首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Lee CK  Piedrahita JA 《Cloning》2000,2(4):197-205
As embryonic stem (ES) cells are not available in swine, embryonic germ (EG) cells derived from primordial germ cells (PGCs) are an alternate source of pluripotent embryonic cells for genetic modification through homologous recombination. Although morphological and biochemical characteristics are similar between ES and EG cells, culture conditions are quite different. To optimize the culture condition for the establishment of porcine EG cells, porcine PGCs were cultured in vitro with various combinations of growth factors (leukemia inhibitory factor [LIF], stem cell factor [SCF], and basic fibroblast growth factor [bFGF]) and on different kinds of feeder cells (STO, TM(4), Sl/Sl(4) m220, porcine embryonic fibroblasts, and COS-7 cells). Optimal results were obtained when all three growth factors (LIF, SCF, and bFGF) were present in the media. Also, feeder cells expressing membrane-bound SCF are required for survival and establishment of porcine EG cells. Therefore, a combination of growth factors and proper feeder cells are critical for the establishment of undifferentiated porcine EG cells.  相似文献   

2.
In the present paper we investigated the effects of stem cell factor/mastocyte growth factor (SCF/MGF), leukemia inhibitory factor/differentiating inhibitory activity (LIF/DIA) (two growth factors known to affect primordial germ cell growth in vitro) and forskolin (FRSK) (an activator of adenylate cyclase in many cell types) alone or in combination on the survival and proliferation of primordial germ cells (PGCs) obtained from 8.5, 10.5, and 11.5 days post coitum (dpc) mouse embryos and cultured without pre-formed cell feeder layers. The results showed that both at 1 and 3 days of culture the addition of 100 ng/ml SCF, 20 μM FRSK, or in some instances 20 ng/ml LIF alone caused a significant increase of PGC number as compared with controls. The highest effects were obtained when SCF and/or LIF were used together with FRSK. Moreover, we found that FRSK elevated cAMP levels in purified 11.5 dpc PGCs and that this compound, but not SCF and LIF, stimulated PGC proliferation, as assessed by 5-bromo-2′-deoxyuridin (BrdU) incorporation. These results suggest a mechanism of combined action of cAMP with SCF and/or LIF in the control of proliferation of mouse PGCs in vitro. © 1993 Wiley-Liss, Inc.  相似文献   

3.
Information obtained mainly from in vitro culture studies and genetic analysis of mouse mutants White spotting and Steel indicate a pivotal role of growth factors in the development of mouse primordial germ cells (PGCs). While stem cell factor (SCF) and TGFβ1 seem to have a role in PGC migration (as an adhesion factor and a chemoattractant, respectively), the former is certainly required for PGC survival in vitro and probably in vivo as well. Recent findings suggest that the mechanism by which SCF supports PGC survival is by preventing PGC apoptosis. A similar action appears to be exerted by leukemia inhibitory factor (LIF), a further growth factor influencing PGC growth in culture.PGC proliferation seems to be mainly induced by cAMP dependent mechanisms, but futther investigations are needed to clarify the interrelationships among the different molecular pathways activated by SCF, LIF, cAMP and other putative PGC growth factors (i.e. bFGF). Stimulation of long-term proliferation of PGCs, leading to derivation of ES-like cells (embryonal germ cells) obtained by using a combination of growth factors (bFGF, SCF and LIF), opens new intriguing perspectives for such studies and transgenic technology.  相似文献   

4.
Recent studies have shown that stem cell factor (SCF), leukemia inhibitory factor (LIF), basic fibroblast growth factor (bFGF) and the enhancement of cAMP levels increase proliferation and survival of mouse primordial germ cells (PGC) in vitro . Even after the addition of these factors, however, it is still not possible to obtain proliferation of PGC at a rapid rate similar to that in vivo , suggesting the presenge of other growth factor(s) in vivo . We previously reported that tumor necrosis factor-α stimulates proliferation of PGC at earlier migration stages. We now show that the use of SI/SI4-m220 feeder cells and the addition of a medium conditioned with Buffalo rat liver cells and forskolin to the culture medium stimulate PGC obtained from 8.5 days post coitum embryos to proliferate in culture at a rate comparable to that in vivo . Under such conditions, proliferation of PGC continued several days past the timing of growth arrest in vivo ; however, it did stop afterwards. Such proliferating PGC continue to express c-kit and Oct-3 proteins. The characteristics of the culture medium and the requirement of feeder cells were different from those for embryonic stem (ES) cells, suggesting that these rapidly proliferated PGC are not transformed into ES-like EG cells.  相似文献   

5.
Tang X  Zhang C  Jin Y  Ge C  Wu Y 《Cell biology international》2007,31(9):1016-1021
Many studies demonstrated that chicken primordial germ cells (PGCs) could maintain undifferentiated state on mouse embryonic fibroblast feeders supplemented with growth factors and cytokines. However, the xenosupport systems may run risk of cross-transfer of animal pathogens from the other animal feeder, matrix to the PGCs, then influencing later transgenic technology. In this study, chicken PGCs were identified by alkaline phosphatase, stage-specific embryonic antigen-1 and Oct-4 immunocytochemical stainings. Three different homologous somatic cell feeder layers (chicken embryonic fibroblast feeder layer, CEF; embryonic skeletal myoblast feeder layer; follicular granulosa cell feeder layer) were used to support growth and proliferation of PGCs to find a better supporting culture system. In addition, the effects of fetal calf serum (FCS), leukemia inhibitory factor (LIF) and the combination of insulin, transferring and selenite (ITS) on PGC proliferation were compared. Results showed that CEF was the best supporter for PGC growth and proliferation, which was verified by 5-bromo-2'-deoxyuridine incorporation stain. FCS alone or in combination with LIF could significantly promote PGC proliferation in the presence of CEF in ITS medium. This study will contribute to providing a safer supporting system for chicken PGC amplification in vitro, and may be applied in transgenic chicken production and transplantation therapy.  相似文献   

6.
Experiments were conducted to determine the effects of feeder layers composed of different cell types on the efficiency of isolation and the behavior of porcine embryo-derived cell lines. Inner cell masses (ICM) isolated from 7- to 8-d-old embryos were plated on feeder layers composed of Buffalo rat liver cells (BRL), a continuous cell line of murine embryonic fibroblasts (STO), STO combined with BRL at a 9:1 and 1:1 ratio, STO with BRL-conditioned medium (STO + CM), porcine embryonic fibroblasts (PEF), PEF combined with BRL at a 9:1 and 1:1 ratio, porcine uterine epithelial cells (PUE), murine embryonic fibroblasts (MEF), or an epithelial-like porcine embryo-derived cell line (PH3A). It was found that embryo-derived cell lines could be isolated only from the STO and the STO with BRL-conditioned medium treatments. The isolated cell lines were of epithelial-like and embryonic stem cell-like (ES-like) morphology. The feeders tested had an effect on the behavior of plated ICM. Some feeders, represented by PUE, BRL, STO:BRL (1:1), PEF:BRL (1:1), and PH3A, did not promote attachment of the ICM to the feeder layer; others, represented by STO and MEF, allowed attachment, differentiation and proliferation. On PEF feeders the ICM spread onto the feeder layer after attachment without apparent signs of proliferation or differentiation. None of the feeders tested increased the efficiency of isolation or the growth characteristics of embryo-derived (both ES-like and epithelial-like) cell lines over that of STO feeders.  相似文献   

7.
Porcine primordial germ cell (PGC) derived cell lines of WAPhGH-transgenic pigs have been established that were able to contribute to chimeras. PGCs were isolated from day 25 to 28 genital ridges of more than 30 individual transgenic fetuses in order to have an easy to follow marker gene. To support undifferentiated growth, cell lines were derived and stable maintained on STO no. 8 feeder cells, a murine embryonic fibroblast cell line expressing recombinant, membrane-bound porcine stem cell factor (SCF). Fifteen lines proliferated in an undifferentiated state up to passage 13; two lines were maintained for more than 23 passages. Cell staining experiments for differentiation markers in several cell lines, indicated the presence of pluripotent cells in prolonged cultures. Further characterization using karyotyping revealed a normal, euploid set of chromosomes in cells of passages 15 and higher. Pluripotency of freshly isolated, short-term (up to 24 hr before injection) and long-term cultured, frozen/thawed cells was tested by injection into day 6 recipient blastocysts to give rise to chimeric piglets. The injected embryos (n = 209) were endoscopically transferred into the uterine horns of 11 recipient gilts. Tissue analysis from 49 fetuses and eighteen liveborn piglets for PGC contribution in chimeras was carried out using PCR analysis for the presence of the marker transgene. Thirty-two fetuses showed detectable chimerism in up to five out of 12 tissues analyzed. Skin samples from eight piglets were positive for the transgene, four of them displayed coat colour chimerism.  相似文献   

8.
The regulatory factor Differentiation Inhibiting Activity/Leukaemia Inhibitory Factor (DIA/LIF) suppresses the differentiation of cultured embryonic stem (ES) cells. In the present study, it is shown that ES cell lines can be derived and maintained in the absence of feeder layers using medium supplemented with purified DIA/LIF. These cells can differentiate normally in vitro and in vivo and they retain the capacity for germ-line transmission. DIA/LIF therefore fulfils the essential function of feeders in the isolation of pluripotential stem cells.  相似文献   

9.
The development of mouse primordial germ cells is followed from their first appearance in the extraembryonic mesoderm of the posterior amniotic fold (7 dpc embryo) to their settlement in the genital ridges (12.5 dpc embryo). The role of fibronectin as adhesive substrate and/or in stimulating cell motility during PGC migration is discussed. Recent papers showing how PGCs migrate when cultured in vitro on cellular monolayers are reviewed. The process of PGC homing is proposed to be controlled by chemotaxis as well by developmentally regulated cell-to-cell interactions. Finally, evidence that survival and proliferation of PGCs is strictly dependent on growth factors such as LIF and MGF, and possibly on a cAMP-dependent mechanism is reported.  相似文献   

10.
生长因子作为细胞体外培养和在体细胞生长及增殖必需的调节因子 ,一直被广泛的关注。业已证明干细胞因子(StemCellFactor,SCF)、白血病抑制因子 (leukaemiainhibitoryfactor,LIF)和碱性成纤维细胞生长因子 (BsaicFibroblastGrowthFactor,bFGF)具有刺激细胞增殖的作用[1~ 4] ,但大都是对单一因子进行研究。本实验探讨用这三种生长因子的不同组合观察对小鼠精原干细胞增殖的作用 ,以期定性和定量的探讨出体外培养初期三种因子对小鼠精原干细胞生长的影响 ,为小…  相似文献   

11.
鸡胚胎干细胞的分离、培养和鉴定   总被引:14,自引:0,他引:14  
安静  杜立新 《动物学报》2003,49(5):698-703
SNL cells (permanent line of irradiated mouse fibroblast cells), primary mice embryonic fibroblasts (PMEF) cells and primary chicken embryonic fibroblasts (PCEF) cells were respectively used as the feeder cells for chicken embryonic stem cell culture. The isolated blastoderm cells front the stage X embryos of chicken were cultured in Dulercco‘‘ s Modified Eagle Medium (DMEM) supplemented with leukemia inhibitory factor (LIF, 1 000 IU/ml), basic fibroblast growth factor (bFGF 10 ng/ml) and stem cell factor (SCF, 5 ng/ml). The alkaline phosphatase (AKP) test, differentiation experiment in vitro and chimeric chicken production were carried out. The resuts showed that culture on feeder layer of PMEF yielded high quality CES cell colonies. The shape of typical CES clone showed as follows: nested aggregation (clone) with clear edge and round surface as well as close arrangement within the clone. Strong positive AKP reactive cellswere observed. On the other hand, the fourth passage CES cells could differentiate into various cells in the absence of feeder layer cells and LIF in vitro. The third and fourth passage cells were injected into the subgerminal cavity of recipient embryos at stage X. The manipulated embryos were incubated until hatching. Of 269 Hailan embryos injected with CES cells of Shouguang Chickens, 8.2 % (22/269) survived to hatching, 3 feather chimeras had been produced, which suggests that an effective culture systems were established and it could promote the growth of CES cells and maintain them in an undifferentiated state .  相似文献   

12.
Although several mitogens and survival factors have been previously shown to act on primordial germ cells (PGCs) in culture, it is not clear whether they are responsible for controlling proliferation of PGCs in the embryo. We show here that during their migratory phase, PGCs do not express FGF-4, FGF-8, or FGF-17, but these FGFs are expressed by neighboring cells. Thus, any FGF action on migrating PGCs would appear to be through a paracrine mechanism. We found that after entering into the gonads, PGCs start to express FGF-4 and FGF-8. On this basis, we hypothesize that FGF signaling is involved in both a paracrine manner in initiating PGC proliferation during their migration and an autocrine manner in sustaining PGC proliferation after their arrival in the gonads. We then studied the role of soluble stem cell factor (SCF), which acts as a survival factor or a mitogen in culture, to determine whether it interacts with FGFs. We found that SCF has a complex effect on PGC proliferation. On one hand, soluble SCF promoted PGC proliferation synergistically with FGF in the absence of membrane-bound SCF. Conversely, soluble SCF inhibited FGF-stimulated proliferation of PGCs in the presence of membrane-bound SCF. We account for these findings in a model involving regulation of PGC proliferation, in which SCF modulates the response to FGFs.  相似文献   

13.
Primordial germ cells (PGC) were isolated from 8.5, 10.5, 12.5 days post coitum (dpc) embryos of F1 (Balb/c x ICR), C57BL/6J, 129/svJ, 129/sv-ter mice, and cultured on mitotically inactive MEF or STO feeder layer cells with addition of leukemia inhibitory factor, stem cell factor and basic fibroblast growth factor in cultures. PGCs formed densely packed and AKP positive colonies with pluripotential marker gene (oct-4) expression resembling undifferentiated ES cells in morphology and growth pattern. Five EG cell lines derived from PGCs were established: EG1(8.5 dpc, F1), EG2 and EG3 (8.5 dpc, C57BL/6J), EG4 (10.5 dpc, 129/svJ), EG5 (10.5 dpc, 129/sv-ter). No long term culture was obtained from 12.5 dpc PGCs of 29 embryos. All five EG cell lines cultured on feeder layer cells or in LIF containing medium still remain undifferentiated state at 15 th passage. Under appropriate conditions, EG cells formed embryoid bodies in suspension culture and multiple types of differentiated cells in monolayer culture. When these EG cells were injected in nude mice, they formed teratocacinomas containing differentiated cells such as cartilage, neural tissue and epithelium. These results show that EG1-5 cell lines derived from 8.5, 10.5 dpc embryos are pluripotential.  相似文献   

14.
It is known that mammalian primordial germ cells (PGCs), the precursors of oocytes and prospermatogonia, depend for survival and proliferation on specific growth factors and other undetermined compounds. Adhesion to neighboring somatic cells is also believed to be crucial for preventing PGC apoptosis occurring when they lose appropriate cell to cell contacts. This explains the current impossibility to maintain isolated mouse PGCs in culture for periods longer than a few hours in the absence of suitable cell feeder layers producing soluble factors and expressing surface molecules necessary for preventing PGTC apoptosis and stimulating their proliferation. In the present paper, we identified a cocktail of soluble growth factors, namely KL, LIF, BMP-4, SDF-1, bFGF and compounds (N-acetyl-L-cysteine, forskolin, retinoic acid) able to sustain the survival and self-renewal of mouse PGCs in the absence of somatic cell support. We show that under culture conditions allowing PGC adhesion to an acellular substrate, such growth factors and compounds were able to prevent the occurrence of significant levels of apoptosis in PGCs for two days, stimulate their proliferation and, when LIF was omitted from the cocktail, allow most of them to enter into and progress through meiotic prophase I. These results consent for the first time to establish culture conditions for purified mammalian PGCs in the absence of somatic cell support and should make easier the molecular dissection of the processes governing the development of such cells crucial for early gametogenesis.  相似文献   

15.
Regulation of primordial germ cell development in the mouse   总被引:12,自引:0,他引:12  
Primordial germ cells (PGCs) are the founders of the gametes. They arise at the earliest stages of embryonic development and migrate to the gonadal ridges, where they differentiate into oogonia/oocytes in the ovary, and prospermatogonia in the testis. The present article is a review of the main studies undertaken by the author with the aim of clarifying the mechanisms underlying the development of primordial germ cells. Methods for the isolation and purification of migratory and post-migratory mouse PGCs devised in the author's laboratory are first briefly reviewed. Such methods, together with the primary culture of PGCs onto suitable cell feeder layers, have allowed the analysis of important aspects of the control of their development, concerning in particular survival, proliferation and migration of mouse PGCs. Compounds and growth factors affecting PGC numbers in culture have been identified. These include survival anti-apoptotic factors (SCF, LIF) and positive regulators of proliferation (cAMP, PACAPs, RA). Evidence has been provided that the motility of migrating PGCs relies on integrated signals from extracellular matrix molecules and the surrounding somatic cells. Moreover, homotypic PGC-PGC interaction has been evidenced that might play a role in PGC migration and in regulating their development. Several molecules (i.e. integrins, specific types of oligosaccharides, E-cadherin, the tyrosine kinase receptor c-kit) have been found to be expressed on the surface of PGCs and to mediate adhesive interactions of PGCs with the extracellular matrix, somatic cells and neighbouring PGCs.  相似文献   

16.
The efficiency of isolation and the characteristics of embryo-derived cell lines from murine, porcine, and ovine embryos cultured on STO feeders or homologous embryonic fibroblasts (HEF) feeders were compared. While murine isolated ICM or intact embryos plated on STO or HEF feeders gave rise to cell lines with embryonic stem cell-like (ES-like) morphology, ovine embryos did not. Cell lines with ES-like morphology were isolated from porcine intact embryos and isolated ICM when plated on STO feeders but not when plated on HEF. Neither murine nor porcine ES-like cell lines expressed cytokeratin 18 or vimentin. Unlike murine ES-like cell lines, porcine ES-like cells did not undergo observable differentiation in vitro or in vivo. Cell lines with epithelial-like morphology were isolated from porcine and ovine embryos. Both porcine and ovine epithelial-like cell kines expressed cytokeratin 18. When induced to differentiate in vitro, porcine and ovine epithelial-like cell lines formed vesicular structures. Electron microscopy revealed that the porcine vesicles were composed of polarized epithelial cells, each with a basally-located nucleus and an apical border containing numerous microvilli with a well organized microfilament core. The results of this study show that conditions which allow isolation of ES cells from murine embryos allow the isolation of porcine embryo-derived cell lines sharing some, but not all, the characteristics of murine ES cells.  相似文献   

17.
Mouse epidermal melanoblasts/melanocytes preferentially proliferated from disaggregated epidermal cell suspensions derived from newborn mouse skin in a serum-free melanoblast/melanocyte-proliferation medium supplemented with dibutyryl adenosine 3':5'-cyclic monophosphate (DBcAMP) and/or basic fibroblast growth factor (bFGF). Leukemia inhibitory factor (LIF) supplemented to the medium from initiation of primary culture increased the proliferation of melanoblasts or melanocytes as well as the differentiation of melanocytes. Pure cultured primary melanoblasts or melanocytes were further cultured with the medium supplemented with LIF from 14 days (keratinocyte depletion). LIF stimulated the proliferation of melanoblasts or melanocytes as well as the differentiation of melanocytes in the absence of keratinocytes. Moreover, anti-LIF antibody supplemented to the medium from initiation of primary culture inhibited the proliferation of melanoblasts or melanocytes as well as the differentiation of melanocytes. These results suggest that LIF is one of the keratinocyte-derived factors involved in regulating the proliferation and differentiation of neonatal mouse epidermal melanocytes in culture in cooperation with cAMP elevator and bFGF.  相似文献   

18.
19.
Feeder cells of irradiated mouse fibroblasts are commonly used for, and are generally necessary for, the in vitro maintenance and growth of many fastidious cell types, particularly embryonic stem cells or induced pluripotent stem cells. Quantitative and semiquantitative immunoassays of conditioned media were performed to identify some of the soluble cytokines, chemokines, protein hormones, and cell matrix/adhesion molecules that are elaborated from two commonly used feeder cells, STO and CF-1. Among those quantitatively assayed, the most abundant cytokine proteins expressed by the feeder cells were activin A, hepatocyte growth factor (HGF), insulin-like growth factor 1, insulin-like growth factor 2, insulin-like growth factor binding protein (IGFBP)-6, macrophage colony-stimulating factor (a.k.a. CSF-1), and pigment epithelium-derived factor (a.k.a. serine protease inhibitor, clade F, member 1). CF-1 cells expressed ten times more activin A than STO cells and also produced larger amounts of interleukin-6 and IGFBP-2, IGFBP-3, IGFBP-4, and IGFBP-5. Conversely, STO cell produced almost ten times more HGF and five times more stem cell factor (a.k.a. c-kit ligand) than CF-1 cells. Assayed semiquantitatively, relatively large amounts of chemokines were produced by both feeder cells including fractalkine (CX3CL1), interferon-inducible protein 10 (a.k.a. CXCL10 and cytokine-responsive gene-2, CRG-2), monocyte chemotactic protein (MCP)-1 (a.k.a. CCL2 and junctional epithelium chemokine (JE), MCP-5/CCL12), keratinocyte-derived chemokine (a.k.a. CXCL1 and growth-related oncogene alpha, GROα), nephroblastoma overexpressed gene (CCN3, IGFBP-9), stromal cell-derived factor 1 (CXCL12), and serpin E1 (PAI-1). In contrast to one another, STO produced more CXCL16 than CF-1 cells, and CF-1 cell produced more MCP-5 (CCL12), macrophage inflammatory protein (MIP)-1α (CCL3), MIP-1β (CCL4), pentraxin-3 (TSG-14), and platelet factor-4 (CXCL4) than STO cells. Soluble adhesion molecule, sICAM (ICAM-1, CD54), was expressed by CF-1 cells, but not STO cells, and similarly, the cell matrix-associated molecules endocan (endothelial cell-specific molecule 1), endostatin (collagen XVIII), and matrix metalloproteinase 3 were expressed more by CF-1 cells. Tissue inhibitor of metalloproteinases 1 was robustly expressed by both feeder cells. Other proteins primarily detected from CF-1 cells included retinol-binding protein 4 and FGF21, while STO cells secreted more interferon gamma. Both feeder cells produced no or low amounts of LIF, tumor necrosis factor alpha, vascular endothelial growth factor (VEGF), VEGF-B, prolactin, various interleukins, fibroblast growth factor (FGF)-1, FGF-2, FGF-7, EGF, HB-EGF, and amphiregulin. The results may explain some of the cell growth and maintenance responses by various types of cells co-cultured on STO or CF-1 feeder cells.  相似文献   

20.
Embryonic stem (ES) cells rely on growth factors provided by feeder cells or exogenously to maintain their pluripotency. In order to identify such factors, we have established sub-lines of STO feeder cells which exhibit variable ability in supporting ES cell self-renewal. Functional screening identifies WNT5A and WNT6 as STO cell-produced factors that potently inhibit ES cell differentiation in a serum-dependent manner. Furthermore, direct activation of beta-catenin without disturbing the upstream components of the WNT/beta-catenin pathway fully recapitulates the effect of WNTs on ES cells. Importantly, the WNT/beta-catenin pathway up-regulates the mRNA for Stat3, a known regulator of ES cell self-renewal in the mouse. Finally, LIF is able to mimic the serum effect to act synergistically with WNT proteins to inhibit ES cell differentiation. Therefore, our study reveals part of the molecular mechanisms by which the WNT/beta-catenin pathway acts to prevent ES cell differentiation through convergence on the LIF/JAK-STAT pathway at the level of STAT3.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号