首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Bacillithiol is a low‐molecular weight thiol produced by many gram‐positive organisms, including Staphylococcus aureus and Bacillus anthracis. It is the major thiol responsible for maintaining redox homeostasis and cellular detoxification, including inactivation of the antibiotic fosfomycin. The metal‐dependent bacillithiol transferase BstA is likely involved in these sorts of detoxification processes, but the exact substrates and enzyme mechanism have not been identified. Here we report the 1.34 Å resolution X‐ray crystallographic structure of BstA from S. aureus. Our structure confirms that BstA belongs to the YfiT‐like metal‐dependent hydrolase superfamily. Like YfiT, our structure contains nickel within its active site, but our functional data suggest that BstA utilizes zinc for activity. Although BstA and YfiT both contain a core four helix bundle and coordinate their metal ions in the same fashion, significant differences between the protein structures are described here.  相似文献   

2.

Background

The objective of this study was to fabricate, characterize and evaluate in vitro, an injectable calcium sulfate bone cement beads loaded with an antibiotic nanoformulation, capable of delivering antibiotic locally for the treatment of periodontal disease.

Methods

Tetracycline nanoparticles (Tet NPs) were prepared using an ionic gelation method and characterized using DLS, SEM, and FTIR to determine size, morphology, stability and chemical interaction of the drug with the polymer. Further, calcium sulfate (CaSO4) control and CaSO4-Tet NP composite beads were prepared and characterized using SEM, FTIR and XRD. The drug release pattern, material properties and antibacterial activity were evaluated. In addition, protein adsorption, cytocompatibility and alkaline phosphatase activity of the CaSO4-Tet NP composite beads in comparison to the CaSO4 control were analyzed.

Results

Tet NPs showed a size range of 130 ± 20 nm and the entrapment efficiency calculated was 89%. The composite beads showed sustained drug release pattern. Further the drug release data was fitted into various kinetic models wherein the Higuchi model showed higher correlation value (R2 = 0.9279) as compared to other kinetic models. The composite beads showed antibacterial activity against Staphylococcus aureus and Escherichia coli. The presence of Tet NPs in the composite bead didn't alter its cytocompatibility. In addition, the composite beads enhanced the ALP activity of hPDL cells.

Conclusions

The antibacterial and cytocompatible CaSO4-Tet NP composite beads could be beneficial in periodontal management to reduce the bacterial load at the infection site.

General significance

Tet NPs would deliver antibiotic locally at the infection site and the calcium sulfate cement, would itself facilitate tissue regeneration.  相似文献   

3.

Background

Previously, we identified two missense mutations in the chondroitin N-acetylgalactosaminyltransferase-1 gene in patients with neuropathy. These mutations are associated with a profound decrease in chondroitin N-acetylgalactosaminyltransferase-1 enzyme activity. Here, we describe a patient with neuropathy who is heterozygous for a chondroitin synthase-1 mutation. Chondroitin synthase-1 has two glycosyltransferase activities: it acts as a GlcUA and a GalNAc transferase and is responsible for adding repeated disaccharide units to growing chondroitin sulfate chains.

Methods

Recombinant wild-type chondroitin synthase-1 enzyme and the F362S mutant were expressed. These enzymes and cells expressing them were then characterized.

Results

The mutant chondroitin synthase-1 protein retained approximately 50% of each glycosyltransferase activity relative to the wild-type chondroitin synthase-1 protein. Furthermore, unlike chondroitin polymerase comprised of wild-type chondroitin synthase-1 protein, the non-reducing terminal 4-O-sulfation of GalNAc residues synthesized by chondroitin N-acetylgalactosaminyltransferase-1 did not facilitate the elongation of chondroitin sulfate chains when chondroitin polymerase that consists of the mutant chondroitin synthase-1 protein was used as the enzyme source.

Conclusions

The chondroitin synthase-1 F362S mutation in a patient with neuropathy resulted in a decrease in chondroitin polymerization activity and the mutant protein was defective in regulating the number of chondroitin sulfate chains via chondroitin N-acetylgalactosaminyltransferase-1. Thus, the progression of peripheral neuropathies may result from defects in these regulatory systems.

General significance

The elongation of chondroitin sulfate chains may be tightly regulated by the cooperative expression of chondroitin synthase-1 and chondroitin N-acetylgalactosaminyltransferase-1 in peripheral neurons and peripheral neuropathies may result from synthesis of abnormally truncated chondroitin sulfate chains.  相似文献   

4.

Background

Microbial antibiotic resistance is a challenging medical problem nowadays. Two scorpion peptides displaying antibiotic activity: hadrurin and vejovine were taken as models for the design of novel shorter peptides with similar activity.

Methods

Using the standard Fmoc-based solid phase synthesis technique of Merrifield twelve peptides (18 to 29 amino acids long) were synthesized, purified and assayed against a variety of multi-drug resistant Gram-negative bacteria from clinical isolates. Hemolytic and antiparasitic activities of the peptides and their possible interactions with eukaryotic cells were verified. Release of the fluorophore calcein from liposomes treated with these peptides was measured.

Results

A peptide with sequence GILKTIKSIASKVANTVQKLKRKAKNAVA), and three analogs: Δ(Α29), Δ(K12-Q18; Ν26−Α29), and K4N Δ(K12-Q18; Ν26−Α29) were shown to inhibit the growth of Gram-negative (E. coli ATCC25922) and Gram-positive bacteria (S. aureus), as well as multi-drug resistant (MDR) clinical isolated. The antibacterial and antiparasitic activities were found with peptides at 0.78 to 25 μM and 5 to 25 μM concentration, respectively. These peptides have low cytotoxic and hemolytic activities at concentrations significantly exceeding their minimum inhibitory concentrations (MICs), showing values between 40 and 900 μM for their EC50, compared to the parent peptides vejovine and hadrurin that at the same concentration of their MICs lysed more than 50% of human erythrocytes cells.

Conclusions

These peptides promise to be good candidates to combat infections caused by Gram-negative bacteria from nosocomial infections.

General significance

Our results confirm that well designed synthetic peptides can be an alternative for solving the lack of effective antibiotics to control bacterial infections.  相似文献   

5.

Background

The neurodegenerative disease Friedreich's ataxia is the result of frataxin deficiency. Frataxin is a mitochondrial protein involved in iron–sulfur cluster (Fe–S) cofactor biogenesis, but its functional role in this pathway is debated. This is due to the interconnectivity of iron metabolic and oxidative stress response pathways that make distinguishing primary effects of frataxin deficiency challenging. Since Fe–S cluster assembly is conserved, frataxin overexpression phenotypes in a simple eukaryotic organism will provide additional insight into frataxin function.

Methods

The Schizosaccharomyces pombe frataxin homologue (fxn1) was overexpressed from a plasmid under a thiamine repressible promoter. The S. pombe transformants were characterized at several expression strengths for cellular growth, mitochondrial organization, iron levels, oxidative stress, and activities of Fe–S cluster containing enzymes.

Results

Observed phenotypes were dependent on the amount of Fxn1 overexpression. High Fxn1 overexpression severely inhibited S. pombe growth, impaired mitochondrial membrane integrity and cellular respiration, and led to Fxn1 aggregation. Cellular iron accumulation was observed at moderate Fxn1 overexpression but was most pronounced at high levels of Fxn1. All levels of Fxn1 overexpression up-regulated oxidative stress defense and mitochondrial Fe–S cluster containing enzyme activities.

Conclusions

Despite the presence of oxidative stress and accumulated iron, activation of Fe–S cluster enzymes was common to all levels of Fxn1 overexpression; therefore, Fxn1 may regulate the efficiency of Fe–S cluster biogenesis in S. pombe.

General Significance

We provide evidence that suggests that dysregulated Fe–S cluster biogenesis is a primary effect of both frataxin overexpression and deficiency as in Friedreich's ataxia.  相似文献   

6.

Background

We have shown previously that AtoSC two-component system regulates the biosynthesis of E. coli cPHB [complexed poly-(R)-3-hydroxybutyrate].

Methods

The AtoSC involvement on fatty acids metabolism, towards cPHB synthesis, was studied using cPHB determination, gene expression, and fatty acid metabolic pathways inhibitors.

Results

Deletion of the atoDAEB operon from the E. coli genome resulted in a consistent reduction of cPHB accumulation. When in ΔatoDAEB cells, the atoDAEB operon and the AtoSC system were introduced extrachromosomally, a significant enhancement of cPHB levels was observed. Moreover, the introduction of a plasmid with atoSC genes regulated positively cPHB biosynthesis. A lesser cPHB enhancement was triggered when plasmids carrying either atoS or atoC were introduced. The intracellular distribution of cPHB was regulated by AtoSC or AtoC according to the inducer (acetoacetate or spermidine). Blockage of β-oxidation by acrylic acid reduced cPHB levels, suggesting the involvement of this pathway in cPHB synthesis; however, the overproduction of AtoSC or its constituents separately resulted in cPHB enhancement. Inhibition of fatty acid biosynthesis by cerulenin resulted to a major cPHB reduction, indicating the contribution of this pathway in cPHB production. Inhibition of both β-oxidation and fatty acid biosynthesis reduced dramatically cPHB, suggesting the contribution of both pathways in cPHB biosynthesis.

Conclusions

Short fatty acid catabolism (atoDAEB operon) and fatty acids metabolic pathways participate in cPHB synthesis through the involvement of AtoSC system.

General significance

The involvement of the AtoSC system in the fatty acids metabolic pathways interplay towards cPHB biosynthesis provides additional perceptions of AtoSC role on E. coli regulatory biochemical processes.  相似文献   

7.

Background

β-N-acetylhexosaminidases, which are involved in a variety of biological processes including energy metabolism, cell proliferation, signal transduction and in pathogen-related inflammation and autoimmune diseases, are widely distributed in Bacteria and Eukaryotes, but only few examples have been found in Archaea so far. However, N-acetylgluco- and galactosamine are commonly found in the extracellular storage polymers and in the glycans decorating abundantly expressed glycoproteins from different Crenarchaeota Sulfolobus sp., suggesting that β-N-acetylglucosaminidase activities could be involved in the modification/recycling of these cellular components.

Methods

A thermophilic β-N-acetylglucosaminidase was purified from cellular extracts of S. solfataricus, strain P2, identified by mass spectrometry, and cloned and expressed in E. coli. Glycosidase assays on different strains of S. solfataricus, steady state kinetic constants, substrate specificity analysis, and the sensitivity to two inhibitors of the recombinant enzyme were also reported.

Results

A new β-N-acetylglucosaminidase from S. solfataricus was unequivocally identified as the product of gene sso3039. The detailed enzymatic characterization demonstrates that this enzyme is a bifunctional β-glucosidase/β-N-acetylglucosaminidase belonging to family GH116 of the carbohydrate active enzyme (CAZy) classification.

Conclusions

This study allowed us to propose that family GH116 is composed of three subfamilies, which show distinct substrate specificities and inhibitor sensitivities.

General significance

The characterization of SSO3039 allows, for the first time in Archaea, the identification of an enzyme involved in the metabolism β-N-acetylhexosaminide, an essential component of glycoproteins in this domain of life, and substantially increases our knowledge on the functional role and phylogenetic relationships amongst the GH116 CAZy family members.  相似文献   

8.

Aims

L-selectin belongs to selectin family of adhesion molecule and participates in the generation and development of type 2 diabetes (T2D). In this study, we evaluated the relationship between the P213S polymorphism of L-selectin gene and T2D and insulin resistance in the Chinese population.

Methods

We genotyped P213S polymorphism in 801 patients with T2D and 834 healthy controls in the Chinese population using polymerase chain reaction–ligase detection reaction (PCR–LDR) technique. Plasma glucose, insulin, lipid, blood urea nitrogen, creatinine and uric acid levels were measured by biochemical technique.

Results

The frequency of 213PP genotype and P allele of the L-selectin gene in patients with T2D was significantly higher than that in controls (P = 0.007; P = 0.019, respectively). The relative risk of allele P suffered from T2D was 1.191 times higher than that of allele S. Moreover, the levels of FPG and HOMA-IR of PP and PS genotype carriers were significantly higher than those of SS genotype carriers in the T2D group (P < 0.05).

Conclusion

These findings indicated that the P213S polymorphism of L‐selectin gene may contribute to susceptibility to T2D and insulin resistance in the Chinese population, and P allele appears to be a risk factor for T2D.  相似文献   

9.

Background

α1-Acid glycoprotein (AGP) plays a decisive role in the serum protein binding of several drugs.Genetic variants of AGP have different ligand binding properties. The binding of deramciclane (DER), a chiral anxiolytic agent, has been studied on A and F1/S genetic variants of AGP.

Methods

The effects of DER and reference drugs on the binding of specific fluorescent and circular dichroism (CD) probes of AGP were determined. Dicumarol (DIC) binding was measured by CD and equilibrium dialysis.

Results

DER effectively displaced probes bound to variant A, while it was less effective at displacing probes bound to variant F1/S. DER increased the binding and inverted the induced CD spectrum of DIC in the solution of variant F1/S. This phenomenon could not be brought about by the enantiomer of DER.

Conclusion

DER has high-affinity binding (Ka ≥ 2×106 M-1) to variant A, while its binding to the variant F1/S is about thirty times weaker. During simultaneous binding of DER and DIC to variant F1/S a ternary complex having about four times higher affinity is formed, in which the opposite chiral conformation of DIC is favored.

General significance

The binding interactions found prove that AGP can simultaneously accommodate different ligand molecules. Even weakly bound ligands can provoke unexpected allosteric protein binding interactions.  相似文献   

10.

Background

Peroxiredoxins are important heterogeneous thiol-dependent hydroperoxidases with a variety of isoforms and enzymatic mechanisms. A special subclass of glutaredoxin/glutathione-dependent peroxiredoxins has been discovered in bacteria and eukaryotes during the last decade, but the exact enzymatic mechanisms of these enzymes remain to be unraveled.

Methods

We performed a comprehensive analysis of the enzyme kinetics and redox states of one of these glutaredoxin/glutathione-dependent peroxiredoxins, the antioxidant protein from the malaria parasite Plasmodium falciparum, using steady-state kinetic measurements, site-directed mutagenesis, redox mobility shift assays, gel filtration, and mass spectrometry.

Results

P. falciparum antioxidant protein requires not only glutaredoxin but also glutathione as a true substrate for the reduction of hydroperoxides. One peroxiredoxin cysteine residue and one glutaredoxin cysteine residue are sufficient for catalysis, however, additional cysteine residues of both proteins result in alternative redox states and conformations in vitro with implications for redox regulation. Our data furthermore point to a glutathione-dependent peroxiredoxin activation and a negative subunit cooperativity.

Conclusions

The investigated glutaredoxin/glutathione/peroxiredoxin system provides numerous new insights into the mechanism and redox regulation of peroxiredoxins.

General significance

As a member of the special subclass of glutaredoxin/glutathione-dependent peroxiredoxins, the P. falciparum antioxidant protein could become a reference protein for peroxiredoxin catalysis and regulation.  相似文献   

11.

Background

The S. cerevisiae α-factor receptor, Ste2p, is a G-protein coupled receptor that plays key roles in yeast signaling and mating. Oligomerization of Ste2p has previously been shown to be important for intracellular trafficking, receptor processing and endocytosis. However the role of ligand in receptor oligomerization remains enigmatic.

Methods

Using functional recombinant forms of purified Ste2p, atomic force microscopy, dynamic light scattering and chemical crosslinking are applied to investigate the role of ligand in Ste2p oligomerization.

Results

Atomic force microscopy images indicate a molecular height for recombinant Ste2p in the presence of α-factor nearly double that of Ste2p alone. This observation is supported by complementary dynamic light scattering measurements which indicate a ligand-induced increase in the polydispersity of the Ste2p hydrodynamic radius. Finally, chemical cross-linking of HEK293 plasma membranes presenting recombinant Ste2p indicates α-factor induced stabilization of the dimeric form and higher order oligomeric forms of the receptor upon SDS-PAGE analysis.

Conclusions

α-factor induces oligomerization of Ste2p in vitro and in membrane.

General significance

These results provide additional evidence of a possible role for ligand in mediation of Ste2p oligomerization in vivo.  相似文献   

12.

Background

It is known that tandem domains of enzymes can carry out catalysis independently or by collaboration. In the case of cysteine proteases, domain sequestration abolishes catalysis because the active site residues are distributed in both domains. The validity of this argument is tested here by using isolated human ribosomal protein S4, which has been recently identified as an unorthodox cysteine protease.

Methods

Cleavage of the peptide substrate Z-FR↓-AMC catalyzed by recombinant C-terminal domain of human S4 (CHS4) is studied by fluorescence-monitored steady-state and stopped-flow kinetic methods. Proteolysis and autoproteolysis were analyzed by electrophoresis.

Results

The CHS4 domain comprised of sequence residues 116–263 has been cloned and ovreexpressed in Escherichia coli. The purified domain is enzymatically active. Barring minor differences, steady-state kinetic parameters for catalysis by CHS4 are very similar to those for full-length human S4. Further, stopped-flow transient kinetics of pre-steady-state substrate binding shows that the catalytic mechanism for both full-length S4 and CHS4 obeys the Michaelis–Menten model adequately. Consideration of the evolutionary domain organization of the S4e family of ribosomal proteins indicates that the central domain (residues 94–170) within CHS4 is indispensable.

Conclusion

The C-terminal domain can carry out catalysis independently and as efficiently as the full-length human S4 does.

Significance

Localization of the enzyme function in the C-terminal domain of human S4 provides the only example of a cysteine endoprotease where substrate-mediated intramolecular domain interaction is irrelevant for catalytic activity.  相似文献   

13.

Background

Vitamin B6 synthesis requires a functional Pdx1 assembly that is dodecameric in vivo. We have previously shown that mutation of a catalytic lysine in the plasmodial Pdx1 protein results in a protein that is both inactive and hexameric in vitro.

Methods

Static and dynamic light scattering, circular dichroism, co-purification and enzyme assays are used to investigate the role of a glycine conserved in all Pdx1 family members.

Results

Static light scattering indicates that a glycine to alanine mutant is present as a hexamer in vitro. Subsequent circular dichroism experiments demonstrate that a significant change in secondary structure content is induced by this mutation. However, this mutant is still competent to bind and support Pdx2 activity.

Conclusions

As the mutated glycine occupies an unrestricted region of the Ramachandran plot the additional stereo-chemical restrictions imposed on alanine residues strongly support our hypothesis that significant structural rearrangement of Pdx1 is required during the transition from hexamer to dodecamer.

General significance

The presented results demonstrate that reduction in the mobility of this region in Pdx1 proteins is required for formation of the in vivo dodecamer, negatively affecting the activity of Pdx1, opening the possibility of allosteric Pdx1 inhibitors.  相似文献   

14.

Aim

To investigate longevity-associated genes based on a comparison between dead and surviving populations.

Methods

A total of 71 cases of dead individuals were treated as the death group, and healthy volunteers who were matched with the dead individuals based on sex and age were recruited as the survival group. Alleles of 13 CODIS STR loci were determined using the AmpFLSTR Profiler Plus PCR Amplification Kit. The cross-validation was performed based on differences between the two groups in both frequency values and ages.

Results

The frequency value of the D18S51-17 alleles was significantly higher in the dead group than in the survival group (p < 0.05), and the frequency value of the D2S1338-18 allele was statistically lower in the dead group than in the survival group (p < 0.05). The mean age of the subjects with the D2S1338-18 allele was also significantly higher than that of the subjects without D2S1338-18, and no significant difference was observed with respect to the other three alleles.

Conclusions

The results suggest that D2S1338-18 is associated with longevity.  相似文献   

15.

Background

Osteomyelitis is an acute or chronic inflammatory process of the bone following infection with pyogenic organisms like Staphylococcus aureus. Tobramycin (TOB) is a promising aminoglycoside antibiotic used to treat various bacterial infections, including S. aureus. The aim of this study was to investigate the efficacy of tobramycin-loaded calcium phosphate beads (CPB) in a rabbit osteomyelitis model.

Methods

Tobramycin (30 mg/mL) was incorporated into CPB by dipping method and the efficacy of TOB-loaded CPB was studied in a rabbit osteomyelitis model. For juxtaposition, CPB with and without TOB were prepared. Twenty-five New Zealand white rabbits were grouped (n?=?5) as sham (group 1), TOB-loaded CPB without S. aureus (group 2), S. aureus only (group 3), S. aureus?+?CPB (group 4), and S. aureus?+?TOB-loaded CPB (group 5). Groups infected with S. aureus followed by CPB implantation were immediately subjected to surgery at the mid-shaft of the tibia. After 28 days post-surgery, all rabbits were euthanized and the presence or absence of chronic osteomyelitis and the extent of architectural destruction of the bone were assessed by radiology, bacteriology and histological studies.

Results

Tobramycin-loaded CPB group potentially inhibited the growth of S. aureus causing 3.2 to 3.4 log10 reductions in CFU/g of bone tissue compared to the controls. Untreated groups infected with S. aureus showed signs of chronic osteomyelitis with abundant bacterial growth and alterations in bone architecture. The sham group and TOB-loaded CPB group showed no evidence of bacterial growth.

Conclusions

TOB-incorporated into CPB for local bone administration was proven to be more successful in increasing the efficacy of TOB in this rabbit osteomyelitis model and hence could represent a good alternative to other formulations used in the treatment of osteomyelitis.
  相似文献   

16.
Lv Z  Zhang X  Liu L  Chen J  Nie Z  Sheng Q  Zhang W  Jiang C  Yu W  Wang D  Wu X  Zhang S  Li J  Zhang Y 《Gene》2012,502(2):118-124

Background

Prohibitin (PHB) is an evolutionarily conserved multifunctional protein with ubiquitous expression. However, its molecular roles are largely unknown.

Methods

To better understand the function of prohibitin protein in silkworm (BmPHB), its coding sequence was isolated from a cDNA library of silkworm pupae. An His-tagged BmPHB fusion protein was expressed in Escherichia coli Rosetta (DE3) and purified with affinity and reversed-phase chromatography. Purified rBmPHB was used to generate anti-BmPHB polyclonal antibody. The subcellular localization of BmPHB was analysed by immunohistochemistry.

Results

BmPHB gene has an ORF of 825 bp, encoding a predicted peptide with 274 amino acid residues. Immunostaining indicate that prohibitin is expressed in nucleus and predominately in cytoplasm. Western blot analyses indicated that, in the fifth instar larva, BmPHB was expressed descendingly in gonad, malpighian tubule, trachea, fatty body, intestine, and head. However, no expression was detected in larva's silk gland and epidermis. In addition, BmPHB was expressed in the nascent egg, larva and pupa, but not in the moth.

Conclusions

The expression of BmPHB gene presents differential characteristic in different stage and tissues. It may play important roles in the development of silkworm.

General significance

Studies on prohibitin have been still restricted to a few specific insects and insect cell lines such as Drosophila, Acyrthosiphon pisum and mosquito cell lines, not yet in silkworm. This is a first characterization of prohibitin in silkworm, B. mori.  相似文献   

17.

Background

Lectins are a diverse group of carbohydrate-binding proteins exhibiting numerous biological activities and functions.

Methods

Two-step serial carbohydrate affinity chromatography was used to isolate a lectin from the edible mushroom clouded agaric (Clitocybe nebularis). It was characterized biochemically, its gene and cDNA cloned and the deduced amino acid sequence analyzed. Its activity was tested by hemagglutination assay and carbohydrate-binding specificity determined by glycan microarray analysis. Its effect on proliferation of several human cell lines was determined by MTS assay.

Results

A homodimeric lectin with 15.9-kDa subunits agglutinates human group A, followed by B, O, and bovine erythrocytes. Hemagglutination was inhibited by glycoprotein asialofetuin and lactose. Glycan microarray analysis revealed that the lectin recognizes human blood group A determinant GalNAcα1–3(Fucα1–2)Galβ-containing carbohydrates, and GalNAcβ1–4GlcNAc (N,N'-diacetyllactosediamine). The lectin exerts antiproliferative activity specific to human leukemic T cells.

Conclusions

The protein belongs to the ricin B-like lectin superfamily, and has been designated as C. nebularis lectin (CNL). Its antiproliferative effect appears to be elicited by binding to carbohydrate receptors on human leukemic T cells.

General significance

CNL is one of the few mushroom ricin B-like lectins that have been identified and the only one so far shown to possess immunomodulatory properties.  相似文献   

18.
19.

Background

Magnolia bark preparations from Magnolia officinalis of Asian medicinal systems are known for their muscle relaxant effect and anticonvulsant activity. These CNS related effects are ascribed to the presence of the biphenyl-type neolignans honokiol and magnolol that exert a potentiating effect on GABAA receptors. 4-O-methylhonokiol isolated from seeds of the North-American M. grandiflora was compared to honokiol for its activity to potentiate GABAA receptors and its GABAA receptor subtype-specificity was established.

Methods

Different recombinant GABAA receptors were functionally expressed in Xenopus oocytes and electrophysiological techniques were used determine to their modulation by 4-O-methylhonokiol.

Results

3 μM 4-O-methylhonokiol is shown here to potentiate responses of the α1β2γ2 GABAA receptor about 20-fold stronger than the same concentration of honokiol. In the present study potentiation by 4-O-methylhonokiol is also detailed for 12 GABAA receptor subtypes to assess GABAA receptor subunits that are responsible for the potentiating effect.

Conclusion

The much higher potentiation of GABAA receptors at identical concentrations of 4-O-methylhonokiol as compared to honokiol parallels previous observations made in other systems of potentiated pharmacological activity of 4-O-methylhonokiol over honokiol.

General significance

The results point to the use of 4-O-methylhonokiol as a lead for GABAA receptor potentiation and corroborate the use of M. grandiflora seeds against convulsions in Mexican folk medicine.  相似文献   

20.

Background

Glutathione transferase (GST) catalyzes a major step in the xenobiotic detoxification pathway. We previously identified a novel, unclassified GST that is upregulated in an insecticide-resistant silkworm (Bombyx mori) upon insecticide exposure. Here, we sought to further characterize this GST, bmGSTu, by solving and refining its crystal structure and identifying its catalytic residues.

Methods

The structure of wild-type bmGSTu was determined with a resolution of 2.1 Å by synchrotron radiation and molecular modeling. Potential catalytic residues were mutated to alanine by means of site-directed mutagenesis, and kinetic data determined for wild-type and mutated bmGSTu.

Results

We found that bmGSTu occurred as a dimer, and that, like other GSTs, each subunit displayed a G-site and an H-site in the active center. Bound glutathione could be localized at the G-site. Kinetic data of the mutated forms of bmGSTu show that Val55, Glu67, and Ser68 in the G-site are important for catalysis. Furthermore, the H-site showed some unique features.

Conclusions

This is the first study to our knowledge to elucidate the molecular conformation of this B. mori GST. Our results indicate that residues Val55, Glu67, and Ser68, as well as Tyr7 and Ser12, in the glutathione-binding region of bmGSTu are critical for catalytic function.

General Significance

Our results, together with our previous finding that bmGSTu was preferentially induced in an insecticide-resistant strain, support the idea that bmGSTu functions in the transformation of exogenous chemical agents. Furthermore, the unique features observed in bmGSTu may shed light on mechanisms of insecticide resistance.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号