首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Biosynthesis of polyketides in heterologous hosts.   总被引:3,自引:0,他引:3  
Polyketide natural products show great promise as medicinal agents. Typically the products of microbial secondary biosynthesis, polyketides are synthesized by an evolutionarily related but architecturally diverse family of multifunctional enzymes called polyketide synthases. A principal limitation for fundamental biochemical studies of these modular megasynthases, as well as for their applications in biotechnology, is the challenge associated with manipulating the natural microorganism that produces a polyketide of interest. To ameliorate this limitation, over the past decade several genetically amenable microbes have been developed as heterologous hosts for polyketide biosynthesis. Here we review the state of the art as well as the difficulties associated with heterologous polyketide production. In particular, we focus on two model hosts, Streptomyces coelicolor and Escherichia coli. Future directions for this relatively new but growing technological opportunity are also discussed.  相似文献   

2.
The medicinal value associated with complex polyketide and nonribosomal peptide natural products has prompted biosynthetic schemes dependent upon heterologous microbial hosts. Here we report the successful biosynthesis of yersiniabactin (Ybt), a model polyketide-nonribosomal peptide hybrid natural product, using Escherichia coli as a heterologous host. After introducing the biochemical pathway for Ybt into E. coli, biosynthesis was initially monitored qualitatively by mass spectrometry. Next, production of Ybt was quantified in a high-cell-density fermentation environment with titers reaching 67 +/- 21 (mean +/- standard deviation) mg/liter and a volumetric productivity of 1.1 +/- 0.3 mg/liter-h. This success has implications for basic and applied studies on Ybt biosynthesis and also, more generally, for future production of polyketide, nonribosomal peptide, and mixed polyketide-nonribosomal peptide natural products using E. coli.  相似文献   

3.
聚酮是一大类具有重要生物活性的天然产物,其生物合成途径复杂多样。利用异源宿主合成聚酮化合物要比使用天然生产菌有很多优点。异源宿主的选择是异源生物合成聚酮的关键。这种宿主必须能够大量表达大分子聚酮合成酶(300 kDa或更大)且能够大规模的转译后修饰这些蛋白;还要能够形成大量的像丙二酰CoA、甲基丙二酰CoA等细胞内起始单元。随着各种技术的不断进步,异源宿主很可能成为大规模生产聚酮化合物的一个强有力平台。本文对聚酮合成酶,异源生产聚酮的优点、条件和应用都有所阐述。  相似文献   

4.
The medicinal value associated with complex polyketide and nonribosomal peptide natural products has prompted biosynthetic schemes dependent upon heterologous microbial hosts. Here we report the successful biosynthesis of yersiniabactin (Ybt), a model polyketide-nonribosomal peptide hybrid natural product, using Escherichia coli as a heterologous host. After introducing the biochemical pathway for Ybt into E. coli, biosynthesis was initially monitored qualitatively by mass spectrometry. Next, production of Ybt was quantified in a high-cell-density fermentation environment with titers reaching 67 ± 21 (mean ± standard deviation) mg/liter and a volumetric productivity of 1.1 ± 0.3 mg/liter-h. This success has implications for basic and applied studies on Ybt biosynthesis and also, more generally, for future production of polyketide, nonribosomal peptide, and mixed polyketide-nonribosomal peptide natural products using E. coli.  相似文献   

5.
Heterologous production of polyketide compounds, an important class of natural products with complex chemical structures, was first demonstrated with Streptomyces parvulus in 1984. Although Streptomyces strains are good first options for heterologous polyketide biosynthesis, their slow growth kinetics prompt other hosts to also be considered. Escherichia coli provides key elements of an ideal host in terms of the growth rate, culture conditions, and available recombinant DNA tools. Here we review the current status and potential for metabolic engineering of polyketides in E. coli.  相似文献   

6.
Polyketides are important bioactive natural products biosynthesized by bacteria, fungi, and plants. The enzymes that synthesize polyketides are collectively referred to as polyketide synthases (PKSs). Because many of the natural hosts that produce polyketides are difficult to culture or manipulate, establishing a universal heterologous host that is genetically tractable has become an important goal toward the engineered biosynthesis of polyketides and analogues. Here, we summarize the recent progresses in engineering Escherichia coli as a heterologous host for reconstituting PKSs of different types. Our increased understanding of PKS enzymology and structural biology, combined with new tools in protein engineering, metabolic engineering, and synthetic biology, has firmly established E. coli as a powerful host for producing polyketides.  相似文献   

7.
Polyunsaturated fatty acids (PUFAs) are involved in determining the biophysical properties of membranes as well as being precursors for signalling molecules. C(20+) PUFA biosynthesis is catalysed by sequential desaturation and fatty acyl elongation reactions. This aerobic biosynthetic pathway was thought to be taxonomically conserved, but an alternative anaerobic pathway for the biosynthesis of polyunsaturated fatty acids is now known to exist that is analogous to polyketide synthases (PKS). These novel PKS genes could be used to direct the synthesis of PUFAs in heterologous hosts, as well as exploiting the combinatorial chemistry of PKSs to make unusual fatty acids.  相似文献   

8.
Escherichia coli offers unparalleled engineering capacity in the context of heterologous natural product biosynthesis. However, as with other heterologous hosts, cellular metabolism must be designed or redesigned to support final compound formation. This task is at once complicated and aided by the fact that the cell does not natively produce an abundance of natural products. As a result, the metabolic engineer avoids complicated interactions with native pathways closely associated with the outcome of interest, but this convenience is tempered by the need to implement the required metabolism to allow functional biosynthesis. This review focuses on engineering E. coli for the purpose of polyisoprene formation, as it is related to isoprenoid compounds currently being pursued through a heterologous approach. In particular, the review features the compound paclitaxel and early efforts to design and overproduce intermediates through E. coli.  相似文献   

9.
Polyketides represent a class of natural product small molecules with an impressive range of medicinal activities. In order to improve access to therapeutic polyketide compounds, heterologous metabolic engineering has been applied to transfer polyketide genetic pathways from often fastidious native hosts to more industrially-amenable heterologous hosts such as Escherichia coli, Saccharomyces cerevisiae, or Streptomyces coelicolor. Efforts thus far have resulted in titers either inferior to the native host and significantly below the theoretical yield, emphasizing the need to computationally investigate and engineer the interaction between native and heterologous metabolism for the improved production of heterologous polyketide compounds. In this work, we applied flux balance analysis on genome-scale models to simulate cellular metabolism and 6-deoxyerythronolide B (the cyclized polyketide precursor to erythromycin) production in three common heterologous hosts (E. coli, Bacillus subtilis, and S. cerevisiae) under a variety of carbon-source and medium compositions. We then undertook minimization of metabolic adjustment optimization to identify single and double gene-knockouts that resulted in increased polyketide production while maintaining cellular growth. For the production of 6-deoxyerythronolide B, the results suggest B. subtilis and E. coli are better heterologous hosts when compared to S. cerevisiae and that several single and multiple gene-knockout mutants are computationally predicted to improve specific production, in some cases, over 25-fold.  相似文献   

10.
Polyketides, a large family of bioactive natural products, are synthesized from building blocks derived from alpha-carboxylated Coenzyme A thioesters such as malonyl-CoA and (2S)-methylmalonyl-CoA. The productivity of polyketide fermentation processes in natural and heterologous hosts is frequently limited by the availability of these precursors in vivo. We describe a metabolic engineering strategy to enhance both the yield and volumetric productivity of polyketide biosynthesis. The genes matB and matC from Rhizobium trifolii encode a malonyl-CoA synthetase and a putative dicarboxylate transport protein, respectively. These proteins can directly convert exogenous malonate and methylmalonate into their corresponding CoA thioesters with an ATP requirement of 2 mol per mol of acyl-CoA produced. Heterologous expression of matBC in a recombinant strain of Streptomyces coelicolor that produces the macrolactone 6-deoxyerythronolide B results in a 300% enhancement of macrolactone titers. The unusual efficiency of the bioconversion is illustrated by the fact that approximately one-third of the methylmalonate units added to the fermentation medium are converted into macrolactones. The direct conversion of inexpensive feedstocks such as malonate and methylmalonate into polyketides represents the most carbon- and energy-efficient route to these high value natural products and has implications for cost-effective fermentation of numerous commercial and development-stage small molecules.  相似文献   

11.
Type I polyketide synthase (PKS) genes consist of modules approximately 3-6 kb long, which encode the structures of 2-carbon units in polyketide products. Alteration or replacement of individual PKS modules can lead to the biosynthesis of 'unnatural' natural products but existing techniques for this are time consuming. Here we describe a generic approach to the design of synthetic PKS genes where facile cassette assembly and interchange of modules and domains are facilitated by a repeated set of flanking restriction sites. To test the feasibility of this approach, we synthesized 14 modules from eight PKS clusters and associated them in 154 bimodular combinations spanning over 1.5-million bp of novel PKS gene sequences. Nearly half the combinations successfully mediated the biosynthesis of a polyketide in Escherichia coli, and all individual modules participated in productive bimodular combinations. This work provides a truly combinatorial approach for the production of polyketides.  相似文献   

12.
Heterologous biosynthesis offers a new way to capture the medicinal properties presented by complex natural products. In this study, production of 6‐deoxyerythronolide B (6dEB), the polyketide precursor to the antibiotic erythromycin, was used to probe the heterologous pathways needed for Escherichia coli‐derived biosynthesis. More specifically, the heterologous proteins responsible for 6dEB production were varied by adjusting their respective gene dosage levels. In this way, heterologous components required for posttranslational modification, 6dEB biosynthesis, and substrate provision were adjusted in expression levels to observe the relative effect each has on final heterologous biosynthesis. The results indicate that both the biosynthetic and substrate provision heterologous proteins impact 6dEB formation to a greater extent when compared with posttranslational modification and suggest these components for future protein and metabolic engineering.  相似文献   

13.
聚酮化合物是通过聚酮合成途径产生的一大类结构和生物活性多样的次级代谢产物,是链霉菌产生的主要次级代谢产物,具有重要的经济价值。为了在链霉菌中提高聚酮化合物产量,以满足工业生产需求,近年来,代谢工程的方法被广泛应用,例如,过表达合成途径中限速酶或途径特异性激活蛋白、强化前体供应、去除产物反馈抑制、合成基因簇异源表达等。本文将从代谢工程改造实例入手,全面综述链霉菌中聚酮化合物高效生物合成的研究方法及进展,并对利用合成生物学策略智能动态适配各个相关途径,进而提高该类化合物产量的研究思路进行展望。  相似文献   

14.
Aims: Escherichia coli has emerged as a viable heterologous host for the production of complex, polyketide natural compounds. In this study, polyketide biosynthesis was compared between different E. coli strains for the purpose of better understanding and improving heterologous production. Methods and Results: Both B and K‐12 E. coli strains were genetically modified to support heterologous polyketide biosynthesis [specifically, 6‐deoxyerythronolide B (6dEB)]. Polyketide production was analysed using a helper plasmid designed to overcome rare codon usage within E. coli. Each strain was analysed for recombinant protein production, precursor consumption, by‐product production, and 6dEB biosynthesis. Of the strains tested for biosynthesis, 6dEB production was greatest for E. coli B strains. When comparing biosynthetic improvements as a function of mRNA stability vs codon bias, increased 6dEB titres were observed when additional rare codon tRNA molecules were provided. Conclusions: Escherichia coli B strains and the use of tRNA supplementation led to improved 6dEB polyketide titres. Significance and Impact of the Study: Given the medicinal potential and growing field of polyketide heterologous biosynthesis, the current study provides insight into host‐specific genetic backgrounds and gene expression parameters aiding polyketide production through E. coli.  相似文献   

15.
The quest for the discovery of novel natural products has entered a new chapter with the enormous wealth of genetic data that is now available. This information has been exploited by using whole-genome sequence mining to uncover cryptic pathways, or biosynthetic pathways for previously undetected metabolites. Alternatively, using known paradigms for secondary metabolite biosynthesis, genetic information has been 'fished out' of DNA libraries resulting in the discovery of new natural products and isolation of gene clusters for known metabolites. Novel natural products have been discovered by expressing genetic data from uncultured organisms or difficult-to-manipulate strains in heterologous hosts. Furthermore, improvements in heterologous expression have not only helped to identify gene clusters but have also made it easier to manipulate these genes in order to generate new compounds. Finally, and perhaps the most crucial aspect of the efficient and prosperous use of the abundance of genetic information, novel enzyme chemistry continues to be discovered, which has aided our understanding of how natural products are biosynthesized de novo, and enabled us to rework the current paradigms for natural product biosynthesis.  相似文献   

16.
The heterologous expression of natural product biosynthetic pathways is of increasing interest in biotechnology and drug discovery. It enables the (over)production of structurally complex substances through transfer of the biosynthetic genes from the original producer to more amenable heterologous hosts, and provides the basis to generate novel analogs through biosynthetic engineering. Furthermore, the lateral transfer of 'silent' (not expressed under standard laboratory conditions) secondary metabolite pathways or metagenomic DNA into surrogate host strains is expected to yield new, potentially bioactive compounds. This review discusses recent reports on the heterologous production of natural products with emphasis on polyketide and nonribosomally biosynthesized peptide compounds.  相似文献   

17.
Räty K  Kantola J  Hautala A  Hakala J  Ylihonko K  Mäntsälä P 《Gene》2002,293(1-2):115-122
We have cloned and sequenced polyketide synthase (PKS) genes from the aclacinomycin producer Streptomyces galilaeus ATCC 31,615. The sequenced 13.5-kb region contained 13 complete genes. Their organization as well as their protein sequences showed high similarity to those of other type II PKS genes. The continuous region included the genes for the minimal PKS, consisting of ketosynthase I (aknB), ketosynthase II (aknC), and acyl carrier protein (aknD). These were followed by the daunomycin dpsC and dpsD homologues (aknE2 and F, respectively), which are rare in type II PKS clusters. They are associated with the unusual starter unit, propionate, used in the biosynthesis of aklavinone, a common precursor of aclacinomycin and daunomycin. Accordingly, when aclacinomycins minimal PKS genes were substituted for those of nogalamycin in the plasmid carrying genes for auramycinone biosynthesis, aklavinone was produced in the heterologous hosts. In addition to the minimal PKS, the cloned region included the PKS genes for polyketide ketoreductase (aknA), aromatase (aknE1) and oxygenase (aknX), as well as genes putatively encoding an aklanonic acid methyl transferase (aknG) and an aklanonic acid methyl ester cyclase (aknH) for post-polyketide steps were found. Moreover, the region carried genes for an activator (aknI), a glycosyl transferase (aknK) and an epimerase (aknL) taking part in deoxysugar biosynthesis.  相似文献   

18.
To further explore possible avenues for accessing microbial biodiversity for drug discovery from natural products, we constructed and screened a 5,000-clone "shotgun" environmental DNA library by using an Escherichia coli-Streptomyces lividans shuttle cosmid vector and DNA inserts from microbes derived directly (without cultivation) from soil. The library was analyzed by several means to assess diversity, genetic content, and expression of heterologous genes in both expression hosts. We found that the phylogenetic content of the DNA library was extremely diverse, representing mostly microorganisms that have not been described previously. The library was screened by PCR for sequences similar to parts of type I polyketide synthase genes and tested for the expression of new molecules by screening of live colonies and cell extracts. The results revealed new polyketide synthase genes in at least eight clones. In addition, at least five additional clones were confirmed by high-pressure liquid chromatography analysis and/or biological activity to produce heterologous molecules. These data reinforce the idea that exploiting previously unknown or uncultivated microorganisms for the discovery of novel natural products has potential value and, most importantly, suggest a strategy for developing this technology into a realistic and effective drug discovery tool.  相似文献   

19.
Polyketides are a group of natural products that have gained much interest due to their use as antibiotics, cholesterol lowering agents, immunosuppressors, and as other drugs. Many organisms that naturally produce polyketides are difficult to cultivate and only produce these metabolites in small amounts. It is therefore of general interest to transfer polyketide synthase (PKS) genes from their natural sources into heterologous hosts that can over-produce the corresponding polyketides. In this study we demonstrate the heterologous expression of 6-methylsalicylic acid synthase (6-MSAS), naturally produced by Penicillium patulum, in the yeast Saccharomyces cerevisiae. In order to activate the PKS a 4'-phosphopantetheinyl transferase (PPTase) is required. We therefore co-expressed PPTases encoded by either sfp from Bacillus subtilis or by npgA from Aspergillus nidulans. The different strains were grown in batch cultures. Growth and product concentration were measured and kinetic parameters were calculated. It was shown that both PPTases could be efficiently used for activation of PKS's in yeast as good yields of 6-MSA were obtained with both enzymes.  相似文献   

20.
Combinatorial biosynthesis of antimicrobials and other natural products   总被引:5,自引:0,他引:5  
Combinatorial biosynthesis utilizes the enzymes from antibiotic (and other natural product) biosynthetic pathways to create novel chemical structures. The manipulation of modular polyketide synthases (PKSs) has been the major focus of this effort and has led to the production of, for example, several erythromycin analogs. Many new tools for manipulating and studying these multifunctional enzymes have been developed. These include multiple hosts and expression systems, enzymology tools for in vitro study, and ways to engineer pre-PKS and post-PKS pathways. The result is more rational and faster methods of engineering new compounds for the development of chemotherapeutic agents from natural products. The most significant recent advances in combinatorial biosynthesis are outlined.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号