首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 93 毫秒
1.
Condensation of chromatin, mediated in part by posttranslational modifications of histones, is essential for cell division during mitosis. Histone H3 tails are dimethylated on lysine (Kme2) and become phosphorylated on serine (Sp) residues during mitosis. We have explored the possibility that these double modifications are involved in the establishment of H3 tail conformations during the cell cycle. Here we describe a specific chromatin conformation occurring at Kme2 and adjacently phosphorylated S of H3 tails upon formation of a hydrogen bond. This conformation appears exclusively between early prophase and early anaphase of the mitosis, when chromatin condensation is highest. Moreover, we observed that the conformed H3Kme2Sp tail is present at the diplotene and metaphase stages in spermatocytes and oocytes. Our data together with results obtained by cryoelectron microscopy suggest that the conformation of Kme2Sp-modified H3 tails changes during mitosis and meiosis. This is supported by biostructural modeling of a modified histone H3 tail bound by an antibody, indicating that Kme2Sp-modified H3 tails can adopt at least two different conformations. Thus, the H3K9me2S10p and the H3K27me2S28p sites are involved in the acquisition of specific chromatin conformations during chromatin condensation for cell division.  相似文献   

2.
The N-terminal tails of the four core histones are subject to several types of covalent post-translational modifications that have specific roles in regulating chromatin structure and function. Here we present an extensive analysis of the core histone modifications occurring through the cell cycle. Our MS experiments characterized the modification patterns of histones from HeLa cells arrested in phase G1, S, and G2/M. For all core histones, the modifications in the G1 and S phases were largely identical but drastically different during mitosis. Modification changes between S and G2/M phases were quantified using the SILAC (stable isotope labeling by amino acids in cell culture) approach. Most striking was the mitotic phosphorylation on histone H3 and H4, whereas phosphorylation on H2A was constant during the cell cycle. A loss of acetylation was observed on all histones in G2/M-arrested cells. The pattern of cycle-dependent methylation was more complex: during G2/M, H3 Lys27 and Lys36 were decreased, whereas H4 Lys20 was increased. Our results show that mitosis was the period of the cell cycle during which many modifications exhibit dynamic changes.  相似文献   

3.
Post-translational modifications of histone proteins, the basic building blocks around which eukaryotic DNA is organized, are crucially involved in the regulation of genome activity as they control chromatin structure and dynamics. The recruitment of specific binding proteins that recognize and interact with particular histone modifications is thought to constitute a fundamental mechanism by which histone marks mediate biological function. For instance, tri-methylation of histone H3 lysine 9 (H3K9me3) is important for recruiting heterochromatin protein 1 (HP1) to discrete regions of the genome, thereby regulating gene expression, chromatin packaging, and heterochromatin formation. Until now, little was known about the regulation of effector-histone mark interactions, and in particular, of the binding of HP1 to H3K9me3. Recently, we and others presented evidence that a "binary methylation-phosphorylation switch" mechanism controls the dynamic release of HP1 from H3K9me3 during the cell cycle: phosphorylation of histone H3 serine 10 (H3S10ph) occurs at the onset of mitosis, interferes with HP1-H3K9me3 interaction, and therefore, ejects HP1 from its binding site. Here, we discuss the biological function of HP1 release from chromatin during mitosis, consider implications why the cell controls HP1 binding by such a methylation-phosphorylation switching mechanism, and reflect on other cellular pathways where binary switching of HP1 might occur.  相似文献   

4.
5.
6.
7.
Role of histone modification in chromatin dynamics   总被引:5,自引:0,他引:5  
  相似文献   

8.
9.
10.
Among all posttranslational modifications that occur on histone tails, phosphorylation is the one that establishes a direct link between chromatin remodeling and intracellular signaling pathways. Specific, conserved serine residues are present on the N-terminal tails of each histone. These are phosphoacceptor sites for a number of kinases, whose identification is essential to decipher the transduction routes leading to various physiological responses. In the case of histone H3, phosphorylation at the Ser10 residue may lead to either activated gene expression or chromatin condensation during mitosis. In addition, phosphorylation at specific sites may be coupled to other distinct modifications, such as acetylation and methylation, generating the so-called "histone code" which postulates that well defined combinatorial modifications at histone tails correspond to specific physiological responses. Here we describe a number of experimental methodologies that are essential for the study of histone phosphorylation. While chromatin immunoprecipitation is useful in recognizing gene targets, the in-gel kinase assay is a first, essential step in establishing the identity of the kinase(s) that operates in response to a specific signaling pathway. The subsequent use of in vitro kinase assays is helpful in validating the implication of a candidate kinase. These powerful approaches are important as identification of the signaling transduction routes leading to chromatin remodeling is critical to an understanding of all cellular processes.  相似文献   

11.
In mammals, the time period that follows fertilization is characterized by extensive chromatin remodeling, which enables epigenetic reprogramming of the gametes. Major changes in chromatin structure persist until the time of implantation, when the embryo develops into a blastocyst, which comprises the inner cell mass and the trophectoderm. Changes in DNA methylation, histone variant incorporation, and covalent modifications of the histones tails have been intensively studied during pre-implantation development. However, modifications within the core of the nucleosomes have not been systematically analyzed. Here, we report the first characterization and temporal analysis of 3 key acetylated residues in the core of the histone H3: H3K64ac, H3K122ac, and H3K56ac, all located at structurally important positions close to the DNA. We found that all 3 acetylations occur during pre-implantation development, but with different temporal kinetics. Globally, H3K64ac and H3K56ac were detected throughout cleavage stages, while H3K122ac was only weakly detectable during this time. Our work contributes to the understanding of the contribution of histone modifications in the core of the nucleosome to the “marking” of the newly established embryonic chromatin and unveils new modification pathways potentially involved in epigenetic reprogramming.  相似文献   

12.
Post-translational modifications of core histone proteins play a key role in chromatin structure and function. Here, we study histone post-translational modifications during reentry of protoplasts derived from tobacco mesophyll cells into the cell cycle and evaluate their significance for progression through mitosis. Methylation of histone H3 at lysine residues 4 and 9 persisted in chromosomes during all phases of the cell cycle. However, acetylation of H4 and H3 was dramatically reduced during mitosis in a stage-specific manner; while deacetylation of histone H4 commenced at prophase and persisted up to telophase, histone H3 remained acetylated up to metaphase but was deacetylated at anaphase and telophase. Phosphorylation of histone H3 at serine 10 was initiated at prophase, concomitantly with deacetylation of histone H4, and persisted up to telophase. Preventing histone deacetylation by the histone deacetylase inhibitor trichostatin A (TSA) led to accumulation of protoplasts at metaphase-anaphase, and reduced S10 phosphorylation during anaphase and telophase; in cultured tobacco cells, TSA significantly reduced the frequency of mitotic figures. Our results indicate that deacetylation of histone H4 and H3 in tobacco protoplasts occurs during mitosis in a phase-specific manner, and is important for progression through mitosis.  相似文献   

13.
14.
15.
Histones are the most abundant protein family in the cells of complex organisms such as mammals and, together with DNA, they define the backbone of chromatin. Histone PTMs are key players of chromatin biology, as they function as anchors for proteins that bind and modulate chromatin readout, including gene expression. Middle‐down mass spectrometry (MS) has been optimized for about 10 years to study histone N‐terminal tails, but it has been rarely applied to identify the role of coexisting histone marks in biology. In this work, Jiang et al. used middle‐down MS to study the dynamics of coexisting PTMs on histone H4 in two breast cancer cell lines. 1 They found that overall serine 1 phosphorylation (S1ph) is mildly regulated during the cell cycle, but S1ph coexistence frequency with acetylations and methylations on the lysine residues of the N‐terminal tail is remarkably tuned during S phase and G2/M phase. Together, the team placed another benchmark proving that MS analysis of combinatorial histone PTMs provides a more comprehensive view on chromatin state than studying individual marks. We should then constantly question ourselves regarding the limitations of analyzing single PTMs when we attempt to define their effect on protein functions.  相似文献   

16.
17.
18.
Histone post-translational modifications mark distinct structural and functional chromatin states but little is known of their involvement in the progression of different cell cycle types across phylogeny. We compared temporal and spatial dynamics of histone H4 post-translational modifications during both mitotic and endoreduplicative cycles of the urochordate, Oikopleura dioica, and proliferating mammalian cells. Endocycling cells showed no signs of chromosome condensation or entry into mitosis. They exhibited an evolution of replication patterns indicative of reduced chromatin compartmentalization relative to proliferating mammalian cells. In the latter cells, published cell cycle profiles of histone H4 acetylated at lysine 16 (H4AcK16) or dimethylated at lysine 20 (H4Me2K20) are disputed. Our results, using different, widely used H4AcK16 antibodies, revealed significant antibody-specific discrepancies in spatial and temporal cell cycle regulation of this modification, with repercussions for interpretation of previous immunofluorescence and immunoprecipitation data based on these reagents. On the other hand, three different antibodies to H4Me2K20 revealed similar cell cycle profiles of this modification that were conserved throughout the mitotic cell cycle in urochordate and mammalian cells, with accumulation at mitosis and a decrease during S-phase. H4Me2K20 also cycled in endocycles, indicating that dynamics of this modification are not strictly constrained by the mitotic phase of the cell cycle and suggesting additional roles during G- and S-phase progression. This article contains Supplementary Material available at http://www.mrw.interscience.wiley.com/suppmat/0730-2312/suppmat/2005/95/spada.html.  相似文献   

19.
The roles of histone tails as substrates for reversible chemical modifications and dynamic cognate surfaces for the binding of regulatory proteins are well established. Despite these crucial roles, experimentally derived knowledge of the structure and possible binding sites of histone tails in chromatin is limited. In this study, we utilized molecular dynamics of isolated histone H3 N-terminal peptides to investigate its structure as a function of post-translational modifications that are known to be associated with defined chromatin states. We observed a structural preference for α-helices in isoforms associated with an inactive chromatin state, while isoforms associated with active chromatin states lacked α-helical content. The physicochemical effect of the post-translational modifications was highlighted by the interaction of arginine side-chains with the phosphorylated serine residues in the inactive isoform. We also showed that the isoforms exhibit different tail lengths, and, using molecular docking of the first 15 N-terminal residues of an H3 isoform, identified potential binding sites between the superhelical gyres on the octamer surface, close to the site of DNA entry/exit in the nucleosome. We discuss the possible functional role of the binding of the H3 tail within the nucleosome on both nucleosome and chromatin structure and stability.  相似文献   

20.
Phosphorylation of histone H3 is a hallmark event in mitosis and is associated with chromosome condensation. Here, we use a combination of immobilized metal affinity chromatography and tandem mass spectrometry to characterize post-translational modifications associated with phosphorylation on the N-terminal tails of histone H3 variants purified from mitotically arrested HeLa cells. Modifications observed in vivo on lysine residues adjacent to phosphorylated Ser and Thr provide support for the existence of the "methyl/phos", binary-switch hypothesis [Fischle, W., Wang, Y., and Allis, C. D. (2003) Nature 425, 475-479]. ELISA with antibodies selective for H3 at Ser10, Ser28, and Thr3 show reduced activity when adjacent Lys residues are modified. When used together, mass spectrometry and immunoassay methods provide a powerful approach for elucidation of the histone code and identification of histone post-translational modifications that occur during mitosis and other specific cellular events.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号