首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
2.
3.
4.
Epithelial–mesenchymal transition (EMT) is a crucial step in tumor progression and has an important role during cancer invasion and metastasis. Although fucosyltransferase IV (FUT4) has been implicated in the modulation of cell migration, invasion and cancer metastasis, its role during EMT is unclear. This study explores the molecular mechanisms of the involvement of FUT4 in EMT in breast cancer cells. Breast cancer cell lines display increased expression of FUT4, which is accompanied by enhanced appearance of the mesenchymal phenotype and which can be reversed by knockdown of endogenous FUT4. Moreover, FUT4 induced activation of phosphatidylinositol 3-kinase (PI3K)/Akt, and inactivation of GSK3β and nuclear translocation of NF-κB, resulting in increased Snail and MMP-9 expression and greater cell motility. Taken together, these findings indicate that FUT4 has a role in EMT through activation of the PI3K/Akt and NF-κB signaling systems, which induce the key mediators Snail and MMP-9 and facilitate the acquisition of a mesenchymal phenotype. Our findings support the possibility that FUT4 is a novel regulator of EMT in breast cancer cells and a promising target for cancer therapy.  相似文献   

5.
The inhibitor of apoptosis proteins (IAP) are closely correlated with proliferation, apoptosis, motility, and metastasis. Livin is the most recently identified IAP, and its role in breast progression remains unknown. In our study, analyses of 50 patients with breast cancer revealed that the positive expression rate of Livin was higher in breast cancer tissues (62%) relative to that in adjacent (35%) and normal tissues (25%). Livin expression in breast cancer correlated with the clinical stage and axillary lymph node metastasis and could be used as a prognostic marker. Our in vitro experiment revealed that Livin was highly expressed in high-invasive MDA-MB-231 cells as compared to low-invasive cells (MCF-7). Suppression of Livin by short-hairpin RNA reduced the Livin expression of MDA-MB-231 cells and subsequently inhibited tumor cell growth, proliferation, and colony formation and induced tumor cell apoptosis, motility, migration, and invasion. Overexpression of Livin in MCF7 cells resulted in increased migration and invasion capabilities of the cells without affecting proliferation and apoptosis. In addition, epithelial–mesenchymal transition (EMT) was induced by Livin expression in breast cancer cell lines. The high level of phosphorylated AKT in MDA-MB-231 cells was suppressed by Livin knockdown. Further, Livin-induced migration and invasion could be abolished by either the application of the phosphoinositide-3-kinase inhibitor LY294002 or knockdown of AKT expression using small-interfering RNA. In conclusion, Livin serves as an independent prognostic indicator for breast cancer. Livin expression promotes breast cancer metastasis through the activation of AKT signaling and induction of EMT in breast cancer cells both in vitro and in vivo.  相似文献   

6.
Radioresistance is a major challenge in prostate cancer (CaP) radiotherapy (RT). In this study, we investigated the role and association of epithelial–mesenchymal transition (EMT), cancer stem cells (CSCs) and the PI3K/Akt/mTOR signaling pathway in CaP radioresistance. We developed three novel CaP radioresistant (RR) cell lines (PC-3RR, DU145RR and LNCaPRR) by radiation treatment and confirmed their radioresistance using a clonogenic survival assay. Compared with untreated CaP-control cells, the CaP-RR cells had increased colony formation, invasion ability and spheroid formation capability (P<0.05). In addition, enhanced EMT/CSC phenotypes and activation of the checkpoint proteins (Chk1 and Chk2) and the PI3K/Akt/mTOR signaling pathway proteins were also found in CaP-RR cells using immunofluorescence, western blotting and quantitative real-time PCR (qRT-PCR). Furthermore, combination of a dual PI3K/mTOR inhibitor (BEZ235) with RT effectively increased radiosensitivity and induced more apoptosis in CaP-RR cells, concomitantly correlated with the reduced expression of EMT/CSC markers and the PI3K/Akt/mTOR signaling pathway proteins compared with RT alone. Our findings indicate that CaP radioresistance is associated with EMT and enhanced CSC phenotypes via activation of the PI3K/Akt/mTOR signaling pathway, and that the combination of BEZ235 with RT is a promising modality to overcome radioresistance in the treatment of CaP. This combination approach warrants future in vivo animal study and clinical trials.  相似文献   

7.
Protocadherin 9 (PCDH9) was found frequently lost in hepatocellular carcinoma (HCC). Here we investigated the role of PCDH9 in the development of HCC. We confirmed that PCDH9 was down-regulated in HCC tissues and cell lines compared with the adjacent non-tumor tissues. PCDH9 downregulation was significantly associated with malignant portal vein invasion of HCC patients. Gain- and loss-of-function studies revealed that downregulation of PCDH9 facilitated tumor cell migration and epithelial–mesenchymal transition (EMT). We identified PCDH9 as a novel regulator of EMT by increasing the activity of GSK-3β and inhibiting Snail1, indicating its potential therapeutic value for reducing metastasis of HCC.  相似文献   

8.
Lung cancer is the leading cause of cancer-related death worldwide. Hypoxia is known to increase cancer cell migration and invasion. We have previously reported that hypoxia induces epithelial–mesenchymal transition (EMT) in lung cancer cells. However, it is unknown whether hypoxia promotes lung cancer cell migration and invasion via EMT and whether cyclic AMP (cAMP) dependent protein kinase (PKA) plays a role in this process. We found that hypoxia increased PKA activity and induced mRNA and protein expression of PKA catalytic subunit α (PKACA), and regulatory subunits R1A and R1B. Knockdown of HIF-1/2α prevented hypoxia-mediated induction of PKACA mRNA expression and PKA activity. Inhibition of PKA activity with chemical inhibitors prevented EMT induced by hypoxia and tumor growth factor β1. However, activation of PKA by forskolin and 8-Br-cAMP did not induce EMT. Furthermore, treatment with H89 and knockdown of PKACA prevented hypoxia-mediated, EMT, cell migration, and invasion, whereas overexpression of mouse PKACA rescued hypoxia-mediated migration and invasion in PKACA deficient cancer cells. Our results suggest that hypoxia enhances PKA activity by upregulating PKA gene expression in a HIF dependent mechanism and that PKA plays a key role in hypoxia-mediated EMT, migration, and invasion in lung cancer cells.  相似文献   

9.
This short communication will enlighten the readers about the exosome and the epithelial-mesenchymal transition (EMT) related to several complicated events. It also highlighted the therapeutic potential of exosomes against EMT. Exosome toxicology, exosome heterogeneity, and a single exosome profiling approach are also covered in this article. In the future, exosomes could help us get closer to cancer vaccine and precision oncology.  相似文献   

10.
11.

Objective

This study aimed at detecting Pokemon expression in bladder cancer cell and investigating the relationship between Pokemon and epithelial–mesenchymal transition. Furthermore, we investigated the functions of Pokemon in the carcinogenesis and development of bladder cancer. This study was also designed to observe the inhibitory effects of siRNA expression vector on Pokemon in bladder cancer cell.

Methods

The siRNA expression vectors which were constructed to express a short hairpin RNA against Pokemon were transfected to the bladder cancer cells T24 with a liposome. Levels of Pokemon, E-cadherin and β-catenin mRNA and protein were examined by real-time quantitative-fluorescent PCR and Western blot analysis, respectively. The effects of Pokemon silencing on epithelial–mesenchymal transition of T24 cells were evaluated with wound-healing assay.

Results

Pokemon was strongly inhibited by siRNA treatment, especially siRNA3 treatment group, as it was reflected by Western blot and real-time PCR. The gene and protein of E-cadherin expression level showed increased markedly after Pokemon was inhibited by RNA interference. While there were no differences in the levels of gene and protein of β-catenin among five groups. The bladder cancer cell after Pokemon siRNA interference showed a significantly reduced wound-closing efficiency at 6, 12 and 24 h.

Conclusions

Our findings suggest Pokemon may inhibit the expression of E-cadherin. The low expression of E-cadherin lead to increasing the phenotype and apical-base polarity of epithelial cells. These changes of cells may result in the recurrence and progression of bladder cancer at last.  相似文献   

12.
13.
14.
Shi J  Wu S  Dai CL  Li Y  Grundke-Iqbal I  Iqbal K  Liu F  Gong CX 《FEBS letters》2012,586(16):2443-2450
Protein kinase B (AKT) and glycogen synthase kinase-3β (GSK-3β) are major components of insulin-AKT signaling that plays crucial roles in various types of tissue. Recent studies found that these two kinases are modified posttranslationally by O-GlcNAcylation. Here, we demonstrate that O-GlcNAcylation regulated phosphorylation/activation of AKT and GSK-3β in different manners in kidney HEK-293FT cells, but did not affect these two kinases in hepatic HepG2 cells. In neuronal cells, O-GlcNAcylation regulated phosphorylation of AKT negatively, but had no effect on GSK-3β. These results suggest protein-specific and cell type-specific regulation of AKT and GSK-3β by O-GlcNAcylation. Therefore, studies on the roles of AKT and GSK-3β O-GlcNAcylation should be done in a tissue- and cell type-specific manner.  相似文献   

15.
16.
17.
18.
Connective tissue growth factor (CTGF) is involved in human cancer development and progression. Epithelial to mesenchymal transition (EMT) plays an important role in many biological processes. In this study, we wished to investigate the role of CTGF in EMT of peritoneal mesothelial cells and the effects of CTGF on adhesion of gastric cancer cells to mesothelial cells. Human peritoneal mesothelial cells (HPMCs) were cultured with TGF-β1 or various concentrations of CTGF for different time. The EMT process was monitored by morphology. Real-time RT-PCR and Western blot were used to evaluate the expression of vimentin, α-SMA , E-cadherin and β-catenin. RNA interference was used to achieve selective and specific knockdown of CTGF. We demonstrated that CTGF induced EMT of mesothelial cells in a dose- and time-dependent manner. HPMCs were exposed to TGF-β1 also underwent EMT which was associated with the induction of CTGF expression. Transfection with CTGF siRNA was able to reverse the EMT partially after treatment of TGF-β1. Moreover, the induced EMT of HPMCs was associated with an increased adhesion of gastric cancer cells to mesothelial cells. These findings suggest that CTGF is not only an important mediator but a potent activator of EMT in peritoneal mesothelial cells, which in turn promotes gastric cancer cell adhesion to peritoneum.  相似文献   

19.
Molecular and Cellular Biochemistry - Accumulating evidence indicates that ceramide (Cer) and palmitic acid (PA) possess the ability to modulate switching of macrophage phenotypes and possess...  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号