共查询到20条相似文献,搜索用时 15 毫秒
1.
聚酮是一大类具有重要生物活性的天然产物,其生物合成途径复杂多样。利用异源宿主合成聚酮化合物要比使用天然生产菌有很多优点。异源宿主的选择是异源生物合成聚酮的关键。这种宿主必须能够大量表达大分子聚酮合成酶(300 kDa或更大)且能够大规模的转译后修饰这些蛋白;还要能够形成大量的像丙二酰CoA、甲基丙二酰CoA等细胞内起始单元。随着各种技术的不断进步,异源宿主很可能成为大规模生产聚酮化合物的一个强有力平台。本文对聚酮合成酶,异源生产聚酮的优点、条件和应用都有所阐述。 相似文献
2.
3.
ZHU Xiang-Cheng HUFFMAN Justin GERBER Ryan LOU Li-Li XIE Yun-Xuan LIN Ting JORGENSON Joel MARESCH Andrew VOGELER Chad WANG Qiao-Mei SHEN Yue-Mao DU Liang-Cheng 《云南植物研究》2008,30(3):249-278
Polyketides are one of the largest groups of natural products produced by bacteria, fungi, and plants. Many of these metabolites have highly complex chemical structures and very important biological activities, including antibiotic, anticancer, immunosuppressant, and anti-cholesterol activities. In the past two decades, extensive investigations have been carried out to understand the molecular mechanisms for polyketide biosynthesis. These efforts have led to the development of various rational approaches toward engineered biosynthesis of new polyketides. More recently, the research efforts have shifted to the elucidation of the three-dimentional structure of the complex enzyme machineries for polyketide biosynthesis and to the exploitation of new sources for polyketide production, such as filamentous fungi and marine microorganisms. This review summarizes our general understanding of the biosynthetic mechanisms and the progress in engineered biosynthesis of polyketides. 相似文献
4.
5.
Production of Pseudomonas aeruginosa Rhamnolipid Biosurfactants in Heterologous Hosts 总被引:2,自引:0,他引:2 下载免费PDF全文
The high-level production of rhamnolipid biosurfactants is a unique feature of Pseudomonas aeruginosa and is strictly regulated in response to environmental conditions. The final step in rhamnolipid biosynthesis is catalyzed by the rhlAB genes encoding a rhamnosyltransferase. The expression of the cloned rhlAB genes was studied in heterologous hosts, either under the control of the rhlR and rhlI rhamnolipid regulatory elements or under the control of the tac promoter. A recombinant P. fluorescens strain harboring multiple plasmid-encoded copies of the rhamnolipid gene cluster produced rhamnolipids (0.25 g liter(sup-1)) when grown under nitrogen-limiting conditions. The highest yields (0.6 g liter(sup-1)) and productivities (24 mg liter(sup-1) h(sup-1)) were obtained in a recombinant Pseudomonas putida strain, KT2442, harboring promoterless rhlAB genes fused to the tac promoter on a plasmid. Active rhamnosyltransferase was synthesized, but no rhamnolipids were produced, by recombinant Escherichia coli upon induction of rhlAB gene expression. 相似文献
6.
7.
异源生物中筛选高剪接活性Intein系统的建立 总被引:1,自引:0,他引:1
原始物种体内蛋白质内含子(intein)介导的自催化蛋白剪接反应以100%效率进行.当这些蛋白质内含子被克隆入异源物种时,其剪接效率往往大大降低,绝大多数甚至完全失去剪接能力.本研究根据蛋白质内含子剪接活性与蛋白质外显子(extein)C端第1个保守氨基酸直接相关的特点,设计含有所有这些保守氨基酸的多个短的蛋白质外显子序列,通过PCR引入到卡那霉素抗性蛋白(KanR)的不同位点中,在此外显子中克隆入相应的蛋白质内含子,构建在大肠杆菌中依赖卡那霉素抗性来筛选高剪接活性蛋白质内含子的系统.结果显示,卡那霉素平板上菌落生长的结果与Western印迹检测的结果基本一致.说明建立的筛选高剪接活性蛋白质内含子系统成功.这种含有可选择蛋白质外显子的筛选系统,将蛋白质剪接与卡那霉素抗性相结合,直接从平板上观测剪接结果,成为快速、稳定筛选在异源物种中具有剪接活性蛋白内含子的新手段. 相似文献
8.
Chiaki Nakano Hiroki Ozawa Genki Akanuma Nobutaka Funa Sueharu Horinouchi 《Journal of bacteriology》2009,191(15):4916-4923
Type III polyketide synthases (PKSs) synthesize a variety of aromatic polyketides in plants, fungi, and bacteria. The bacterial genome projects predicted that probable type III PKS genes are distributed in a wide variety of gram-positive and -negative bacteria. The gram-positive model microorganism Bacillus subtilis contained the bcsA-ypbQ operon, which appeared to encode a type III PKS and a methyltransferase, respectively. Here, we report the characterization of bcsA (renamed bpsA, for Bacillus pyrone synthase, on the basis of its function) and ypbQ, which are involved in the biosynthesis of aliphatic polyketides. In vivo analysis demonstrated that BpsA was a type III PKS catalyzing the synthesis of triketide pyrones from long-chain fatty acyl-coenzyme A (CoA) thioesters as starter substrates and malonyl-CoA as an extender substrate, and YpbQ was a methyltransferase acting on the triketide pyrones to yield alkylpyrone methyl ethers. YpbQ thus was named BpsB because of its functional relatedness to BpsA. In vitro analysis with histidine-tagged BpsA revealed that it used broad starter substrates and produced not only triketide pyrones but also tetraketide pyrones and alkylresorcinols. Although the aliphatic polyketides were expected to localize in the membrane and play some role in modulating the rigidity and properties of the membrane, no detectable phenotypic changes were observed for a B. subtilis mutant containing a whole deletion of the bpsA-bpsB operon.Type III polyketide synthases (PKSs), represented by a plant chalcone synthase (CHS), are the condensing enzymes that catalyze the synthesis of aromatic polyketides in plants, fungi, and bacteria (2). CHS catalyzes the decarboxylative condensation of p-coumaroyl-coenzyme A (p-coumaroyl-CoA), called a starter substrate, with three malonyl-CoAs, called extender substrates, and synthesizing a tetraketide intermediate. The synthesized tetraketide intermediate was cyclized and aromatized by CHS and resulted in naringenin chalcone. Like CHS, most of the type III PKSs catalyze the condensation of a starter substrate with several molecules of an extender substrate and cyclization. There are many type III PKSs that differ in these specificities.Until recently, type III PKSs were discovered only from plants. In 1999, the first bacterial type III PKS, RppA, was discovered. RppA catalyzes the condensation of five malonyl-CoAs to synthesize 1,3,6,8-tetrahydroxynaphthalene, which is a precursor of hexahydroxyperylenequinone melanin in the actinomycete Streptomyces griseus (4). Since then, the genome projects of various bacteria have revealed that type III PKSs are widely distributed in a variety of bacteria. For example, ArsB and ArsC, both of which are type III PKSs in Azotobacter vinelandii, catalyze the synthesis of alkylresorcinols and alkylpyrones, respectively, which are essential for encystment as the major lipids in the cyst membrane (5). In S. griseus, the srs operon consisting of srsA, srsB, and srsC is responsible for the synthesis of methylated phenolic lipids derived from alkylresorcinols and alkylpyrones (6). The function of each of the operon members is that SrsA is a type III PKS responsible for the synthesis of phenolic lipids alkylresorcinol and alkylpyrones, SrsB is a methyltransferase acting on the phenolic lipids to yield alkylresorcinol methyl ethers, and SrsC is a hydroxylase acting on the alkylresorcinol methyl ethers. The phenolic lipids synthesized by the Srs enzymes confer resistance to β-lactam antibiotics (6). Therefore, it is suggested that phenolic lipids play an important role as minor components in the biological membrane in various bacteria. In fact, srsAB- and srsABC-like operons are distributed widely in both gram-positive and -negative bacteria (see Fig. S1 in the supplemental material). However, most of these type III PKSs have not been characterized.Bacillus subtilis is one of the best-characterized gram-positive bacteria. BcsA, which stands for bacterial chalcone synthase, was annotated as a homologue of type III PKS in B. subtilis (3). As described in this paper, however, this annotation needs correction. We renamed the gene bpsA (for Bacillus pyrone synthase). Moreover, the functional unknown gene ypbQ is located next to bpsA. YpbQ, consisting of 168 amino acid residues, contained an isoprenylcysteine carboxyl methyltransferase (ICMT) domain of the ICMT family members, which are unique membrane proteins that are involved in the posttranslational modification of oncogenic proteins (23). Therefore, the bpsA and ypbQ genes were predicted to form an operon, just like srsA and srsB in the srs operon in S. griseus. We therefore named ypbQ, a thus-far functionally unknown gene, bpsB.In this study, we characterized the functions of BpsA and BpsB by in vivo and in vitro experiments. The in vivo experiments revealed that the overexpression of bpsA in B. subtilis led to the production of triketide pyrones, and the co-overexpression of bpsA and bpsB led to the production of triketide pyrone methyl ethers. The in vitro analysis showed that BpsA produced triketide pyrones and a small amount of tetraketide pyrones and tetraketide resorcinols from long-chain fatty acyl CoA thioesters as starter substrates and malonyl-CoA as an extender substrate. Therefore, BpsA is a type III PKS that is responsible for the synthesis of alkylpyrones, and BpsB is a methyltransferase that acts on the alkylpyrones to yield alkylpyrone methyl ethers. BpsB is the first enzyme found to methylate alkylpyrones. Furthermore, we attempted to analyze the biological function of the aliphatic polyketides by disrupting the bpsA and bpsB genes, but no distinct phenotypic changes were detected under laboratory conditions. 相似文献
9.
萜类化合物具有可观的商业价值,但生产过程复杂,产量低,利用微生物异源合成萜类化合物已成为热点。谷氨酸棒状杆菌内含合成萜类色素的途径,具有异源合成萜类化合物的天然优势和研究前景。首次对谷氨酸棒状杆菌合成萜类化合物进行了综述,从萜类合成途径、关键酶和全局调控机制三个方面进行了途经介绍。概述了谷氨酸棒状杆菌中单萜、倍半萜、四萜类化合物的异源合成,并对利用谷氨酸棒状杆菌高效合成萜类化合物所需解决的问题进行讨论,为谷氨酸棒状杆菌高效合成萜类化合物提供建议。 相似文献
10.
三萜化合物具有可观的药用价值和经济价值,但是目前的生产过程复杂、产量低,利用微生物异源合成三萜化合物已成为当前研究趋势,大肠杆菌作为常用萜类合成底盘细胞具有异源合成三萜化合物及其前体的天然优势和研究前景。对三萜化合物微生物异源合成研究进展进行了综述,从三萜化合物合成代谢途径、关键酶的特点及大肠杆菌三萜表达模块和底盘细胞适配三个方面对该途径进行了阐述和分析,针对实现大肠杆菌高效合成三萜类化合物所需要解决的基础问题进行讨论,为扩展大肠杆菌作为三萜化合物合成底盘细胞提供建议和前景分析。 相似文献
11.
DAVID RICHARD LINCICOME 《The Journal of eukaryotic microbiology》1959,6(4):310-315
SYNOPSIS. Two isolates ("A" and "B") of Trypanosoma lewisi from the same rat stock source were serially transferred in calorically-restricted mice supplemented daily with normal rat serum. The "A" strain was transferred consecutively through 300 mice over a period of more than 3 years and was voluntarily discontinued. The "B" strain died out spontaneously after 43 consecutive passages in mice. The developmental histories of these 2 isolates were analyzed and compared with respect to duration of the parasitemic period, interval to the next subsequent passage in mice, day of death of each host animal, proportion of host animals that died, intensity of parasitemia in mouse tail blood, interval required for development of the observed maximal parasitemia, and duration of maximal parasitemia.
"A" appeared to have become progressively adapted to the mouse as judged by a decrease in parasitemic period with successive transfer associated with a progressive increase in trypanosome population, and declines in the interval required for development of the observed maximal parasitemia and in the duration of this maximal response. There did not appear to be any correlation of the percentage of animals that died with any other factor. The "B" strain did not appear to have adapted itself to mice as judged by the foregoing criteria. 相似文献
"A" appeared to have become progressively adapted to the mouse as judged by a decrease in parasitemic period with successive transfer associated with a progressive increase in trypanosome population, and declines in the interval required for development of the observed maximal parasitemia and in the duration of this maximal response. There did not appear to be any correlation of the percentage of animals that died with any other factor. The "B" strain did not appear to have adapted itself to mice as judged by the foregoing criteria. 相似文献
12.
Genes for the Biosynthesis of the Fungal Polyketides Hypothemycin from Hypomyces subiculosus and Radicicol from Pochonia chlamydosporia 下载免费PDF全文
Christopher D. Reeves Zhihao Hu Ralph Reid James T. Kealey 《Applied microbiology》2008,74(16):5121-5129
Gene clusters for biosynthesis of the fungal polyketides hypothemycin and radicicol from Hypomyces subiculosus and Pochonia chlamydosporia, respectively, were sequenced. Both clusters encode a reducing polyketide synthase (PKS) and a nonreducing PKS like those in the zearalenone cluster of Gibberella zeae, plus enzymes with putative post-PKS functions. Introduction of an O-methyltransferase (OMT) knockout construct into H. subiculosus resulted in a strain with increased production of 4-O-desmethylhypothemycin, but because transformation of H. subiculosus was very difficult, we opted to characterize hypothemycin biosynthesis using heterologous gene expression. In vitro, the OMT could methylate various substrates lacking a 4-O-methyl group, and the flavin-dependent monooxygenase (FMO) could epoxidate substrates with a 1′,2′ double bond. The glutathione S-transferase catalyzed cis-trans isomerization of the 7′,8′ double bond of hypothemycin. Expression of both hypothemycin PKS genes (but neither gene alone) in yeast resulted in production of trans-7′,8′-dehydrozearalenol (DHZ). Adding expression of OMT, expression of FMO, and expression of cytochrome P450 to the strain resulted in methylation, 1′,2′-epoxidation, and hydroxylation of DHZ, respectively. The radicicol gene cluster encodes halogenase and cytochrome P450 homologues that are presumed to catalyze chlorination and epoxidation, respectively. Schemes for biosynthesis of hypothemycin and radicicol are proposed. The PKSs encoded by the two clusters described above and those encoded by the zearalenone cluster all synthesize different products, yet they have significant sequence identity. These PKSs may provide a useful system for probing the mechanisms of fungal PKS programming. 相似文献
13.
Masumi Izawa Takashi Kawasaki Yoichi Hayakawa 《Applied and environmental microbiology》2013,79(22):7110-7113
Thioviridamide is a unique peptide antibiotic containing five thioamide bonds from Streptomyces olivoviridis. Draft genome sequencing revealed a gene (the tvaA gene) encoding the thioviridamide precursor peptide. The thioviridamide biosynthesis gene cluster was identified by heterologous production of thioviridamide in Streptomyces lividans. 相似文献
14.
Jean Franco Castro Valeria Razmilic Juan Pablo Gomez-Escribano Barbara Andrews Juan A. Asenjo Mervyn J. Bibb 《Applied and environmental microbiology》2015,81(17):5820-5831
Streptomyces leeuwenhoekii, isolated from the hyperarid Atacama Desert, produces the new ansamycin-like compounds chaxamycins A to D, which possess potent antibacterial activity and moderate antiproliferative activity. We report the development of genetic tools to manipulate S. leeuwenhoekii and the identification and partial characterization of the 80.2-kb chaxamycin biosynthesis gene cluster, which was achieved by both mutational analysis in the natural producer and heterologous expression in Streptomyces coelicolor A3(2) strain M1152. Restoration of chaxamycin production in a nonproducing ΔcxmK mutant (cxmK encodes 3-amino-5-hydroxybenzoic acid [AHBA] synthase) was achieved by supplementing the growth medium with AHBA, suggesting that mutasynthesis may be a viable approach for the generation of novel chaxamycin derivatives. 相似文献
15.
Philipp Engel Maria I. Vizcaino Jason M. Crawford 《Applied and environmental microbiology》2015,81(4):1502-1512
Secondary metabolites produced by nonribosomal peptide synthetase (NRPS) or polyketide synthase (PKS) pathways are chemical mediators of microbial interactions in diverse environments. However, little is known about their distribution, evolution, and functional roles in bacterial symbionts associated with animals. A prominent example is colibactin, a largely unknown family of secondary metabolites produced by Escherichia coli via a hybrid NRPS-PKS biosynthetic pathway that inflicts DNA damage upon eukaryotic cells and contributes to colorectal cancer and tumor formation in the mammalian gut. Thus far, homologs of this pathway have only been found in closely related Enterobacteriaceae, while a divergent variant of this gene cluster was recently discovered in a marine alphaproteobacterial Pseudovibrio strain. Herein, we sequenced the genome of Frischella perrara PEB0191, a bacterial gut symbiont of honey bees and identified a homologous colibactin biosynthetic pathway related to those found in Enterobacteriaceae. We show that the colibactin genomic island (GI) has conserved gene synteny and biosynthetic module architecture across F. perrara, Enterobacteriaceae, and the Pseudovibrio strain. Comparative metabolomics analyses of F. perrara and E. coli further reveal that these two bacteria produce related colibactin pathway-dependent metabolites. Finally, we demonstrate that F. perrara, like E. coli, causes DNA damage in eukaryotic cells in vitro in a colibactin pathway-dependent manner. Together, these results support that divergent variants of the colibactin biosynthetic pathway are widely distributed among bacterial symbionts, producing related secondary metabolites and likely endowing its producer with functional capabilities important for diverse symbiotic associations. 相似文献
16.
Dylan C. Alexander Jessica Rock Xiaowei He Paul Brian Vivian Miao Richard H. Baltz 《Applied and environmental microbiology》2010,76(20):6877-6887
A54145 factors are calcium-dependent lipopeptide antibiotics produced by Streptomyces fradiae NRRL 18160. A54145 is structurally related to the clinically important daptomycin, and as such may be a useful scaffold for the development of a novel lipopeptide antibiotic. We developed methods to genetically manipulate S. fradiae by deletion mutagenesis and conjugal transfer of plasmids from Escherichia coli. Cloning the complete pathway on a bacterial artificial chromosome (BAC) vector and the construction of ectopic trans-complementation with plasmids utilizing the φC31 or φBT1 site-specific integration system allowed manipulation of A54145 biosynthesis. The BAC clone pDA2002 was shown to harbor the complete A54145 biosynthesis gene cluster by heterologous expression in Streptomyces ambofaciens and Streptomyces roseosporus strains in yields of >100 mg/liter. S. fradiae mutants defective in LptI methyltransferase function were constructed, and they produced only A54145 factors containing glutamic acid (Glu12), at the expense of factors containing 3-methyl-glutamic acid (3mGlu12). This provided a practical route to produce high levels of pure Glu12-containing lipopeptides. A suite of mutant strains and plasmids was created for combinatorial biosynthesis efforts focused on modifying the A54145 peptide backbone to generate a compound with daptomycin antibacterial activity and activity in Streptococcus pneumoniae pulmonary infections.The calcium-dependent cyclic acidic lipodepsipeptide antibiotics were first reported in the 1980s and 1990s (8). These include A21978C, produced by Streptomyces roseosporus (17, 18), calcium-dependent antibiotic (CDA), produced by Streptomyces coelicolor (26), and A54145, produced by Streptomyces fradiae NRRL 18160 (11, 12, 23). A21978C (Fig. (Fig.1)1) has been of particular interest because the N-decanoyl lipid tail derivative of the A21978C peptide is daptomycin (8), which is approved for the treatment of complicated skin and skin structure infections caused by Gram-positive bacteria (2) and for bacteremia and right-sided endocarditis caused by Staphylococcus aureus, including strains resistant to methicillin (MRSA) (21). Daptomycin lacks efficacy in community-acquired pneumonia (CAP) infections, even though it is very active in vitro against the predominant pathogen, Streptococcus pneumoniae (8, 43). In vitro studies have shown that daptomycin becomes sequestered in bovine pulmonary surfactant, most likely in the lipid component, and has decreased antibacterial potency against Gram-positive pathogens (46); this may be a significant factor contributing to the poor clinical efficacy in CAP. Attempts to improve the efficacy of daptomycin through chemical modifications of the lipid side chain or additions to the δ-amino group of ornithine (Orn6) (reviewed in reference 8), or by molecular engineering of peptide assembly (4, 13, 25, 37-39), have not generated a lead molecule with sufficient in vivo efficacy in a mouse pneumonia model for S. pneumoniae.Open in a separate windowFIG. 1.Structures of the lipopeptide antibiotics and NRPS protein subunit relationships. (Top) A54145 factors normally produced by S. fradiae. Note that factors A, A1, D, and F have Glu at position 12, and factors B, B1, C, and E have 3mGlu at position 12. (Bottom) A21978C factors normally produced by S. rosesosporus and daptomycin.A54145 factors share a number of features in common with daptomycin, but they differ at several amino acid positions (Fig. (Fig.1).1). The most biologically active A54145 factors against S. aureus contain four modified amino acids, l-hydroxy-Asn2 (hAsn2), sarcosine5 (Sar5), l-methoxy-Asp9 (mOAsp9), and l-3-methyl-Glu12 (3mGlu12) (14). During a standard fermentation, multiple A54145 factors are produced as the result of natural variation at position 12 (3mGlu or Glu), at position 13 (Ile or Val) and at the lipid tail attached to the peptide core. The A54145 factors A, A1, and D (collectively designated the A-core) have the identical peptide containing Glu12 and Ile13 but have different lipid tails, whereas factors B, B1, and E (the B-core) contain 3mGlu12 and Ile13. During fermentation of S. fradiae, factor A accumulates as a major component but plateaus early, and factor B1 accumulates preferentially late in the fermentation (11, 12). In studies at Eli Lilly and Company, it was shown that the B-core factors were slightly more potent antibiotics, but factor B was substantially more toxic than its Glu12-containing counterpart, factor A1 (14).During the development of molecular engineering approaches to modify daptomycin biosynthesis, the genes for A54145 lipopeptide biosynthesis (lpt) were cloned and sequenced to provide nonribosomal peptide synthetase (NRPS) modules and subunits to exchange with those of daptomycin (37). Since some of the A54145 A-core factors were shown to be much less inhibited by bovine surfactant than daptomycin (40), the A54145 A-core lipopeptides should be useful starting points for both chemical and molecular engineering modification studies. We initiated a program to develop molecular genetics methods, with plasmids and host cloning strains to facilitate molecular engineering of A54145 biosynthesis in S. fradiae.In this report, we describe the engineering of a bacterial artificial chromosome (BAC) containing the A54145 biosynthesis genes by using λ-Red-mediated recombination in Escherichia coli and expression of the A54145 biosynthesis pathway in heterologous streptomycetes. The development of S. fradiae strains deleted for multiple A54145 genes and the construction of plasmid vectors with conjugation and site-specific integration functions for ectopic expression of sets of A54145 biosynthesis genes in S. fradiae and combinatorial biosynthesis (40) are discussed. This genetic system was used to generate a strain with deletion of lptI, a gene that encodes a methyltransferase involved in the biosynthesis of 3mGlu12, and the mutant produced the desired A-core lipopeptides containing Glu12, which are important starting materials for medicinal chemistry approaches to produce novel lipopeptides. 相似文献
17.
外源基因pheA、aroG和tyrB在苯丙氨酸合成途径中的共表达 总被引:5,自引:0,他引:5
利用基因工程技术提高了短杆菌的苯丙氨酸合成途径中关键酶活性,大幅度地增加了生物合成苯丙氨酸的产时。首先采用聚合酶链反应(PCR)从大肠杆菌的氟代苯丙氨酸抗性变异菌株基因组中扩增到与苯丙氨酸合成相关的aroG,pheA和tyrB3个基因。aroG编码3-脱氧-2-阿拉伯庚酮糖-7-磷酸合成酶(DS),pheA编码双功能酶蛋白-分枝酸变位酶(CM)和预苯酸脱水酶(PD),tyrB编码转氨酶(AT)。设 相似文献
18.
19.
真菌芳香聚酮化合物是由真菌非还原聚酮合酶(NR-PKSs)催化形成的具有广泛生物活性的一类天然产物。大部分内源真菌菌株存在难培养、致病性或产率低等问题,从根本上限制了真菌芳香聚酮化合物的开发和应用。随着合成生物学和代谢工程的发展,很多具有生物活性的聚酮产物实现了在工业微生物(如酿酒酵母、构巢曲霉等)中的异源生产,相关研究逐渐成为热点。从合成途径解析与挖掘、底盘细胞的构建与改造等方面综述了近年来真菌芳香聚酮化合物的合成生物学研究进展,为未来真菌芳香聚酮化合物人工代谢途径的高效构建和实现工业化生产奠定基础。 相似文献
20.
真菌芳香聚酮化合物是由真菌非还原聚酮合酶(NR-PKSs)催化形成的具有广泛生物活性的一类天然产物。大部分内源真菌菌株存在难培养、致病性或产率低等问题,从根本上限制了真菌芳香聚酮化合物的开发和应用。随着合成生物学和代谢工程的发展,很多具有生物活性的聚酮产物实现了在工业微生物(如酿酒酵母、构巢曲霉等)中的异源生产,相关研究逐渐成为热点。从合成途径解析与挖掘、底盘细胞的构建与改造等方面综述了近年来真菌芳香聚酮化合物的合成生物学研究进展,为未来真菌芳香聚酮化合物人工代谢途径的高效构建和实现工业化生产奠定基础。 相似文献