首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Numerous studies have reported that long noncoding RNA (lncRNA) dysregulation is involved in the progression of many malignant tumors, including glioma. The lncRNA ZNFX1 antisense RNA 1 (ZFAS1) plays an oncogenic role in various malignant tumors, such as gastric cancer and hepatocellular carcinoma. However, the underlying molecular mechanism of ZFAS1 in glioma has not been fully clarified. In this study, we found that the expression of ZFAS1 was upregulated in both glioma tissues and cell lines. Functional experiments revealed that ZFAS1 promoted glioma proliferation, migration and invasion, and increased resistance to temozolomide in vitro. By using online databases, RNA pull-down assays and luciferase reporter assays, ZFAS1 was demonstrated to act as a sponge of miR-150-5p. Furthermore, proteolipid protein 2 (PLP2) was shown to be the functional target of miR-150-5p. Rescue experiments revealed that ZFAS1 regulated the expression of PLP2 by sponging miR-150-5p. Finally, a xenograft tumor assay demonstrated that ZFAS1 promoted glioma growth in vivo. Our results showed that ZFAS1 promoted glioma malignant progression by regulating the miR-150-5p/PLP2 axis, which may provide a potential therapeutic target for the treatment of glioma.  相似文献   

2.
Glioblastoma (GBM) is the most common and aggressive primary malignant brain tumor. The unregulated expression of Claudin-4 (CLDN4) plays an important role in tumor progression. However, the biological role of CLDN4 in GBM is still unknown. This study aimed to determine whether CLDN4 mediates glioma malignant progression, if so, it would further explore the molecular mechanisms of carcinogenesis. Our results revealed that CLDN4 was significantly upregulated in glioma specimens and cells. The inhibition of CLND4 expression could inhibit mesenchymal transformation, cell invasion, cell migration and tumor growth in vitro and in vivo. Moreover, combined with in vitro analysis, we found that CLDN4 can modulate tumor necrosis factor-α (TNF-α) signal pathway. Meanwhile, we also validated that the transforming growth factor-β (TGF-β) signal pathway can upregulate the expression of CLDN4, and promote the invasion ability of GBM cells. Conversely, TGF-β signal pathway inhibitor ITD-1 can downregulate the expression of CLDN4, and inhibit the invasion ability of GBM cells. Furthermore, we found that TGF-β can promote the nuclear translocation of CLDN4. In summary, our findings indicated that the TGF-β/CLDN4/TNF-α/NF-κB signal axis plays a key role in the biological progression of glioma. Disrupting the function of this signal axis may represent a new treatment strategy for patients with GBM.Subject terms: CNS cancer, Epithelial-mesenchymal transition  相似文献   

3.
4.
Glioma is the most common type of primary intracranial tumor. Dysregulation of circular RNAs (circRNAs) plays a critical role in multiple solid tumors. However, the expression profiles of circRNAs and their functions in glioma have been rarely studied. The current work aims to investigate the clinical significance of a novel circRNA, circ-POSTN, in glioma and explore its biological functions and mechanisms in the progression of glioma. We found that circ-POSTN was highly expressed in glioma tissue samples and cells. High circ-POSTN expression was significantly linked to larger tumor size, higher World Health Organization grades, and shorter overall survival. Furthermore, silencing of circ-POSTN in glioma cells could decrease cell growth, migratory and invasive potential, and induce cell apoptosis in LN229 cells. On the contrary, ectopically expressed circ-POSTN induced the opposite effects in the U251 cell line. By bioinformatic prediction and luciferase reporter assay, we identified that miR-1205 could be sponged by circ-POSTN. Further rescue assays demonstrated that the oncogenic functions of circ-POSTN are partly attributed to its regulation of miR-1205 in glioma cells. Taken together, our data suggest that circ-POSTN plays an oncogenic role in glioma progression and may serve as a novel therapeutic target in this deadly disease.  相似文献   

5.
6.
Gliomas are the most common primary malignant brain tumor in adults. Although these tumors are aggressive and frequently lethal, there are currently few therapeutic approaches available to prolong patient survival. MicroRNAs play important roles in regulating the expression of genes that control diverse cellular processes. Here, we investigated the expression and function of miR-139–3p in gliomas using clinical specimens, cultured cells, and a mouse xenograft tumor model. We found that miR-139–3p expression is markedly lower in human glioma tissues than in normal brain tissues. We identified melanoma differentiation-associated gene-9 (MDA-9)/syntenin, an adaptor protein implicated in tumor metastasis, as a novel direct target of miR-139–3p and showed that syntenin mRNA and miR-139–3p levels were inversely correlated in clinical specimens (r?=??0.6817, P?=?0.0002). Overexpression of miR-139–3p in human glioma cell lines inhibited cell proliferation, migration, and invasion, and these effects were rescued by co-transfection with syntenin. Our results indicate that miR-139–3p plays a significant role in controlling behaviors associated with the malignant progression of gliomas, and we identify the miR-139-3p–syntenin axis as a potential therapeutic target for glioma.  相似文献   

7.
Tumor-associated exosomes play essential roles in intercellular communication and the foundation of cancer microenvironment in glioma. Many mRNAs, microRNAs (miRNAs) and proteins contained in tumor-associated exosomes can be transferred to recipient cells and contribute to the progression of tumor. Nevertheless, the cellular communication between malignant cells with different heterogeneities or characteristics and resultant tumor progression are still unclear in glioma. Here, we show that exosomes released from glioma stem-like cells (GSCs) contain a significant increasing level of miR-155-5p and could be horizontally transferred to surrounding glioma cells. High expression of miR-155-5p in plasma exosomes from patients was associated with glioma diagnosis and grading. Mechanically, we found that miR-155-5p markedly reduced the expression of acetyl-CoA thioesterase 12 (ACOT12), which played as a tumor suppressor in glioma. Furthermore, mesenchymal transition was significantly promoted in glioma cells treated with GSCs-derived exosomes. In conclusion, GSCs-derived exosomal miR-155-5p play a critical role in glioma progression and facilitating tumor aggressive growth by targeting ACOT12 and promoting mesenchymal transition. Exosomal miR-155-5p is also a potential predictive biomarker for glioma, which may provoke the development of novel diagnostic and therapeutic strategies against glioma.Subject terms: CNS cancer, Small RNAs  相似文献   

8.
9.
《Translational oncology》2022,15(12):101215
Glioblastoma (GBM) remains the most common and malignant tumor of the human central nervous system. Increasing evidence has highlighted that tumor cells with high transferrin receptor (TFRC) expression show advantages in growth. Long noncoding RNAs (lncRNAs) are related to glioma progression by mediating microRNAs (miRNAs). However, the underlying mechanism among TFRC, miRNA and lncRNA in GBM is limited. In the current study, we identified a new lncRNA-induced signaling mechanism that regulates the TFRC levels in GBM. The TFRC level was higher in glioma cell lines, and elevated TFRC expression promoted the proliferation and survival of glioma cells. Further study showed that hsa-miR-144a-3p bound to the 3′-UTR of TFRC mRNA and inhibited its expression, preventing the malignant properties of glioma cells, such as proliferation and survival. We also found that the lncRNA RP1-86C11.7 sponges hsa-miR-144-3p to suppress its protective role in glioma. RP1-86C11.7 overexpression in glioma cells elevated TFRC expression, increased the intracellular free iron level, and deteriorated oncogenicity, with a significant reduction in hsa-miR-144-3p. By contrast, silencing RP1-86C11.7 upregulated the hsa-miR-144-3p level, resulting in decreased TFRC expression and repressed glioma progression. However, the effect of silencing RP1-86C11.7 was reversed with simultaneous hsa-miR-144-3p inhibitor treatment: the TFRC level, intracellular iron level and proliferation in glioma cells increased. Mechanistically, our data indicated that RP1-86C11.7 exacerbates the malignant behavior of glioma through the hsa-miR-144-3p/TFRC axis. RP1-86C11.7 may be a potential biomarker or target to treat glioma in the future.  相似文献   

10.
《Translational oncology》2021,14(12):101215
Glioblastoma (GBM) remains the most common and malignant tumor of the human central nervous system. Increasing evidence has highlighted that tumor cells with high transferrin receptor (TFRC) expression show advantages in growth. Long noncoding RNAs (lncRNAs) are related to glioma progression by mediating microRNAs (miRNAs). However, the underlying mechanism among TFRC, miRNA and lncRNA in GBM is limited. In the current study, we identified a new lncRNA-induced signaling mechanism that regulates the TFRC levels in GBM. The TFRC level was higher in glioma cell lines, and elevated TFRC expression promoted the proliferation and survival of glioma cells. Further study showed that hsa-miR-144a-3p bound to the 3′-UTR of TFRC mRNA and inhibited its expression, preventing the malignant properties of glioma cells, such as proliferation and survival. We also found that the lncRNA RP1-86C11.7 sponges hsa-miR-144-3p to suppress its protective role in glioma. RP1-86C11.7 overexpression in glioma cells elevated TFRC expression, increased the intracellular free iron level, and deteriorated oncogenicity, with a significant reduction in hsa-miR-144-3p. By contrast, silencing RP1-86C11.7 upregulated the hsa-miR-144-3p level, resulting in decreased TFRC expression and repressed glioma progression. However, the effect of silencing RP1-86C11.7 was reversed with simultaneous hsa-miR-144-3p inhibitor treatment: the TFRC level, intracellular iron level and proliferation in glioma cells increased. Mechanistically, our data indicated that RP1-86C11.7 exacerbates the malignant behavior of glioma through the hsa-miR-144-3p/TFRC axis. RP1-86C11.7 may be a potential biomarker or target to treat glioma in the future.  相似文献   

11.
胶质母细胞瘤是大脑及其他中枢神经系统最常见的恶性肿瘤,其复杂的肿瘤微环境是胶质母细胞瘤临床治疗的主要挑战,也是胶质母细胞瘤患者复发率高、生存率低的主要原因。YKL-40,这一分泌性蛋白质与多种类型的癌症预后不良相关,且在高级别胶质瘤尤其是胶质母细胞瘤患者中血清水平与肿瘤组织表达水平显著升高,而在低级别胶质瘤中并未发现这一特征。这提示,YKL-40与胶质瘤分级及胶质母细胞瘤恶性发展过程密切相关。针对YKL-40的抗体治疗也被证明能够与电离辐射协同抑制胶质母细胞瘤血管生成及恶性发展。基于YKL-40的临床价值,本文将从肿瘤微环境的角度,归纳总结YKL-40在恶性肿瘤中的相关研究成果,并讨论其在胶质母细胞瘤发生发展中的相关作用及临床应用前景。  相似文献   

12.
Glioma is the most frequent and aggressive adult brain tumor with maximum mortality. However, the gene alteration and mechanism underlying malignant transformation of glioma remain largely unknown. We aimed to find key factors regulating tumor progression and malignant transformation of glioma. Here we compared the gene expression profiles of 693 glioma patients by HGG vs. LGG model, and identified a key factor CCNB2 for malignant transformation in glioma. CCNB2 induced a senescence-associated secretory phenotype (SASP) of glioma cells, and the malignant progression, such as invasion and excessive proliferation was mediated by secreting SASP cytokines, Cathepsin B and PGE2. These findings demonstrated a previously undiscovered link between senescence, CCNB2/SASP/Cathepsin B & PGE2 axis and malignant transformation in glioma. This might provide novel insights on developing new therapeutic regimens for abrogating aggressiveness of glioma.  相似文献   

13.
The role of various matrix metalloproteinases (MMP)—such as gelatinases, stromelysins, matrilysin, collagenase-3, and membrane-bound MMP (MB-MMP)—in tumor invasion and metastasis is discussed. Data suggesting significance for malignant growth of the expression level of these enzymes and also of their activators and inhibitors are presented. It is concluded that at different stages of tumor progression the activity of different MMPs is displayed, which is regulated by various growth factors and oncogenes. Different malignancies are characterized by changes in activities of specific MMPs. Data are presented which show significance of the ratio between the MMP activity and that of tissue inhibitors of metalloproteinases (TIMP) in tumor invasion and metastasis, especially in connection with a dual role of TIMP as both MMP inhibitors and activators.  相似文献   

14.
In carcinomas stromal cells participate in cancer progression by producing proteases such as MMPs. The expression MMP1 is a prognostic factor in human chondrosarcoma, however the role in tumor progression is unknown. Laser capture microdissection and In Situ hybridization were used to determine cellular origin of MMP1 in human sarcomas. A xenogenic model of tumor progression was then used and mice were divided in two groups: each harboring either the control or a stably MMP1 silenced cell line. Animals were sacrificed; the neovascularization, primary tumor volumes, and metastatic burden were assessed. LCM and RNA-ISH analysis revealed MMP1 expression was predominantly localized to the tumor cells in all samples of sarcoma (p = 0.05). The percentage lung metastatic volume at 5 weeks (p = 0.08) and number of spontaneous deaths secondary to systemic tumor burden were lower in MMP1 silenced cell bearing mice. Interestingly, this group also demonstrated a larger primary tumor size (p<0.04) and increased angiogenesis (p<0.01). These findings were found to be consistent when experiment was repeated using a second independent MMP1 silencing sequence. Prior clinical trials employing MMP1 inhibitors failed because of a poor understanding of the role of MMPs in tumor progression. The current findings indicating tumor cell production of MMP1 by sarcoma cells is novel and highlights the fundamental differences in MMP biology between carcinomas and sarcomas. The results also emphasize the complex roles of MMP in tumor progression of sarcomas. Not only does metastasis seem to be affected by MMP1 silencing, but also local tumor growth and angiogenesis are affected inversely.  相似文献   

15.
The malignant glioma is the most common primary human brain tumor. Its tendency to invade away from the primary tumor mass is considered a leading cause of tumor recurrence and treatment failure. Accordingly, the molecular pathogenesis of glioma invasion is currently under investigation. Previously, we examined a gene expression array database comparing human gliomas to nonneoplastic controls and identified several Rac guanine nucleotide exchange factors with differential expression. Here, we report that the guanine nucleotide exchange factor SWAP-70 has increased expression in malignant gliomas and strongly correlates with lowered patient survival. SWAP-70 is a multifunctional signaling protein involved in membrane ruffling that works cooperatively with activated Rac. Using a glioma tissue microarray, we validated that SWAP-70 demonstrates higher expression in malignant gliomas compared with low-grade gliomas or nonneoplastic brain tissue. Through immunofluorescence, SWAP-70 localizes to membrane ruffles in response to the growth factor, epidermal growth factor. To assess the role of SWAP-70 in glioma migration and invasion, we inhibited its expression withsmall interfering RNAs and observed decreased glioma cell migration and invasion. SWAP-70 overexpression led to increased levels of active Rac even in low-serum conditions. In addition, when SWAP-70 was overexpressed in glioma cells, we observed enhanced membrane ruffle formation followed by increased cellmigration and invasiveness. Taken together, our findings suggest that the guanine nucleotide exchange factor SWAP-70 plays an important role in the migration and invasion of human gliomas into the surrounding tissue.  相似文献   

16.
In recent years, microRNAs (miRNAs) have been proved to be closely related to the tumorigenesis and progression. An increasing number of researches have shown that microRNAs function as oncogenes or tumor suppressor genes in human malignant tumors. This study aims to explore the effects of microRNA-383 (miR-383) on malignant biological function of human gliomas. We detected the expression of miR-383 in glioma tissues and normal brain tissues by quantitative real-time PCR. Anchorage-independent growth assays, and flow cytometry were used to evaluate the functions of miR-383 that involves in cell growth and cell cycle. Western blotting assay was used to examine protein expression levels of Cyclin D1 (CCND1), a cell cycle-associated oncogene which has a predicted binding site of miR-383 within its 3′-untranslated region (3′-UTR), and luciferase activity assay was used to evaluate the 3′-UTR activity of CCND1. In this study, we found that miR-383 expression level was lower in gliomas than normal brain tissues. Overexpression of miR-383 in U251 and U87 cells showed a significant inhibitory effect on cell growth, which accompanied with cell cycle G0/G1 arrest as well as downregulation of CCND1 expression. Moreover, CCND1 was verified to be one of the direct targets of miR-383. In summary, this study suggested that miR-383 plays the role of tumor suppressor by targeting CCND1 in glioma cells, and may be useful for developing a new therapeutic strategy for gliomas.  相似文献   

17.
Rationale: Glioma is the most common primary malignant tumor of human central nervous system, and its rich vascular characteristics make anti-angiogenic therapy become a therapeutic hotspot. However, the existence of glioma VM makes the anti-angiogenic therapy ineffective. SUMOylation is a post-translational modification that affects cell tumorigenicity by regulating the expression and activity of substrate proteins.Methods: The binding and modification of IGF2BP2 and SUMO1 were identified using Ni2+-NTA agarose bead pull-down assays, CO-IP and western blot; and in vitro SUMOylation assays combined with immunoprecipitation and immunofluorescence staining were performed to explore the detail affects and regulations of the SUMOylation on IGF2BP2. RT-PCR and western blot were used to detect the expression levels of IGF2BP2, OIP5-AS1, and miR-495-3p in glioma tissues and cell lines. CCK-8 assays, cell transwell assays, and three-dimensional cell culture methods were used for evaluating the function of IGF2BP2, OIP5-AS1, miR-495-3p, HIF1A and MMP14 in biological behaviors of glioma cells. Meantime, RIP and luciferase reporter assays were used for inquiring into the interactions among IGF2BP2, OIP5-AS1, miR-495-3p, HIF1A and MMP14. Eventually, the tumor xenografts in nude mice further as certained the effects of IGF2BP2 SUMOylation on glioma cells.Results: This study proved that IGF2BP2 mainly binds to SUMO1 and was SUMOylated at the lysine residues K497, K505 and K509 sites, which can be reduced by SENP1. SUMOylation increased IGF2BP2 protein expression and blocked its degradation through ubiquitin-proteasome pathway, thereby increasing its stability. The expressions of IGF2BP2 and OIP5-AS1 were up-regulated and the expression of miR-495-3p was down-regulated in both glioma tissues and cells. IGF2BP2 enhances the stability of OIP5-AS1, thereby increasing the binding of OIP5-AS1 to miR-495-3p, weakening the binding of miR-495-3p to the 3''UTR of HIF1A and MMP14 mRNA, and ultimately promoting the formation of VM in glioma.Conclusions: This study first revealed that SUMOylation of IGF2BP2 regulated OIP5-AS1/miR-495-3p axis to promote VM formation in glioma cells and xenografts growth in nude mice, providing a new idea for molecular targeted therapy of glioma.  相似文献   

18.
Migration and invasion are prerequisites for the neoplastic phenotype of malignant glioma. Ectopic expression of BCL-2 enhances migration and invasion of glioma cells and promotes their synthesis of transforming growth factor-beta2 (TGF-beta2). We here report that BCL-2-expressing cells show enhanced expression and activity of the proprotein convertase, furin, which processes metalloproteinases (MMP) and TGF-beta. Consistent with a biological role for a BCL-2-dependent increase in furin-like protease (FLP) activity, BCL-2-expressing cells exhibit enhanced MMP activity. Both a pseudosubstrate furin inhibitor, decanoyl-Arg-Val-Lys-Arg-chloromethylketone (dec-RVKR-cmk), or alpha 1-anti-trypsin Portland (PDX), a recombinant furin-inhibitory protein, suppress constitutive and BCL-2-mediated MMP activity and invasion. This inhibition is not overcome by TGF-beta or hepatocyte growth factor (HGF). A neutralizing TGF-beta antibody attenuates, but not abrogates, the invasive properties conferred by exogenous expression of BCL-2, whereas the MMP inhibitor o-phenantroline (o-PA) abolishes the pro-invasive action of BCL-2. Exogenous HGF results in enhanced, and expression of dominant-negative ezrin in reduced, FLP activity, and dec-RVKR-cmk blunts the HGF-induced expression of mature TGF-beta2. Consequently, HGF and BCL-2 family proteins use a furin-dependent pathway to promote invasion via TGF-beta and MMP in human malignant glioma cells and the pro-invasive properties of TGF-beta require furin- dependent MMP activity.  相似文献   

19.
c‐Cbl, a multifunctional adaptor and an E3 ubiquitin ligase, plays a role in such cytoskeleton‐mediated events as cell adhesion and migration. Invasiveness of human glioma is dependent on cell adhesion, migration, and degradation of extracellular matrix (ECM). However, the function of c‐Cbl in glioma invasion has never been investigated. We report here, for the first time, that c‐Cbl plays a positive role in the invasion of ECM by SNB19 glioma cells. RNAi‐mediated depletion of c‐Cbl decreases SNB19 cell invasion and expression of matrix metalloproteinase 2 (MMP2). Consistent with these findings, SNB19 cells expressing wild‐type, but not mutant c‐Cbl show increased invasion and MMP2 expression. We demonstrate that the observed role of c‐Cbl in invasion of SNB19 cells is not mediated by the previously shown effects of c‐Cbl on cell adhesion and migration or on EGFR signaling. Together, our results suggest that c‐Cbl promotes glioma invasion through up‐regulation of MMP2. J. Cell. Biochem. 111: 1169–1178, 2010. © 2010 Wiley‐Liss, Inc.  相似文献   

20.
Matrix metalloproteinase (MMP) 13 (collagenase 3) is an extracellular matrix remodeling enzyme that is induced in myofibroblasts during the earliest invasive stages of human breast carcinoma, suggesting that it is involved in tumor progression. During progression of mammary carcinomas in the polyoma virus middle T oncogene mouse model (MMTV-PyMT), Mmp13 mRNA was strongly upregulated concurrently with the transition to invasive and metastatic carcinomas. As in human tumors, Mmp13 mRNA was found in myofibroblasts of invasive grade II and III carcinomas, but not in benign grade I and II mammary intraepithelial neoplasias. To determine if MMP13 plays a role in tumor progression, we crossed MMTV-PyMT mice with Mmp13 deficient mice. The absence of MMP13 did not influence tumor growth, vascularization, progression to more advanced tumor stages, or metastasis to the lungs, and the absence of MMP13 was not compensated for by expression of other MMPs or tissue inhibitor of metalloproteinases. However, an increased fraction of thin collagen fibrils was identified in MMTV-PyMT;Mmp13(-/-) compared to MMTV-PyMT;Mmp13(+/+) tumors, showing that collagen metabolism was altered in the absence of MMP13. We conclude that the expression pattern of Mmp13 mRNA in myofibroblasts of invasive carcinomas in the MMTV-PyMT breast cancer model recapitulates the expression pattern observed in human breast cancer. Our results suggest that MMP13 is a marker of carcinoma-associated myofibroblasts of invasive carcinoma, even though it does not make a major contribution to tumor progression in the MMTV-PyMT breast cancer model.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号