrexate, we observe a decrease in the ATP levels, AMP kinase activation and a decrease in ribonucleotides and fatty acids synthesized from [1,2-13C2]-D-glucose as the single tracer. Taken together our results indicate that the SOG pathway activity increases with the rate of cell proliferation and it contributes to the biosynthetic requirements of purines, ATP and NADPH of cancer cells. 相似文献
17.
Bedu E Desplanches D Pequignot J Bordier B Desvergne B 《Biochemical and biophysical research communications》2007,357(4):877-881
The peroxisome proliferator-activated receptors (PPARs) are involved in the regulation of most of the pathways linked to lipid metabolism. PPARalpha and PPARbeta isotypes are known to regulate muscle fatty acid oxidation and a reciprocal compensation of their function has been proposed. Herein, we investigated muscle contractile and metabolic phenotypes in PPARalpha-/-, PPARbeta-/-, and double PPARalpha-/- beta-/- mice. Heart and soleus muscle analyses show that the deletion of PPARalpha induces a decrease of the HAD activity (beta-oxidation) while soleus contractile phenotype remains unchanged. A PPARbeta deletion alone has no effect. However, these mild phenotypes are not due to a reciprocal compensation of PPARbeta and PPARalpha functions since double gene deletion PPARalpha-PPARbeta mostly reproduces the null PPARalpha-mediated reduced beta-oxidation, in addition to a shift from fast to slow fibers. In conclusion, PPARbeta is not required for maintaining skeletal muscle metabolic activity and does not compensate the lack of PPARalpha in PPARalpha null mice. 相似文献
18.
Réale D Garant D Humphries MM Bergeron P Careau V Montiglio PO 《Philosophical transactions of the Royal Society of London. Series B, Biological sciences》2010,365(1560):4051-4063
The pace-of-life syndrome (POLS) hypothesis specifies that closely related species or populations experiencing different ecological conditions should differ in a suite of metabolic, hormonal and immunity traits that have coevolved with the life-history particularities related to these conditions. Surprisingly, two important dimensions of the POLS concept have been neglected: (i) despite increasing evidence for numerous connections between behavioural, physiological and life-history traits, behaviours have rarely been considered in the POLS yet; (ii) the POLS could easily be applied to the study of covariation among traits between individuals within a population. In this paper, we propose that consistent behavioural differences among individuals, or personality, covary with life history and physiological differences at the within-population, interpopulation and interspecific levels. We discuss how the POLS provides a heuristic framework in which personality studies can be integrated to address how variation in personality traits is maintained within populations. 相似文献
19.
Colleen C. Caldwell 《Critical reviews in biochemistry and molecular biology》2020,55(5):482-507
Abstract The heterotrimeric eukaryotic Replication protein A (RPA) is a master regulator of numerous DNA metabolic processes. For a long time, it has been viewed as an inert protector of ssDNA and a platform for assembly of various genome maintenance and signaling machines. Later, the modular organization of the RPA DNA binding domains suggested a possibility for dynamic interaction with ssDNA. This modular organization has inspired several models for the RPA-ssDNA interaction that aimed to explain how RPA, the high-affinity ssDNA binding protein, is replaced by the downstream players in DNA replication, recombination, and repair that bind ssDNA with much lower affinity. Recent studies, and in particular single-molecule observations of RPA-ssDNA interactions, led to the development of a new model for the ssDNA handoff from RPA to a specific downstream factor where not only stability and structural rearrangements but also RPA conformational dynamics guide the ssDNA handoff. Here we will review the current knowledge of the RPA structure, its dynamic interaction with ssDNA, and how RPA conformational dynamics may be influenced by posttranslational modification and proteins that interact with RPA, as well as how RPA dynamics may be harnessed in cellular decision making. 相似文献
20.
Targeted drugs tailored against genes and signaling proteins have formed the new era termed Targeted Therapies. Although the field is relatively young, since only about 5 years ago clinical trials started showing promise, there have are already been significant setbacks due to drug resistance caused by point mutations, alterations in gene expression or complete loss of target proteins with disease progression. Although new drugs are continuously designed and tried, it seems inevitable that genetic and signal protein targets pose too broad flexibility and variability, often changing target characteristics and thus escape treatments turning “magic bullets” into rather “wondering bullets”. This is especially true in cancer, where old and new targeted therapies continue to fail and the most recent ones do not offer much improvement on clinical outcome parameters. Metabolic targeted therapies are aimed at control points of the metabolic network by targeting particular enzymes of major macromolecule synthesis pathways in cancer. This review summarizes the potential benefits of targeted therapies in the metabolic network as applied with genetic and proteomic approaches. The metabolic target approach is most efficient if and when pathway flux information is available for drug target development using the stable isotope based dynamic metabolic profile (SIDMAP) of tumor cells, in vitro or in vivo.This revised version was published online in June 2005. The previous version did not contain colour images. 相似文献