首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Compared to knowledge about N and P processing in the aquatic continuum of lakes, wetlands and estuaries, knowledge concerning transport and cycling of Si is only fragmentary. Furthermore, Si research in estuaries has mainly been focused on subtidal benthic sediments and uptake and recycling by diatom communities. The biogeochemical cycling of Si in tidal wetlands, which can contain large amounts of Si, has thus far been neglected. We have conducted several whole ecosystem Si mass-balances on a freshwater marsh located in the Schelde estuary (6 tidal cycles, 2 with BSi included). Our measurements show that the freshwater marsh acts as an important source of dissolved Si to the main river (1–18% more export than import, on average 0.114 g m–2). This export is compensated by import of amorphous silica into the marsh (19–55% more import than export). The marsh was shown to act as silica recycler, resupplying biologically available dissolved Si to the estuarine ecosystem. Extrapolations show that during summer and spring months, when dissolved silica is depleted due to diatom growth, almost half of the total dissolved silica load in the main river channel could result from marsh recycling.  相似文献   

2.
大规模湿地生态恢复是一项耗资巨大、复杂的系统工程,需要以整个区域湿地结构和功能恢复作为基本目标,将时间和空间上分散的研究成果进行系统梳理,形成对区域湿地生态变化及其驱动因素的规律性认识。本研究以盐城盐沼湿地为案例,以1987年作为未干扰或干扰较少的状态,从结构-过程-功能耦合作用角度,确定区域湿地恢复的关键生态特征,包括:健康与动态潮间带湿地系统、碱蓬生态系统生产力与弹性、复杂景观镶嵌与相互作用、潮间带底栖动物丰富与鸟类觅食基地,以及濒危与关键水鸟种群保护。在此基础上,将围垦与土地利用、水管理、全球变化与海平面上升作为驱动区域湿地生态变化的三大外部因素;海岸侵蚀与沉积、区域水格局变化、地形地貌变化、湿地空间变化与连通性丧失,以及互花米草入侵等是影响湿地生态系统变化的内在压力因子;基于这些压力因子与湿地生态系统变化之间复杂作用关系分析,形成了外部驱动力-内在压力源-生态影响-生态特征之间联合作用下的区域湿地恢复概念生态模型。此模型以复杂因果关系研究为基础,直观展示了湿地恢复需要去除或减缓各种压力因子的一般路径,有利于指导大规模盐沼湿地恢复规划与实践。  相似文献   

3.
Accurately mapping, modeling, and managing the diversity of wetlands present in estuaries often relies on habitat classification systems that consistently identify differences in biotic structure or other ecosystem characteristics between classes. We used field data from four Oregon estuaries to test for differences in vegetation structure and edaphic characteristics among three tidal emergent marsh classes derived from National Wetlands Inventory (NWI) data: low estuarine marsh, high estuarine marsh, and tidal palustrine marsh. Independently of NWI class, we also evaluated the number and types of plant assemblages present and how edaphic variables, non-native plant cover, and plant species richness varied among them. Pore water salinity varied most strongly across marsh classes, with sediment carbon and nitrogen content, grain size and marsh surface elevation showing smaller differences. Cover of common vascular plant species differed between marsh classes and overall vegetation composition was somewhat distinct among marsh types. High estuarine marsh had the largest species pools. However, plot-level plant diversity was similar among marsh classes. Non-native species cover was highest in tidal palustrine and high estuarine marshes. The marshes in the study contained a large number of plant assemblages with most occurring across more than one marsh class. The more common assemblages occurred along a continuum of tidal elevation, soil salinity, and edaphic characteristics, with varying plant richness and non-native cover. Our data suggest that NWI classes are useful for differentiating several general features of Oregon tidal marsh structure, but that more detailed information on plant assemblages found within those wetland classes would allow more precise characterization of additional wetland features such as edaphic conditions and plant diversity.  相似文献   

4.
河口盐沼植物对大型底栖动物群落的影响   总被引:39,自引:4,他引:35  
袁兴中  陆健健  刘红 《生态学报》2002,22(3):326-333
通过对长江口崇明东滩盐沼海三棱燕草带大型底栖无脊椎动物进行取样调查,研究了不同盐沼底栖动物群落结构及其多样性特征,分析了盐沼植物群落特征与底栖动物群落的关系。研究发现。(1)沿着河口盐沼海拔梯度,从低位盐沼到高位盐沼,底栖动物群落结构及多样性具有明显的梯度变化;(2)盐沼植被与底栖动物群落有密切的关系,尤其是植株高度,地下部分生物量与底栖动物密度,Shannon-Weiner多样性指数,物种丰度的相关性最显著。(3)盐沼植被影响底栖动物群落,是由于植物的地下部分和地下部分结构导致盐沼生境结构复杂,增加了沉积物表层环境的结构异质性,使生境多样化,给底栖动物提供大量生活空间,(4)不同盐沼带海三陵蔗草群落的差异,提供了盐沼表层地貌的变化,这种变化及植物结构的复杂化,在这一些动物提供拓殖地的同时,也为底栖动物躲避捕食者提供了避护所;(5)盐沼植被可以改变口潮滩生境中的沉积环境,并通过消浪、缓流及调节有机质的输入动态和沉积作用而影响底栖动物群落的组成和结构。  相似文献   

5.
Functional responses of estuarine fish species to environmental perturbations such as wetland impoundment, changes in water quality, and sediment accretion are investigated. The study focuses on the feeding, growth and habitat use by California killifish (Fundulus parvipinnis), topsmelt (Antherinops affinis), and juvenile California halibut (Paralichthys californicus) in impacted coastal wetlands to provide an ecological basis for guidance on the management and restoration of these ecosystems. The ecology of California killifish, Fundulus parvipinnis, is closely tied with the marsh surface, which they access at high tide to feed and grow. Field estimates of food consumption show that killifish can increase their food intake by two-fold to five-fold by adding marsh surface foods to their diet. Bioenergetics modeling predicts that killifish can grow over an order of magnitude faster if they add intertidal marsh surfaces to their subtidal feeding areas. Tidal inlet closures and increased marsh surface elevations due to sediment accretion can restrict killifish access to the marsh surface, affecting its growth and fitness. An open tidal inlet and tidal creek networks that allow killifish to access the marsh at high tide must be incorporated into the restoration design. Topsmelt and California halibut are also adversely affected by tidal inlet closures. Food consumption rates of topsmelt are 50% lower when the tidal inlet is closed, compared to when the estuary is tidally-flushed. Tidal inlet closures inadvertently induce variations in water temperature and salinity and negatively affect growth of juvenile California halibut. Tidal creek networks which consist of channels and creeks of various orders are also important to halibut. Large halibut (>200 mm TL) inhabit deeper, high order channels for thermal refuge, while small halibut (<120 mm TL) are abundant in lower order channels where they can feed on small-sized prey which are typically less abundant in high order channels. Maintaining an open tidal inlet, implementing sediment management programs and designing coastal wetlands with tidal creek networks adjacent to intertidal salt marsh habitat (for fish access) are key elements that need to be considered during the planning and implementation of coastal wetland restoration projects.  相似文献   

6.
Sea Level Rise (SLR) caused by climate change is impacting coastal wetlands around the globe. Due to their distinctive biophysical characteristics and unique plant communities, freshwater tidal wetlands are expected to exhibit a different response to SLR as compared with the better studied salt marshes. In this study we employed the Sea Level Affecting Marshes Model (SLAMM), which simulates regional- or local-scale changes in tidal wetland habitats in response to SLR, and adapted it for application in a freshwater-dominated tidal river system, the Hudson River Estuary. Using regionally-specific estimated ranges of SLR and accretion rates, we produced simulations for a spectrum of possible future wetland distributions and quantified the projected wetland resilience, migration or loss in the HRE through the end of the 21st century. Projections of total wetland extent and migration were more strongly determined by the rate of SLR than the rate of accretion. Surprisingly, an increase in net tidal wetland area was projected under all scenarios, with newly-formed tidal wetlands expected to comprise at least 33% of the HRE’s wetland area by year 2100. Model simulations with high rates of SLR and/or low rates of accretion resulted in broad shifts in wetland composition with widespread conversion of high marsh habitat to low marsh, tidal flat or permanent inundation. Wetland expansion and resilience were not equally distributed through the estuary, with just three of 48 primary wetland areas encompassing >50% of projected new wetland by the year 2100. Our results open an avenue for improving predictive models of the response of freshwater tidal wetlands to sea level rise, and broadly inform the planning of conservation measures of this critical resource in the Hudson River Estuary.  相似文献   

7.
The robust growth of coastal communities in the southeastern United States is putting unique pressures on estuarine resources. Urbanization of estuarine systems may alter ecosystem function and thus affect the spatial scale and magnitude of nutrient concentrations and primary production temporally and spatially. We examined the spatial and temporal patterns of nutrient and chlorophyll a (Chl a) concentrations in two shallow well-mixed estuaries, (1) a developed estuary, Murrells Inlet (MI), South Carolina, and (2) a relatively pristine estuary, North Inlet (NI), South Carolina. The summer chlorophyll a maximum in MI was characteristically higher than in NI, which may be indicative of eutrophication. Correlations between salinity and inorganic nutrients (N and P) suggest that nutrient import from upland sources may be more pronounced in MI during stochastic precipitation events. Although inorganic nutrient concentrations between the estuaries were similar overall, during a wet period, inorganic N concentration in MI was increased to a greater extent than in NI, while only minimal increases in inorganic P were observed in both estuaries. Chlorophyll a concentrations decreased from the dry to wet period. Geographic Information System (GIS) plots of intensive spatial sampling in MI indicated spatial gradients of nutrient concentrations within this estuary that appeared to be consistent over time. These observations were investigated in more detail using regression analyses to examine the influences of coastal dilution and nutrient sources on relationships between water quality constituents. Results indicate the importance of stochastic rain events in affecting the linkages of estuarine processes to upland runoff in the urbanized estuary, MI.  相似文献   

8.
Understanding the dynamics of fine sediment transport across the upper intertidal zone is critical in managing the erosion and accretion of intertidal areas, and in managed realignment/estuarine habitat recreation strategies. This paper examines the transfer of sediments between salt marsh and mudflat environments in two contrasting macrotidal estuaries: the Seine (France) and the Medway (UK), using data collected during two joint field seasons undertaken by the Anglo-French RIMEW project (Rives-Manche Estuary Watch). High-resolution ADCP, Altimeter, OBS and ASM measurements from mudflat and marsh surface environments have been combined with sediment trap data to examine short-term sediment transport processes under spring tide and storm flow conditions. In addition, the longer-term accumulation of sediment in each salt marsh system has been examined via radiometric dating of sediment cores. In the Seine, rapid sediment accumulation and expansion of salt marsh areas, and subsequent loss of open intertidal mudflats, is a major problem, and the data collected here indicate a distinct net landward flux of sediments into the marsh interior. Suspended sediment fluxes are much higher than in the Medway estuary (averaging 0.09 g/m3/s), and vertical accumulation rates at the salt marsh/mudflat boundary exceed 3 cm/y. Suspended sediment data collected during storm surge conditions indicate that significant in-wash of fine sediments into the marsh interior can occur during (and following) these high-magnitude events. In contrast to the Seine, the Medway is undergoing erosion and general loss of salt marsh areas. Suspended sediment fluxes are of the order of 0.03 g/m3/s, and the marsh system here has much lower rates of vertical accretion (sediment accumulation rates are ca. 4 mm/y). Current velocity data for the Medway site indicate higher velocities on the ebb tide than occur on the flood tide, which may be sufficient to remobilise sediments deposited on the previous tide and so force net removal of material from the marsh.  相似文献   

9.
Two explicit landscape simulation models were used to investigate habitat shifts in coastal Louisiana due to varying river forcing and sea level rise scenarios. Wetland conversion to open water and yearly shifts of marsh habitats in two contrasting estuarine regions were examined; the Atchafalaya delta which is a prograding delta area with strong riverine input, and the Barataria Basin is a regressive delta with high wetland loss which is isolated from riverine input. The models linked several modules dynamically across spatial and temporal scales. Both models consisted of a vertically integrated hydrodynamic model coupled with process-based biological modules of above and below ground primary productivity and soil dynamics. The models explored future effects of possible sea level rise and river diversion plans for 30 and 70-year projections starting in 1988. Results showed that increased river forcing had large land preservation impacts, and indicated that healthy functioning of the Mississippi Delta depends largely on inputs of freshwater, nutrients, and sediments in river water. These types of models are useful for research and as management tools for predicting the effects of regional impacts on structural landscape level changes.  相似文献   

10.
We examined the areal extent and changes in thefreshwater tidal wetlands along a 56.4 km and a80.6 km reach of the Delaware River between Chester,Pa. and Trenton, N.J. Most of the remainingfreshwater tidal wetlands of the Delaware River arefound along tributaries which drain the coastal plainof New Jersey. We identified polygons of marsh, mud,and open water using color infrared aerial photographyobtained at low tide in 1977 and 1978. Marsh polygonswere classified into either high marsh or low marshaccording to the dominant visual signature of thevegetation of each polygon, and placed in a geographicinformation system for subsequent analysis. The totalarea of marsh within the two reaches totaled 1416 ha,of which 71% was high marsh and 29% low marsh. Asite re-examination in 1997 and 1998 of marsh arearepresenting 32% of the total marsh area revealedthat, while the total area of wetland appears to haveremained constant, high marsh vegetation along thelower reaches of the tributaries has been replaced bylow marsh vegetation. The fraction of the sample thatwas low marsh increased from 9% in 1977–78 to 34% in1997/8.  相似文献   

11.
Nitrous oxide is a powerful, long‐lived greenhouse gas, but we know little about the role of estuarine areas in the global N2O budget. This review summarizes 56 studies of N2O fluxes and associated biogeochemical controlling factors in estuarine open waters, salt marshes, mangroves, and intertidal sediments. The majority of in situ N2O production occurs as a result of sediment denitrification, although the water column contributes N2O through nitrification in suspended particles. The most important factors controlling N2O fluxes seem to be dissolved inorganic nitrogen (DIN) and oxygen availability, which in turn are affected by tidal cycles, groundwater inputs, and macrophyte density. The heterogeneity of coastal environments leads to a high variability in observations, but on average estuarine open water, intertidal and vegetated environments are sites of a small positive N2O flux to the atmosphere (range 0.15–0.91; median 0.31; Tg N2O‐N yr?1). Global changes in macrophyte distribution and anthropogenic nitrogen loading are expected to increase N2O emissions from estuaries. We estimate that a doubling of current median NO3? concentrations would increase the global estuary water–air N2O flux by about 0.45 Tg N2O‐N yr?1 or about 190%. A loss of 50% of mangrove habitat, being converted to unvegetated intertidal area, would result in a net decrease in N2O emissions of 0.002 Tg N2O‐N yr?1. In contrast, conversion of 50% of salt marsh to unvegetated area would result in a net increase of 0.001 Tg N2O‐N yr?1. Decreased oxygen concentrations may inhibit production of N2O by nitrification; however, sediment denitrification and the associated ratio of N2O:N2 is expected to increase.  相似文献   

12.
Changes in forest cover and draining of wetlands for agriculture appear to have caused changes in the aquatic ecosystem of the River Kyrönjoki by the 16th century. In the 19th century, a decline of salmonid fish populations was widely observed as a further sign of degradation. During the latter half of the present century intensified use of naturally acidic soils has resulted in increased acidic run-off. Deterioration of water quality has extended to the estuary, where it has caused large fish-kills and affected the reproductive success of coastal species. Degradation of the coastal ecosystem, first observed in the decline of salmonids and later as a more general decline of other coastal fish populations, can be linked to spatially restricted events. The loss of key river and estuarine habitats exerted an effect over the reproduction and abundance of species migrating throughout the system. This effect contributed to observed temporal and spatial discontinuities in the degradation history. Monitoring changes in critical habitats may prove to be an early indicator of changes in the health of estuarine and coastal aquatic ecosystems.  相似文献   

13.
Flux calculations demonstrate that many estuaries are natural filters for trace metals. Yet, the underlying processes are poorly investigated. In the present study, it was hypothesized that intertidal marshes contribute significantly to the contaminant filter function of estuaries. Trace metal concentrations and sediment characteristics were measured along a transect from the subtidal, over an intertidal flat and marsh to a restored marsh with controlled reduced tide. Metal concentrations in the intertidal and restored marsh were found to be a factor two to five higher than values in the subtidal and intertidal flat sediments. High metal concentrations and high accretion rates indicate a high metal accumulation capacity of the intertidal marshes. Overbank sedimentation in the tidal marshes of the entire estuary was calculated to remove 25% to 50% of the riverine metal influx, even though marshes comprise less than 8% of the total surface of the estuary. In addition, the large-scale implementation of planned tidal marsh restoration projects was estimated to almost double the trace metal storage capacity of the present natural tidal marshes in the estuary.  相似文献   

14.
The loss of feeding areas may pose a threat to many wintering waders because increased competition arising from reduced foraging space may force birds either to emigrate or to die. This has been demonstrated to occur in northwest European estuaries, but virtually no studies have been performed in the estuaries of southern Europe, where the loss of supratidal habitats (salines and saltmarshes), rather than intertidal habitats, are currently the main threat to waders’ habitats. If these habitats are lost, waders may be forced to move to the intertidal mudflats, perhaps increasing competition between individuals and ultimately leading to starvation or emigration. We tested this hypothesis in the Mondego estuary, a small estuary on Portugal’s west coast, which is presently under heavy human pressure. We used indirect methods to test for the occurrence of both components of intra-specific competition: interference and prey depletion. We found no evidence that either interference or depletion competition was occurring at present, either on the mudflats or in the salines. Overall, the results suggest that the intertidal mudflats may still be able to accommodate birds displaced from the destroyed supratidal salines, but modelling is required to predict the effect that the combined loss of feeding area and foraging time that this would entail would have on their fitness, and thus numbers.  相似文献   

15.
基于遥感的湿地景观格局季相分析   总被引:1,自引:0,他引:1  
谢静  王宗明  任春颖 《生态学报》2014,34(24):7149-7157
以中国东北地区三江平原北部为研究区域,利用2012年多季相遥感影像作为数据源,结合野外调查数据,应用面向对象的分类方法,根据影像的物候、时相等特征,提取不同月份的湿地信息,进行景观格局季相分析。结果表明:(1)研究区湿地面积、类型格局在同一年不同季节不同月份会有不同幅度的变化,总体呈现缓增骤减的态势。湿地主要分布在低洼地区,主要湿地类型为草本沼泽,其次为河流,其他湿地占总面积比例较小。(2)研究区各阶段湿地都有转化,主要发生在湿地和非湿地之间,多数表现在草本沼泽和草地之间的转化。(3)湿地分布和湿地转化面积主要集中在低海拔区域和低坡度区域,其中海拔100 m和坡度5°以下范围内的湿地分布面积和湿地转化面积占湿地总面积及湿地转化面积的绝大部分。(4)年内季节性湿地转化与降水、温度和湿地植被物候关系密切。  相似文献   

16.
王栋  邹维娜  杨华蕾  李阳  刘君恬  田丰  李秀珍  袁琳 《生态学报》2023,43(20):8465-8475
盐沼湿地在缓解温室效应和应对气候变化方面发挥着重要作用,是重要的"蓝碳"生态系统。储存在盐沼湿地土壤中的有机碳(SOC)是盐沼湿地碳汇的主要成分,但受植被覆盖、土壤环境等生境要素变化的显著影响。以长江口崇明岛周缘的盐沼湿地为典型研究区域,分别测量了环岛不同样线和不同植被区SOC含量及环境因子(盐度、容重、碳氮比(C/N)等),在此基础上分析了盐沼湿地SOC储量的空间分布格局及其影响因素。结果表明:(1)崇明岛周缘盐沼湿地SOC含量和储量均存在明显的空间异质性,北侧的土壤SOC含量高于南侧,东北侧的SOC储量高于西南侧区域;(2)垂直各层上,SOC含量呈现随土层深度增加逐渐减少的趋势,表层0-50 cm深度的单位面积SOC储量大于50-100 cm深度;(3)植物类型和土壤理化因素(土壤C/N、土壤盐度、土壤容重等)在一定程度上影响了崇明岛周缘盐沼湿地土壤碳储量的空间格局。研究表明,受河口区植被和土壤理化性质等多种因素空间异质性的共同影响,盐沼湿地土壤SOC储量格局也易呈现空间差异,因此在开展盐沼湿地储碳机制研究、科学评估盐沼湿地储碳能力及实现盐沼"蓝碳"固碳增汇时应充分考虑区域间的环境和生态的空间异质性特征。  相似文献   

17.
Summary

The flux of dissolved inorganic nutrients (NH4-N, NO2-N, NO3-N, SRP) and suspended particulates (particulate organic carbon POC, and particulate inorganic carbon PIC) was measured across the mouth of a small creek draining a portion of the intertidal Spartina salt marsh in the Swartkops estuary. Direct measurements of constituent concentration, the volume of water flowing into and out of the creek basin at discrete time intervals, and tidal height were made over full spring tide cycles on a two-weekly basis during a 12 month study period. Results show that the marsh acts as a sink for NH4-N, NO2-N, and NO3-N on an annual basis, but exports soluble reactive phosphate to the contiguous estuarine waters. The marsh also imports nominal amounts of suspended POC and PIC (<1.5 mm in size), but apparently exports larger detrital particles (>1.5 mm) on ebb tides to the estuary. It is concluded that the marsh retains and utilizes most of its own production and functions virtually as an independent ecosystem.  相似文献   

18.
Ross E. Boucek  Jennifer S. Rehage 《Oikos》2013,122(10):1453-1464
Pulse subsidies account for a substantial proportion of resource availability in many systems, having persistent and cascading effects on consumer population dynamics, and energy flow within and across ecosystem boundaries. Although the importance of pulsed resource subsidies is well‐established, the mechanisms that regulate resource fluxes across ecosystem boundaries are not well understood. The aim of our study was to determine the extent that marsh consumers regulated a marsh prey subsidy to estuarine consumers in the oligohaline reaches of an Everglades estuary. We characterized a marsh pulsed subsidy of cyprinodontoid, invertebrate and sunfish prey that move into the upper estuary from adjacent drying marshes. In response to the prey pulse, we examined the numerical, fitness and dietary responses of three focal consumers in the upper estuary; two marsh species (largemouth bass and bowfin) that accompanied the subsidy as a result of marsh drying, and one estuarine consumer (snook). At the onset of marsh drying and the prey subsidy, estuarine consumers switched diets to consume the larger marsh prey (sunfishes), while bass and bowfin maintained similar diets (cyprinodontoids and invertebrates respectively) than pre and post subsidy. From the consumption of this subsidy, bass (marsh species) and snook (estuarine species) exhibited fitness gains while bowfin did not. Although both marsh and estuarine consumers benefitted from the subsidy, we found evidence that freshwater consumers shunted some of the subsidy away from snook. Of the prey sampled in consumer stomachs, 41% of marsh prey biomass was eaten by marsh consumers, while 59% was consumed by the estuarine consumer. We conclude that the amount of the marsh prey available to estuarine consumers may be greater in the absence of marsh consumers, thus the magnitude of the prey subsidy could depend on the dynamics of the marsh consumers from donor communities.  相似文献   

19.
Algae have important functional roles in estuarine wetlands. We quantified differences in macroalgal abundance, composition and diversity, and sediment chl a and pheophytin a (pheo a) among three National Wetlands Inventory (NWI) emergent marsh classes in four Oregon estuaries spanning a range of riverine to marine dominance. We also assessed the strength of macroalgal‐vascular plant associations and the degree to which environmental variables correlated with algal community metrics in marsh and woody wetlands. The frequency of occurrence of most macroalgal genera, total benthic macroalgal cover, macroalgal diversity, and sediment chl a content were several times higher in low emergent marsh than in high marsh or palustrine tidal marsh. Conversely, pheo a: chl a ratios were highest in high and palustrine marsh. Attached macroalgae (Fucus and Vaucheria) were strongly associated with plants common at lower tidal elevations such as Sarcocornia perennis and Jaumea carnosa; Ulva (an unattached alga) was not strongly associated with any common low marsh plants. In structural equation models, intertidal elevation was the most influential predictor of macroalgal cover and richness and chl a; light availability and soil salinity played secondary roles. Although common taxa such as Ulva spp. occurred across a broad range of salinities, wetlands with oligohaline soils (salinity < 5) had the lowest macroalgal diversity and lower sediment chl a. These types of baseline data on algal distributions are critical for evaluating the structural and functional impacts of future changes to coastal estuaries including sea‐level rise (SLR), altered salinity dynamics, and habitat modification.  相似文献   

20.
Zonation of intertidal macrobenthos in the estuaries of Schelde and Ems   总被引:5,自引:0,他引:5  
Based on data, collected in 1980–1990, the intertidal benthic macrofauna of the Schelde and Ems estuaries was compared. The spatial occurrence of the benthic macrofauna along the salinity gradient, including the freshwater tidal area was emphasized. Both estuaries appeared to have a very similar species composition, especially at genus level. The higher number of species observed in the Schelde estuary was probably due to a greater habitat diversity. In both estuaries species diversity decreased with distance upstream. The total density did not vary along the estuarine gradient, whereas biomass is highest in the polyhaline zone.In both estuaries distinct intertidal benthic communities were observed along the salinity gradient: a marine community in the polyhaline zone, a brackish community in the mesohaline zone, and a third community in the oligohaline and freshwater tidal zones of the estuary. These three communities were very similar between both estuaries. Their main characteristics were discussed together with the occurrence and distribution of the dominant species.For the Schelde estuary and to a lesser extent also for the Ems estuary, there was evidence that anthropogenic stress had a negative effect on the intertidal macrobenthic communities of the oligohaline/freshwater tidal zone. Only Oligochaeta were dominating, whereas the very euryhaline and/or true limnetic species were missing. In the mesohaline zone, the Schelde estuary was dominated by large numbers of short-living, opportunistic species, whereas in the Ems estuary relatively more stable macrobenthic communities were observed. A comparison with some other European estuaries showed in general similar trends as those observed for the Schelde and Ems estuaries.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号