首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
The influence of pupal diapause on adult eclosion rhythm of Delia antiqua was investigated. When non-diapause and diapause pupae were exposed to various photoperiods at 15, 20 and 25 °C, both of them emerged as adults close to the light-on time, but the phase of eclosion varied with photoperiod and temperature. Moreover, there was a significant difference in the eclosion time between non-diapause and diapause pupae; the eclosion peak of diapause pupae was earlier than that of non-diapause pupae. When non-diapause and diapause pupae were transferred to constant darkness (DD) after having experienced LD 12:12 at 15, 20 and 25 °C, both showed circadian rhythmicity in eclosion. Although the free-running period (τ) decreased slightly as temperature increased in both non-diapause and diapause pupae, the latter tended to show shorter τ than the former. This observation suggests that the observed difference in eclosion time in LD cycles between non-diapause and diapause pupae is due to differences in τ.  相似文献   

2.
When non-diapause and diapause pupae of Deliaantiqua were exposed to various thermoperiods where thermophase (T) was 25 °C and the cryophase (C) was 15 or 20 °C (TC15 or TC20) in constant darkness (DD), the majority of both types of flies emerged before the rise in temperature. Eclosion time was delayed at the lower cryophase temperature. Moreover, there was a significant difference in the time of adult eclosion between non-diapause and diapause pupae; diapause pupae eclosed earlier than non-diapause pupae. When the two types of pupae were transferred to a constant low temperature (15 or 20 °C) after having experienced TC15 or TC20 12:12 h, they showed circadian rhythmicity in eclosion. The free-running period (τ) of the eclosion rhythm changed after transfer to constant low temperatures in both non-diapause and diapause pupae, suggesting that this change represents a transient cycle until the temperature-sensitive oscillator is coupled again to the temperature-insensitive pacemaker. However, diapause pupae tended to show a shorter τ than non-diapause pupae. This observation suggests that the difference in adult eclosion time under thermoperiodic conditions between non-diapause and diapause pupae is related to their different τ s.  相似文献   

3.
Daily light and temperature cycles entrain adult eclosion rhythms in many insect species, but little is known about their interaction. We studied this problem in the onion fly, Delia antiqua. Pupae were subjected to various combinations of a photoperiod of 12L:12D and thermoperiods. The thermoperiods consisted of 12 h warm phase (W) and 12 h cool phase (C), giving a mean temperature of 25 °C with different temperature steps of 8, 4 and 1 °C. As the phase relation of the two Zeitgebers was varied, the phase of eclosion rhythm was shifted, depending on the phase angle with the light cycle and the amplitude of the temperature cycle. When the temperature step in the thermoperiod was 8 °C (WC 29:21 °C), the eclosion rhythm was entrained mainly to thermoperiod rather than photoperiod. In the regime with a 4 °C temperature step (WC 27:23 °C), both thermoperiod and photoperiod affected eclosion rhythm, and a phase jump of the eclosion rhythm occurred when the warm phase of thermoperiod was delayed 15-18 h from light-on. In regimes with a 1 °C temperature step (WC 25.5:24.5 °C), the eclosion rhythm was completely entrained to photoperiod. The observed interacting effect of light and temperature cycle on the eclosion rhythm in D. antiqua can be explained by the two-oscillator model proposed by Pittendrigh and Bruce (1959).  相似文献   

4.
Soil temperature cycles are considered to play an important role in the entrainment of circadian clocks of underground insects. However, because of the low conductivity of soil, temperature cycles are gradually dampened and the phase of the temperature cycle is delayed with increasing soil depth. The onion fly, Delia antiqua, pupates at various soil depths, and its eclosion is timed by a circadian clock. This fly is able to compensate for the depth-dependent phase delay of temperature change by advancing the eclosion time with decreasing amplitude of the temperature cycle. Therefore, pupae can eclose at the appropriate time irrespective of their location at any depth. However, the mechanism that regulates eclosion time in response to temperature amplitude is still unknown. To understand whether this mechanism involves the circadian clock or further downstream physiological processes, we examined the expression patterns of period (per), a circadian clock gene, of D. antiqua under temperature cycles that were square wave cycles of 12-h warm phase (W) and 12-h cool phase (C) with the temperature difference of 8 °C (WC 29:21 °C) and 1 °C (WC 25.5:24.5 °C). The phase of oscillation in per expression was found to commence 3.5 h earlier under WC 25.5:24.5 °C as compared to WC 29:21 °C. This difference was in close agreement with the eclosion time difference between the two temperature cycles, suggesting that the mechanism that responds to the temperature amplitude involves the circadian clock.  相似文献   

5.
We recorded the eclosion time of the flesh fly, Sarcophaga crassipalpis, at different depths in the outdoor soil and under temperature cycles with various amplitudes in the laboratory, to examine the timing adjustment of eclosion in response to temperature cycles and their amplitudes in the pupal stage. In the soil, most eclosions occurred in the late morning, which was consistent with the eclosion time under pseudo-sinusoidal temperature cycles in the laboratory. The circadian clock controlling eclosion was reset by temperature cycles and free-ran with a period close to 24 h. This clock likely helps pupae eclose at an optimal time even when the soil temperature does not show clear daily fluctuations. The eclosion phase of the circadian clock progressively advanced as the amplitude of the pseudo-sinusoidal temperature cycle decreased. This response allows pupae located at any depth in the soil to eclose at the appropriate time despite the depth-dependent phase delay of the temperature change. In contrast, the abrupt temperature increase in square-wave temperature cycles reset the phase of the circadian clock to the increasing time, regardless of the temperature amplitude. The rapid temperature increase may act as the late-morning signal for the eclosion clock.  相似文献   

6.
To elucidate the effects of light on thermoperiodic regulation of adult eclosion rhythm in the onion fly, Delia antiqua, the responses to two thermoperiods, 29°C (12 h):21°C (12 h) and 25.5°C (12 h):24.5°C (12 h), with different amplitude and same average temperature, were examined in continuous darkness (DD) and continuous light (LL). Irrespective of the temperature step between warm phase (W) and cool phase (C), temperature cycles effectively entrained the adult eclosion rhythm in both DD and LL. Eclosion peaks, however, varied with light conditions and temperature step between W and C. It advanced by approximately 2–3 h in DD than in LL and at smaller temperature step. Background light conditions and temperature step also affect the amplitude of eclosion rhythm. It became lower in LL than in DD and at smaller temperature steps. On transfer to constant temperature (25°C), eclosion rhythm was elicited earliest in the pupae at 8°C temperature step in DD and latest in those at 1°C temperature step in LL. Pupae at 1°C temperature step in DD and at 8°C temperature step in LL demonstrated intermediate responses, but the eclosion rhythm was elicited 1 day earlier in the former than in the latter. This might be ascribed to the interaction between background light and temperature step under thermoperiodic conditions. The results suggest that continuous light and a smaller temperature step weaken the coupling strength between eclosion rhythm and thermoperiod, but the light effect is stronger than the temperature step effect.  相似文献   

7.
When a light pulse of 1 h duration was given 3 h after lights off in a photoperiod of 11 h light : 13 h dark (LD 11 : 13) at 20°C, the phase of the major peak of locomotor activity rhythm in Delia antiqua was delayed for approximately 0.6 h. In contrast, it was advanced by approximately 0.6 h by a light pulse given 9 h after lights off. It is suggested that in the circadian clock, a pulse falling in the early scotophase is taken as a new dusk and a pulse falling in the late scotophase is taken as a new dawn. Although a sharply defined critical photoperiod did not exist in the diapause response to photoperiod in D. antiqua, the percentage of pupal diapause decreased by these pulses in LD 11 : 13 at 20°C. The effect of a 15 min light pulse on both locomotor activity rhythm and pupal diapause induction was stronger at 3 h than at 9 h after lights off, while a 1 min light pulse was ineffective at both times. The parallel effects of light pulse on locomotor activity rhythm and diapause response might be based on the same chronobiological functions.  相似文献   

8.
Timing of circadian activities is controlled by rhythmic expression of clock genes in pacemaker neurons in the insect brain. Circadian behavior and clock gene expression can entrain to both thermoperiod and photoperiod but the availability of such cues, the organization of the brain, and the need for circadian behavior change dramatically during the course of insect metamorphosis. We asked whether photoperiod or thermoperiod entrains the clock during pupal and pharate adult stages by exposing flies to different combinations of thermoperiod and photoperiod and observing the effect on the timing of adult eclosion. This study used qRT-PCR to examine how entrainment and expression of circadian clock genes change during the course of development in the flesh fly, Sarcophaga crassipalpis. Thermoperiod entrains expression of period and controls the timing of adult eclosion, suggesting that the clock gene period may be upstream of the eclosion pathway. Rhythmic clock gene expression is evident in larvae, appears to cease during the early pharate adult stage, and resumes again by the time of adult eclosion. Our results indicate that both patterns of clock gene expression and the cues to which the clock entrains are dynamic and respond to different environmental signals at different developmental stages in S. crassipalpis.  相似文献   

9.
ABSTRACT. Distant olfactory orientation of female adult Delia antiqua (Meigen) to the host-plant Allium volatile dipropyl-disulphide (DPDS) was examined in the field using mark-release-recapture experiments and observations of flight behaviour. Onion-reared, post-diapause, virgin females from a laboratory colony dispersed upwind when released in the centre of 25, 50 and 100 m radius circles of eight 50 μl UDPDS baits. Percentage recapture and dispersal directedness did not decrease as a function of increasing distance to baits. In all cases the mean flight direction of recaptured flies closely correlated with mean wind direction. However, modes of the circular distributions of recaptured flies were located further crosswind when odour-baits were more distant. When distance was held constant (25 m) and DPDS concentration serially reduced (500–0.05 μ/bait), flies dispersed randomly in the absence of DPDS, crosswind in response to 0.05 μl baits and upwind in response to all other baits. Percentage recaptures on DPDS-baited traps of all concentrations were significantly greater than unbaited traps. Results from markrecapture studies were corroborated by observations of flight behaviour downwind. Flies located 100 m downwind from 50 μl DPDS baits flew upwind on take off while take-off flights in the absence of DPDS were random. Our data indicate that Allium volatiles like DPDS are involved not only in the acceptance phase of host-selection, but also in the first and probably most important stage when onion flies are initiating search long distances downwind. We conclude that D. antiqua orients to host-plants using olfactory cues from distances that should be classified as long-range ( sensu Kennedy , 1977  相似文献   

10.
Entomophthora muscae was identified as a common fungal pathogen of the onion fly, Delia antiqua, and the adult seed corn maggot, D. platura. Low infection levels also were found in populations of the cluster fly, Pollenia rudis (Diptera: Muscidae), and the tiger fly, Coenosia tigrina (Diptera: Muscidae). The disease cycle, as it affects D. antiqua in the onion agroecosystem, is described, including the etiology, symptomatology, and phenology. Natural infection levels approaching 100% were noted early in the spring and in late fall, impacting the 1st and 3rd generations of the D. antiqua population significantly. A lagged density-dependent disease response was noted at the gross population level, although more specific biological interactions may be involved in regulating the disease intensity.  相似文献   

11.
The circadian pacemaker controlling the eclosion rhythm of the high altitude Himalayan strains of Drosophila ananassae captured at Badrinath (5123 m) required ambient temperature at 21°C for the entrainment and free-running processes. At this temperature, their eclosion rhythms entrained to 12h light, 12h dark (LD 12:12) cycles and free-ran when transferred from constant light (LL) to constant darkness (DD) or upon transfer to constant temperature at 21°C following entrainment to temperature cycles in DD. These strains, however, were arrhythmic at 13 or 17°C under identical experimental conditions. Eclosion medians always occurred in the thermophase of temperature cycles whether they were imposed in LL or DD; or whether the thermophase coincided with the photophase or scotophase of the concurrent LD 12:12 cycles. The temperature dependent rhythmicity in the Himalayan strains of D. ananassae is a rare phenotypic plasticity that might have been acquired through natural selection by accentuating the coupling sensing mechanism of the pacemaker to temperature, while simultaneously suppressing the effects of light on the pacemaker.  相似文献   

12.
Characteristics of summer diapause in the onion maggot, Delia antiqua, were clarified by laboratory experiments. Temperature was the primary factor for the induction of summer diapause in this species. The critical temperature for diapause induction was approximately 24 degrees C, regardless of the photoperiod. At 23 degrees C, the development of the diapausing pupae was arrested the day after pupariation, when about 7% of the total pupal development had occurred in terms of total effective temperature (degree-days). The most sensitive period for temperature with regard to diapause induction was estimated to be between pupariation and "pupation" (i.e., evagination of the head in cyclorrhaphous flies). Completion of diapause occurred at a wide range of temperatures (4-25 degrees C): The optimal temperature was approximately 16 degrees C, at which temperature only five days were required for diapause completion. The characteristics of summer diapause in D. antiqua are discussed in comparison with those of summer dormancy in a congener D. radicum and those of winter diapause in D. antiqua.  相似文献   

13.
为了适应地球昼夜更替对机体的影响,哺乳动物进化出了一套内在的适应性计时机制,由此形成了生物钟系统(circadian clock)。昼夜节律作为该系统中的重要部分可与机体的代谢过程同步变化[1]。肠道菌群作为与机体共生的生物群落,在肠道功能方面发挥着重要作用。对肠道菌群的昼夜节律性波动以及与宿主生物节律之间的相互作用进行研究有重要意义。本文将着重阐述肠道菌群昼夜节律与宿主生物节律的相互作用,以及这种相互作用对宿主代谢的影响。  相似文献   

14.
郝友进  胡文霞  陈斌 《昆虫学报》2014,57(2):161-167
【目的】比较分析葱蝇Delia antiqua非滞育与夏滞育蛹的蛋白表达差异, 为进一步揭示昆虫滞育的分子调控机理和昆虫防治提供理论基础。【方法】以非滞育和夏滞育的蛹为材料, 提取总蛋白; 进行双向凝胶电泳和凝胶图像分析, 对并差异蛋白质进行MALDI-TOF MS质谱鉴定, 获得该点的质量指纹图谱; 利用MASCOT软件在NCBI和SWISS PORT蛋白质数据库中进行搜索鉴定。【结果】非滞育和夏滞育蛹的蛋白表达存在显著差异。通过质谱鉴定和生物信息学分析, 13个差异表达的蛋白质分别为胶原蛋白、 纺锤丝组装非正常蛋白6(SAS6)、 5,10-亚甲基四氢叶酸合成酶(MTHFS)、 Bnb蛋白(bangles and beads)及其他功能未知蛋白。【结论】葱蝇在夏滞育时期, 蛹体内的某些蛋白被上调或下调表达。本研究所鉴定的蛋白中, 部分可能是参与滞育相关的蛋白质网络中的成员, 它们可能在抗高温、 染色体分离、 叶酸代谢等生理过程中发挥重要作用。  相似文献   

15.
Eclosion rhythm of the high-altitude Himalayan strain of Drosophila ananassae from Badrinath (altitude 5123 m) was temperature-dependent and at 21°C, it was entrained by cycles of 12 h light: 12 h darkness (LD 12:12) and free-ran in constant darkness, however, it was arrhythmic at 13°C or 17°C under identical experimental conditions (Khare, P. V., Barnabas, R. J., Kanojiya, M., Kulkarni, A. D., Joshi, D. S. (2002). Temperature dependent eclosion rhythmicity in the high altitude Himalayan strains of Drosophila ananassae. Chronobiol. Int. 19:1041-1052). The present studies were designed to see whether or not these strains could be entrained at 13°C, 17°C, and 21°C by two types of LD cycles in which the photoperiod at 100 lux intensity varied from 6 h to 18 h, and the light intensity of LD 14:10 cycles varied from 0.001 lux to 1000 lux. All LD cycles entrained this strain at 21°C but not at 13°C or 17°C. These results demonstrate that the entrainment of eclosion rhythm depends on the ambient temperature and not on the photoperiod or light intensity of LD cycles. Thus the temperature has taken precedence over the light in the entrainment process of eclosion rhythm of the high altitude Himalayan strain of D. ananassae. This may be the result of natural selection in response to the environmental temperature at Badrinath that resembles that of the sub-Arctic region but the photoperiod or light intensity are of the subtropical region.  相似文献   

16.
At photoperiods longer than 8h per 24h, adults of the day-active onion fly Delia antiqua showed a major peak of locomotor activity in the late photophase and also bursts of activity induced by lights-on or lights-off. At shorter photoperiods the activity peaks fused. After transfer from long photoperiods to constant darkness (DD), the rhythm free-ran, but only the major peak persisted. This suggests that only the major peak is controlled by the circadian pacemaker. At long photoperiods, the daily phase of the major peak occurred progressively later with age. As a result, the activity at short photoperiods often shifted from photophase to scotophase in old flies. The free-running period (tau) also changed with age; tau was shorter than 24h until 14-20 days after eclosion and thereafter became longer, but a few individuals repeated changes in tau. The phase delay of locomotor activity with age in D. antiqua would be attributable to the increase in tau.  相似文献   

17.
The effect of low temperature on completion of winter diapause was investigated in the onion maggot, Delia antiqua (Diptera: Anthomyiidae). Diapause was completed under constant diapause-inducing conditions of 15 degrees C and 12L-12D, without any exposure to lower temperature. The pupal period for 50% adult emergence was 117 days. None of the cold treatments at 5.6 degrees C examined in the present study advanced adult emergence; on the contrary, they delayed it. Detailed analyses of the results revealed that diapause development in D. antiqua comprises two phases which differ in sensitivity to low temperature, with the phase shift occurring at around day 60 at 15 degrees C and 12L-12D. In the first phase of diapause development, low temperature (5.6 degrees C) had no effect on diapause development. In the latter phase, by contrast, diapause development was retarded in proportion to the duration of cold treatment.  相似文献   

18.
This review examines possible role(s) of circadian ‘clock’ genes in insect photoperiodism against a background of many decades of formal experimentation and model building. Since ovarian diapause in the genetic model organism Drosophila melanogaster has proved to be weak and variable, recent attention has been directed to species with more robust photoperiodic responses. However, no obvious consensus on the problem of time measurement in insect photoperiodism has yet to emerge and a variety of mechanisms are indicated. In some species, expression patterns of clock genes and formal experiments based on the canonical properties of the circadian system have suggested that a damped oscillator version of Pittendrigh's external coincidence model is appropriate to explain the measurement of seasonal changes in night length. In other species extreme dampening of constituent oscillators may give rise to apparently hourglass-like photoperiodic responses, and in still others there is evidence for dual oscillator (dawn and dusk) photoperiodic mechanisms of the internal coincidence type. Although the exact role of circadian rhythmicity and of clock genes in photoperiodism is yet to be settled, Bünning's general hypothesis (Bünning, 1936) remains the most persuasive unifying principle. Observed differences between photoperiodic clocks may be reflections of underlying differences in the clock genes in their circadian feedback loops.  相似文献   

19.
Biochemical circadian oscillation of KaiC phosphorylation, by mixing three Kai proteins and ATP, has been proven to be the central oscillator of the cyanobacterial circadian clock. In vivo, the intracellular levels of KaiB and KaiC oscillate in a circadian fashion. By scrutinizing KaiC phosphorylation rhythm in a wide range of Kai protein concentrations, KaiA and KaiB were found to be “parameter-tuning” and “state-switching” regulators of KaiC phosphorylation rhythm, respectively. Our results also suggest a possible entrainment mechanism of the cellular circadian clock with the circadian variation of intracellular levels of Kai proteins.  相似文献   

20.
A high-moisture infection chamber was used for the in vivo transmission of Entomophthora muscae within laboratory populations of the onion fly, Delia antiqua. This cadaver-to-fly transmission procedure provided an average experimental infection rate well above 95%. Laboratory infection and temperature-dependent incubation rates of E. muscae were further examined in adult populations of D. antiqua. The time from initial exposure until host death and pathogen sporulation was accurately predicted using a second-order function of the incubation temperature. A developmental base temperature of approximately 5°C was estimated, with 105 degree-days being the average number of heat units required between host infection and death. E. muscae transmission between D. antiqua and D. platura, two insect pests typically associated with Michigan onion production, was verified under laboratory conditions.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号