首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 828 毫秒
1.
Enhanced yields of UV-induced back mutants to prototrophy are observed when irradiated cells of the Salmonella typhimurium frameshift strain LT2 hisC3076 (R46) are plated on defined medium containing broth (2.5%, v/v) rather than a trace (0.02 μg/ml) of the required nutrient (histidine). This broth effect is not abolished, and is in fact augmented, in an excision-deficient derivative of hisC3076 (R46) carrying the uvr-302 mutation. Since similar broth effects on UV-induced base-pair substitution mutagenesis have usually been attributed to inhibition of mutation frequency decline (MFD), and since MFD is in turn thought to reflect the activity of an intact excision-repair system, we sought to determine whether or not UV-induced premutational lesions leadinf to the production of frameshifts are susceptible to MFD. Results with the doubly auxotrophic strain LT2 hisC3076 leuA150 (pKM101) showed that in a population of cells actually undergoing MFD (as judged by a rapid loss of UV-induced reversions of the base-pair substitution marker leuA150), no concomitant loss of UV-induced reversions of the frameshift hisC3076 marker could be detected.  相似文献   

2.
Mechanisms of frameshift mutagenesis by aflatoxin B1-2,3-dichloride   总被引:6,自引:0,他引:6  
In order to characterize frameshift mutagenesis by aflatoxin B1-2,3-dichloride (AFB1Cl2), we have introduced a +1 (BK8) or a -1 (HS8) frameshift within the lacZ alpha gene segment contained in the phage M13mp8 to obtain lacZ alpha- derivatives. BK8 or HS8 replicative form DNA was modified with AFB1Cl2 in vitro, transfected into appropriate Escherichia coli hosts and lacZ alpha+ revertants scored and defined by DNA sequencing. The -1 frameshift (BK8) results suggest the following. (1) The E. coli recA gene is not absolutely required for AFB1Cl2-induced frameshift mutagenesis; however, in recA+ cells, ultraviolet light (SOS) induction enhances AFB1Cl2 mutagenesis, but such ultraviolet induction is not required. The plasmid pGW270 (mucAB+) significantly enhances the AFB1Cl2-induced frameshift mutagenesis. The uvrABC+ excision system plays a major role in the repair of AFB1Cl2-induced damage. (2) Sequence analysis reveals that AFB1Cl2 induces two classes of -1 frameshift mutations: the simple class in which the frameshift is due to the loss of one base-pair, and the complex class in which the loss of a base-pair is coupled to a vicinal base substitution. Both types of mutations occur predominantly at G.C runs, which are hotspots for AFB1Cl2 damage. The complex mutations appear to be concerted events targeted by a single AFB1Cl2 adduct. The frequency of these complex mutations is significantly enhanced by mucAB activity. In this system, recA activity is required for generation of significant levels of complex mutations. An analysis of the +1 frameshifts (HS8) reveals that AFB1Cl2 induces +1 frameshifts with an efficiency comparable to that for -1 frameshifts. Most +1 frameshifts occur by the addition of a base, and a third of the additions are complex mutations because they are accompanied by at least one base substitution. All simple additions occur at G.C runs; however, in a striking contrast to spontaneous insertions, a majority of the induced events introduce an A.T pair at these sites. Our data suggest a model for the generation of base substitution as well as simple and complex frameshift mutations induced by AFB1Cl2. To the extent determined, the frameshift specificity of aflatoxin B1 activated by metabolic enzymes is similar to that of AFB1Cl2.  相似文献   

3.
UV irradiation, a known carcinogen, induces the formation of dipyrimidine dimers with the predominant lesions being cyclobutane pyrimidine dimers (CPDs) and pyrimidine (6-4) pyrimidone adducts (6-4PPs). The relative roles of the yeast translesion synthesis DNA polymerases Pol zeta and Pol eta in UV survival and mutagenesis were examined using strains deficient in one or both polymerases. In addition, photoreactivation was used to specifically remove CPDs, thus allowing an estimate to be made of the relative contributions of CPDs vs. 6-4PPs to overall survival and mutagenesis. In terms of UV-induced mutagenesis, we focused on the +1 frameshift mutations detected by reversion of the lys2deltaA746 allele, as Pol zeta produces a distinct mutational signature in this assay. Results suggest that CPDs are responsible for most of the UV-associated toxicity as well as for the majority of UV-induced frameshift mutations in yeast. Although the presence of Pol eta generally suppresses UV-induced mutagenesis, our data suggest a role for this polymerase in generating some classes of +1 frameshifts. Finally, the examination of frameshift reversion spectra indicates a hierarchy between Pol eta and Pol zeta with respect to the bypass of UV-induced lesions.  相似文献   

4.
Three strains Salmonella typhimurium carrying frameshift mutations affecting the histidine genes (hisC3076, hisD3052 and hisC207) showed increased sensitivity to mutagenesis by ICR-191 (as judged by measuring back mutation to prototrophy), if they were made deficient in excision repair by deleting the uvrB gene. One frameshift strain, hisC3076, also showed increased sensitivity to mutagenesis by ICR-191 when it carried either of two different polA alleles, whereas the hidD305 and hisD207 frameshifts reduced sensitivity to mutagenesis in the presence of these alleles. Studies of spontaneous back mutation to prototrophy revealed siginificant mutator effects of the polA1 mutation on reversion of the hisD3052 frameshift and of the polA3 mutation on reversion of the hisC3076 frameshift. Other smaller mutator effects of the polA alleles on reversion of the his mutations may also be present. In an attempt to explain the complex interactions between different polA alleles and different frameshift mutations, it is tentatively suggested that deletion frameshift may arise mainly during DNA replication, while addition frameshifts may arise mainly during post-replication repair.  相似文献   

5.
Plasmid pKM101 provides UV protection and increases the frequency of spontaneous and UV-induced mutations in Escherichia coli. By analyzing reversion patterns of defined trpA alleles, we showed that pKM101 altered the mutational specificity of UV-induced mutations. Certain UV-induced base-pair substitutions were strongly enhanced, while others were decreased in frequency in the presence of pKM101. This result suggests an interaction between cellular misrepair and an error-prone repair function(s) provided by pKM101. We have also examined UV mutational specificity in the absence of pKM101 and found the following: (1) UV preferentially enhances missense, as well as nonsense, intergenic suppressor mutations; (2) UV causes all possible base-pair substitutions as well as frameshift mutations; (3) G·C base pairs are more susceptible to UV mutagenesis than A·T base pairs at the same nucleotide positions; and (4) UV-induced mutations can occur at nucleotide positions that are not part of pyrimidine-pyrimidine sequences.  相似文献   

6.
Roles of recA mutant allele (recA495) in frameshift mutagenesis   总被引:1,自引:0,他引:1  
The chemical carcinogen N-acetoxy-N-2-acetylaminofluorene (N-AcO-AAF) induces frameshift mutations located within two types of specific sequences (mutation hot spots): i) contiguous guanine sequences and ii) alternating GC sequences. The genetic requirements of these frameshift events were investigated using specific reversion assays. AAF-induced -2 frameshift mutagenesis at alternating GC sequences is peculiar in that it requires a LexA- controlled function which is not UmuDC and occurs in the absence of RecA protein, provided the SOS regulon is derepressed. Moreover, the non-activated form of the RecA protein was shown to act as an inhibitor in this mutation pathway. As we were interested in elucidating this mutation pathway, we have developed a convenient spot reversion assay specific for the detection of this class of mutations. This assay allowed us to isolate E coli mutants affected either in repair or mutagenesis functions. One particular mutant, recA495, is very sensitive to UV and N-AcO-AAF, and is defective in recombination and UV mutagenesis. The RecA495 protein exhibits very low binding to both single- and double-stranded DNA. We show that when the SOS regulon is derepressed, the recA495 allele has two contrasting roles in frameshift mutagenesis: i) it prevents the induction of -1 frameshift mutations at repetitive sequences and ii) it is permissive for the induction of -2 frameshift mutations within alternating GC sequences.  相似文献   

7.
gamma-Radiation mutagenesis (oxic versus anoxic) was examined in wild-type, umuC and recA strains of Escherichia coli K-12. Mutagenesis [argE3(Oc)----Arg+] was blocked in a delta (recA-srlR)306 strain at the same doses that induced mutations in umuC122::Tn5 and wild-type strains, indicating that both umuC-independent and umuC-dependent mechanisms function within recA-dependent misrepair. Analyses of various suppressor and back mutations that result in argE3 and hisG4 ochre reversion and an analysis of trpE9777 (+1 frameshift) reversion were performed on umuC and wild-type cells irradiated in the presence and absence of oxygen. While the umuC strain showed the gamma-radiation induction of base substitution and frameshifts when irradiated in the absence of oxygen, the umuC mutation blocked all oxygen-dependent base-substitution mutagenesis, but not all oxygen-dependent frameshift mutagenesis. For anoxically irradiated cells, the yields of GC----AT [i.e., at the supB and supE (Oc) loci] and AT----GC transitions (i.e., at the argE3 and hisG4 loci) were essentially umuC independent, while the yields of (AT or GC)----TA transversions (i.e., at the supC, supL, supM, supN and supX loci) were heavily umuC dependent. These data suggest new concepts about the nature of the DNA lesions and the mutagenic mechanisms that lead to gamma-radiation mutagenesis.  相似文献   

8.
Induction of back mutations to prototrophy by methylene blue (MB)-sensitized photodynamic (PD) treatment has been studied in wild-type and repair-deficient strains of Salmonella typhimurium carrying either the base-pair substitution mutation hisG46 or the frameshift mutation hisD3052. We found that reversion of the hisG46 mutation was increased in a strain carrying a uvrB deletion and decreased in a strain carrying a recA-type mutation. Reversion of the hisD3052 (frameshift) mutation, on the other hand, was decreased in both uvrB deletion and recA-type strains. The former results are consistent with the hypothesis that the majority of MB-sensitized PD-induced base-pair substitution mutations arise by a mechanism similar to that currently believed to be involved in UV mutagenesis. The latter results suggest that PD-induced frameshift mutations may arise in some other way, and two possible mechanisms involving sequential action of the excision repair and recombinational repair pathways are considered.  相似文献   

9.
The effect of R plasmids on spontaneous and radiation (ultraviolet and gamma)-induced mutability in Pseudomonas aeruginosa was studied in strains containing the radiation-sensitive markers polA3 or rec-2 and the revertable auxotrophic markers hisO27 and trpB1. In the absence of an R plasmid, the radiation-induced mutability was dependent on the recA+ genotype and independent of the polA+ genotype, whereas spontaneous mutability was similar in all genetic backgrounds. R plasmids pPL1, R2, and pMG15 increased the ultraviolet radiation survival and ultraviolet-induced mutability of wild-type and polA host cells but did not alter either effect in a recA mutant. These R plasmids also increased the gamma radiation survival and gamma-induced mutability of wild-type host cells bud pMG15 also enhanced the level of spontaneous mutagenesis in wild-type host cells but not in a polA or recA mutant. These data suggested that a common plasmid gene product(s) may participate in various recA-dependent, error-prone deoxyribonucleic acid repair pathways of P. aeruginosa. The properties of a mutant R plasmid, pPL2, originally selected because it lacked enhanced ultraviolet-induced mutability, supported this conclusion.  相似文献   

10.
The mutagenic potential of 9-[(3-dimethylaminopropyl)amino]-acridine and its 1-, 2-, 3- and 4-nitro derivatives was studied in several strains of Salmonella typhimurium carrying the frameshift marker hisC3076. The strains all carried deep rough (rfa) mutations, and were either wild-type with respect to DNA repair capacity or carried recA, uvrB, polA1 or polA3 (amber) mutations. Derivatives with and without plasmid pKM101 were also studied. The des-nitro compound resembled 9 aminoacridine and other simple intercalating compounds. Both toxicity and mutagenesis were apparently unaffected by the uvrB and recA mutations or by the presence of plasmid pKM101. However, mutagenicity was reduced by the polA1 mutation, and virtually eliminated by the polA3 mutation. The drug was substantially more toxic in the latter, slightly more toxic in the former, of these polA- strains. Plasmid pKM101 enhanced mutagenesis and protected from toxicity in both polA1- and polA3- strains, although it did not restore either of these parameters to the level in the wild-type strain. The 2-nitro compound was generally similar to the des-nitro compound, except that it was considerably more toxic and apparently non-mutagenic in the recA-bearing strain. By contrast, mutagenicity of the 3- and 4-nitro compounds was enhanced by the uvrB mutation and by the presence of the plasmid. These compounds were highly toxic but non-mutagenic in the recA- strain, and showed some increased toxicity in polA1- and polA3- strains. The 1-nitro compound has been previously found to cross-link DNA. Unlike well-characterised cross-linkers such as mitomycin C it was highly mutagenic in the uvrB- strain, and this mutagenesis was enhanced by plasmid pKM101, but eliminated by the recA mutation. At high doses, where the drug was completely toxic towards uvrB- or recA-carrying strains, it became mutagenic in the DNA-repair-proficient strains. This 'high-dose' mutagenesis was enhanced by plasmid pKM101, but reduced by the polA1 mutation and almost eliminated by the polA3 mutation. Although there are several possible interpretations of these data, they are compatible with the suggestion that the lesion induced by high doses (but not by low doses) of nitracrine is a cross-link, but that this is not the major mutagenic lesion.  相似文献   

11.
The effect of the CAM-OCT plasmid on responses to UV irradiation of Pseudomonas aeruginosa recA mutants was characterized. Mutant alleles examined included rec-1, rec-2, and recA7::Tn501. The plasmid substantially enhanced both survival and mutagenesis of RecA- cells after treatment with UV light. Survival of the RecA-(CAM-OCT) cells after UV irradiation was intermediate between that seen in the wild-type P. aeruginosa PAO1 and the increased survival seen in PAO1(CAM-OCT) cells. Mutability was quantitated by the reversion to carbenicillin resistance of strains carrying a bla(Am) mutation on a derivative of plasmid RP1. UV-induced mutagenesis of CAM-OCT carrying recA mutants occurred at levels comparable to that seen in PAO1(CAM-OCT). The ability of CAM-OCT plasmid to suppress the recombination deficiency in recA mutants was tested by assaying for bacteriophage F116L-generalized transduction of a Tn7 insertion in the alkane utilization genes of CAM-OCT. Transduction of the Tn7 insertion was not detected in RecA-(CAM-OCT) strains but was easily seen in PAO1(CAM-OCT), indicating that the plasmid does not encode a recA analog. The results indicate that the CAM-OCT UV response genes are expressed in RecA- cells, which differs from results seen with other UV response-enhancing plasmids. The results suggest that CAM-OCT either encodes several UV responses genes itself or induces chromosomal UV response genes by an alternate mechanism.  相似文献   

12.
Comparative studies of plasmids col I and pKM101 effect on lethal and mutagenic response to UV-light and chemical agents (4NQ0, EMS, agent N012074) has been carried out in Salmonella strains used for screening of mutagens (potential carcinogens). It has been found that the plasmid pKM101 has more pronounced effect as compared with coll plasmid. Contrary to plasmid pKM101-mediated ability to form UV-induced frameshift mutation, colI factor lacks this ability and very slightly enhances the rate of frameshift mutagenesis induced by chemical agents under study. The colicinogenic factor is found to enhance only the rate of base-pair substitutions, whereas plasmid pKM101 enhances the rate of both base-pair substitutions and frameshift mutations. We were unable to demonstrate combined effect of these two plasmids on the rate of either spontaneous or induced mutations. Possible mechanisms of plasmid-mediated bacterial mutagenesis and repair are discussed.  相似文献   

13.
Spontaneous frameshift mutations are an important source of genetic variation in all species and cause a large number of genetic disorders in humans. To enhance our understanding of the molecular mechanisms of frameshift mutagenesis, 583 spontaneous Trp+ revertants of two trpA frameshift alleles in Escherichia coli were isolated and DNA sequenced. In order to measure the contribution of methyl-directed mismatch repair to frameshift production, mutational spectra were constructed for both mismatch repair-proficient and repair-defective strains. The molecular origins of practically all of the frameshifts analyzed could be explained by one of six simple models based upon misalignment of the template or nascent DNA strands with or without misincorporation of primer nucleotides during DNA replication. Most frameshifts occurred within mononucleotide runs as has been shown often in previous studies but the location of the 76 frameshift sites was usually outside of runs. Mismatch repair generally was most effective in preventing the occurrence of frameshifts within runs but there was much variation from site to site. Most frameshift sites outside of runs appear to be refractory to mismatch repair although the small number of occurrences at most of these sites make firm conclusions impossible. There was a dense pattern of reversion sites within the trpA DNA region where reversion events could occur, suggesting that, in general, most DNA sequences are capable of undergoing spontaneous mutational events during replication that can lead to small deletions and insertions. Many of these errors are likely to occur at low frequencies and be tolerated as events too costly to prevent or repair. These studies also revealed an unpredicted flexibility in the primary amino acid sequence of the trpA product, the alpha subunit of tryptophan synthase.  相似文献   

14.
Ionizing radiation causes formation of heterogeneous types of damage to DNA. Among those, 5-hydroxymethyl-2'-deoxyuridine (HMdU) was identified as a major thymidine derivative in gamma-irradiated HeLa cells [G.W. Teebor, K. Frenkel and M.S. Goldstein (1984) Proc. Natl. Acad. Sci. (U.S.A.), 81, 318-321]. We report here that HMdU is a strong inducer of lambda prophage in Escherichia coli WP2s(lambda) and is highy mutagenic in Salmonella typhimurium. HMdU causes his+ revertants in strains TA100, which reverts predominantly by base-pair substitution at G-C sites, and TA97, which reverts mainly by frameshift mutation at G-C sites. It does not cause reversion in TA98, another frameshift-sensitive strain, nor in strains TA1535 and TA1537. Of those tested, only the last two strains do not contain pkM101, a plasmid which enhances mutagenic effects of ionizing radiation. HMdU also causes reversion in strains TA102 and TA104, which detect oxidative damage and can revert by base-pair substitution at A-T base pairs at the hisG428 site. We show that HMdU can be incorporated into DNA of TA100 and that, in addition to causing point mutations, it causes suppressor mutations as well. The ability of HMdU to induce lambda prophage and its strong mutagenicity in Salmonella typhimurium provide evidence that the presence of HMdU in DNA is biologically significant and may play a major role in the genetic consequences of ionizing radiation and other types of oxidative damage.  相似文献   

15.
Antimutator alleles indentify genes whose normal products are involved in spontaneous mutagenesis pathways. Mutant alleles of the recA and umuC genes of Escherichia coli, whose wild-type alleles are components of the inducible SOS response, were shown to cause a decrease in the level of spontaneous mutagenesis. Using a series of chromosomal mutant trp alleles, which detect point mutations, as a reversion assay, it was shown that the reduction in mutagenesis is limited to base-pair substitutions. Within the limited number of sites than could be examined, transversions at AT sites were the favored substitutions. Frameshift mutagenesis was slightly enhanced by a mutant recA allele and unchanged by a mutant umuC allele. The wild-type recA and umuC genes are involved in the same mutagenic base-pair substitution pathway, designated "SOS-dependent spontaneous mutagenesis" (SDSM), since a recAumuC strain showed the same degree and specificity of antimutator activity as either single mutant strain. The SDSM pathway is active only in the presence of oxygen, since wild-type, recA, and umuC strains all show the same levels of reduced spontaneous mutagenesis anaerobically. The SDSM pathway can function in starving/stationary cells and may, or may not, be operative in actively dividing cultures. We suggest that, in wild-type cells, SDSM results from basal levels of SOS activity during DNA synthesis. Mutations may result from synthesis past cryptic DNA lesions (targeted mutagenesis) and/or from mispairings during synthesis with a normal DNA template (untargeted mutagenesis). Since it occurs in chromosomal genes of wild-type cells, SDSM may be biologically significant for isolates of natural enteric bacterial populations where extended starvation is often a common mode of existence.  相似文献   

16.
Previously isolated mutations in baker's yeast, Saccharomyces cerevisiae, that impair induced mutagenesis were all identified with the aid of tests that either exclusively or predominantly detect base-pair substitutions. To avoid this bias, we have screened 11 366 potentially mutant clones for UV-induced reversion of the frameshift allele, his4–38, and have identified 10 mutants that give much reduced yields of revertants. Complementation and recombination tests show that 6 of these carry mutations at the previously known REV1, REV1 and REV3 loci, while the remaining 4 define 3 new genes, REV4 (2 mutations), REV5 and REV6. The rev4 mutations are readily suppressed in many genetic backgrounds and, like the rev5 mutation, impart only a limited deficiency for induced mutagenesis: it is likely, therefore that the REV4+ and REV5+ gene functions are only remotely concerned with this process. The rev6 mutants have a more general deficiency, however, as well as marked sensitivity to UV and an increased spontaneous mutation rate, properties that suggest the REV6 gene is directly involved in mutation induction. The REV5 gene is located about 1 cM proximal to CYC1 on chromosome X.  相似文献   

17.
18.
Comparative mutagenesis and possible synergistic interaction between broad-spectrum (313- to 405-nm) near-ultraviolet (black light bulb [BLB]) radiation and 254-nm radiation were studied in Escherichia coli strains WP2 (wild type), WP2s (uvrA), WP10 (recA), WP6 (polA), WP6s (polA uvrA), WP100 (uvrA recA), and WP5 (lexA). With BLB radiation, strains WP2s and WP6s demonstrated a high level of mutagenesis, whereas strains WP2, WP5, WP6, WP10, and WP100 did not demonstrate significant mutagenesis. In contrast, 254-nm radiation was mutagenic in strains WP2, WP2s, WP6, and WP6s, but strains WP5, WP10, and WP100 were not significantly mutated. The absence of mutagenesis by BLB radiation in lexA and recA strains WP10, WP5, and WP100 suggests that lex+ rec+ repair may play a major role in mutagenesis by both BLB and 254-nm radiation. The hypothesis that BLB radiation selectively inhibits rec+ lex+ repair was tested by sequential BLB-254-nm radiation. With strain WP2, a fluence of 30 J/m2 at 254 nm induced trp+ revertants at a frequency of 15 X 10(-6). However, when 10(5) J/m2 or more of BLB radiation preceded the 254-nm exposure, no trp+ revertants could be detected. A similar inhibition of 254-nm mutagenesis was observed with strain WP6 (polA). However, strains WP2s (uvrA) and wP6s (polA uvrA) showed enhanced 254-nm mutagenesis when a prior exposure to BLB radiation was given.  相似文献   

19.
The ultraviolet (UV) and gamma radiation-induced reversion of the trpA21, trpA9813, and trpE9777 sequenced-frameshift mutations were studied in Escherichia coli K-12 with or without the plasmid pKM101. Radiation induced the reversion of all 3 frameshifts, and pKM101 enhanced this reversion 10-50-fold. Factors influencing the differential radiation revertability of frameshifts are discussed. The two most revertable frameshifts, trpE9777 and trpA9813, were used as probes to understand the role of the umuDC genes in radiation-induced frameshift reversion. Unlike the UV radiation-induced reversion of base-substitution mutations, the reversion of these frameshifts was not enhanced in a uvrA umuC strain by photoreactivation after a post-UV-irradiation incubation. The UmuDC proteins are suggested to have functions in the radiation induction of frameshifts that are more complex than are their functions in the induction of base substitutions.  相似文献   

20.
A large range of acridines, including several anilinoacridines which are active as antitumour agents, have been studied for their ability to revert derivatives of Salmonella typhimurium strains carrying the frameshift marker hisC3076. The strains used all carried deep-rough (rfa) mutations, and were either wild-type with respect to DNA-repair capacity or carried uvrB, polA1 or polA3 (amber) mutations. Derivatives with and without the mutation-enhancing N group plasmid pKM101 were also used. 9-Aminoacridine and other acridines appeared similar to the anilinoacridines for the most part, in that frameshift mutagenesis and toxicity appeared to be unaffected by the uvrB mutation or by the presence of plasmid pKM101. Exceptions were ICR191, 3-NO2-acridine and 1- or 3-NO2-anilinoacridine derivatives in which mutagenesis was increased in uvrB strains and also when pKM101 was present. These compounds were slightly more toxic in the uvrB background, but less toxic when pKM101 was present in either the uvrB or wild-type backgrounds. Mutagenesis by most compounds was reduced by the polA1 mutation and virtually eliminated (except in the case of ICR191) by the polA3 mutation. Plasmid pKM101 occasionally enhanced mutagenesis in the polA1 strain, whereas in the polA3 it appeared to have no effect whatsoever. Again, there were no obvious differences in toxicity between Pol+ and Pol- strains.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号