首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The enantiocatalytic performance of immobilized lipase in an emulsion membrane reactor using stable emulsion prepared by membrane emulsification technology was studied. The production of optical pure (S)-naproxen from racemic naproxen methyl ester was used as a model reaction system. The O/W emulsion, containing the substrate in the organic phase, was fed to the enzyme membrane reactor from shell-to-lumen. The enzyme was immobilized in the sponge layer (shell side) of capillary polyamide membrane with 50 kDa cut-off. The aqueous phase was able to permeate through the membrane while the microemulsion was retained by the thin selective layer. Therefore, the substrate was kept in the enzyme-loaded membrane while the water-soluble product was continuously removed from the reaction site. The results show that lipase maintained stable activity during the entire operation time (more than 250 h), showing an enantiomeric excess (96 +/- 2%) comparable to the free enzyme (98 +/- 1%) and much higher compared to similar lipase-loaded membrane reactors used in two-separate phase systems (90%). The results demonstrate that immobilized enzymes can achieve high stability as well as high catalytic activity and enantioselectivity.  相似文献   

2.
The objective of this study was to develop a continuous hydrolysis process for the enzymatic saccharification of liquefied corn starch using a membrane reactor. A residence time distribution study confirmed that the membrane reactor could be modeled as a simple continuous stirred tank reactor (CSTR). Kinetic studies indicated that the continuous reactor operated in the first-order region with respect to substrate concentration at substrate concentrations greater than 200 g/L. At a residence time of 1 h and an enzyme concentration of 1 g/L, the maximum reaction velocity (V(m)) was 3.86 g glucose/L min and the apparent Michaelis constant (K(m) (')) was 562 g/L. The K(m) (') value for the continuous reactor was 2-7 times greater than that obtained in a batch reactor.Kinetic data were fit to a model based on the Michaelis-Menten rate expression and the design equation for a CSTR. Application of the model at low reactor space times was successful. At space times of 6 min or less, the model predicted the reactor's performance reasonably well. Additional work on the detection and quantitation of reversion products formed by glucoamylase is required. Isolation, detection, and quantitation of reversion products by HPLC was difficult. Detailed analysis on the formation of these reversion products could lead to better reactor designs in the future.  相似文献   

3.
Two fixed-bed loop reactors were used to evaluate singleand separated-phase anaerobic treatments of a high strength waste-water from ethanol fermentation. The one-phase system consisted of an anaerobic fixed-bed loop reactor containing both acidogenic as well as methanogenic populations allowing a complete conversion of the carbon source into gaseous end products and biomass.The two-phase system consisted of a second fixed-bed loop reactor operated as a methanogenic unit, which was proceeded by a CSTR for acidification, both connected in series allowing sequential acidogenesis and methanogenesis of the organic components. The reactors were operated under steady state and variable process conditions. By gradually increasing the feed supply in both systems, maximum turnover of COD was determined.The separated-phase system consistently gave a better quality effluent with lower suspended solids and total COD. Maximum loading rates and COD elimination of the methanogenic phase of the two-phase system was over two times higher than that of the one-phase system. Process stability was also higher.On overloading the methane reactor of the two phase system accumulation of different fatty acids within the reactor was observed. Hydrogen concentration in the biogas can be used as a reliable indicator for system overloadings. At least, continuous online monitoring of hydrogen in the methanogenic reactor gas should provide a convenient alternative to other analyses for process control.  相似文献   

4.
The formation of pyruvaldehyde from triose sugars was catalyzedby poly-L-lysine contained in a small dialyzer with a 100molecular weight cut off (100 MWCO) suspended in a much largertriose substrate reservoir at pH 5.5 and 40 °C. Thepolylysine confined in the dialyzer functioned as a catalyticflow reactor that constantly brought in triose from thesubstrate reservoir by diffusion to offset the drop in trioseconcentration within the reactor caused by its conversion topyruvaldehyde. The catalytic polylysine solution (400 mM, 0.35mL) within the dialyzer generated pyruvaldehyde with a syntheticintensity (rate/volume) that was 3400 times greater than that ofthe triose substrate solution (12 mM, 120 mL) outside thedialyzer. Under the given conditions the final yield ofpyruvaldehyde was greater than twice the weight of thepolylysine catalyst. During the reaction the polylysine catalystwas poisoned presumably by reaction of its amino groups withaldehyde reactants and products. Similar results were obtainedusing a dialyzer with a 500 MWCO. The dialyzer method ofcatalyst containment was selected because it provides a simpleand easily manipulated experimental system forstudying the dynamics and evolutionary development of confinedautocatalytic processes related to the origin of life underanaerobic conditions.  相似文献   

5.
Packed bed hollow fiber membrane reactors were used to carry out organic phase biocatalysis at constant water activity. The performance of the device was tested by carrying out the esterification of dodecanol and decanoic acid in hexane. Lipase from Candida rugosa, immobilized on microporous polypropylene and packed in the shell space of the reactor, was used to catalyze the reaction. In situ water activity control was accomplished by pumping appropriate saturated salt solutions through the microporous hollow fiber polypropylene membranes. Water generated by reaction in the organic phase, pumped continuously through the shell of the reactor, was transferred into the bulk of the aqueous phase under the water activity gradient. The reactor performance was found to be strongly dependent on the controlling water activity. By carefully selecting this control activity it was found possible to obtain complete esterification. The water activity of the organic phase could be maintained very close to that of the saturated salt solution used. The reactor could be operated in the continuous mode for 100 h without any degradation in its performance. (c) 1996 John Wiley & Sons, Inc.  相似文献   

6.
A wide range of enzymes and whole microbial cells will act as catalysts in reaction mixtures that contain 2 or more phases, one of which is an organic liquid (either a reactant or including water-immiscible organic solvents). These "biphasic" systems have a variety of structures, knowledge of which aids predictions about biocatalyst activity and stability. There is often a dilute aqueous solution phase (containing the biocatalyst), which may be emulsified with the organic phase, or "trapped" within catalyst particles; sometimes however there may only be traces of water adsorbed to the enzyme or cells. These reaction systems offer several advantages for industrial applications, notably the higher solubilities of many reactants of interest, and the ability of readily available hydrolytic enzymes to catalyse syntheses. The most non-polar organic liquids are least likely to inactivate biocatalysts, though many do remain active with relatively polar solvents. Modification of the biocatalyst may stabilise against inactivation, especially where this is due to direct contact with the phase interface. The mass transfer processes required in these systems remain poorly understood, particularly because the interfacial area is often unknown. Attractive continuous reactors may be operated using a packed bed of catalyst with a trapped aqueous phase.  相似文献   

7.
The potentials of using organic reaction media in biotechnological conversions have already been demonstrated in several experimental studies. Examples of possible advantages are: possibility of higher substrate and/or product concentrations, favorable shift of reaction equilibria, reduced substrate and/or product inhibition, and facilitated product recovery. Especially water/organic solvent two-phase systems seem to possess several of these advantages. The solvent type will highly affect kinetics and stability of the (immobilized) biocatalyst, solubility and partitioning of reactants/products, and product recovery. Therefore the solvent choice can have a large influence on the economics of the two-liquid-phase biocatalytic process. Immobilization of the biocatalyst may be useful to provide protection against denaturating solvent effects. The polarity of the employed support material will also be decisive for the partitioning of substrates and products among the various phases.

A classification of biphasic systems, which is based on the possible types of theoretical concentration profiles and aqueous phase configurations, is discussed. Reversed micelles and aqueous two-liquid-phase systems can be considered as special cases. The design of two-liquid-phase bioreactors is dependent on the state of the biocatalyst, free or immobilized, and on the necessity for emulsification of one of the two liquid phases in the other. Many mass-transfer resistances, e.g. across the liquid/liquid interface, in the aqueous phase, across the liquid/solid interface, and in the biocatalyst phase, can limit the overall reaction rate. The epoxidation of alkenes in water/solvent two-phase systems is discussed to give an example of the scope of biotechnological processes that is obtained by using organic media. Finally, a design calculation of a packed-bed organic-liquid-phasel immobilized-biocatalyst reactor for the epoxidation of propene is given to illustrate some of the above aspects.  相似文献   


8.
Polysorbate 20 (PS‐20) is often included in the formulation for therapeutic proteins to reduce protein aggregation and surface adsorption. During the production process of therapeutic proteins, various membrane filters are used to filter product pools containing PS‐20. The purpose of this study is to quantify the effects of these membrane filtration processes on the concentration and composition of PS‐20. A quantitative understanding of this process provides the knowledge base for better controlling the consistency of formulation excipients in drug products. PS‐20 solutions (without protein) were filtered through either 0.2 µm sterilizing filters or membrane filters with 30 kDa MWCO. The concentration of PS‐20 was measured by a mixed‐mode chromatography method and a nuclear magnetic resonance spectroscopy (NMR) assay. The composition of PS‐20 was characterized by 1H‐NMR and a reverse‐phase chromatography method. Non‐specific adsorption of PS‐20 on both the sterilizing filter and 30 kDa MWCO membrane filter was quantified. Composition of PS‐20 was altered after 30 kDa MWCO membrane filtration, possibly because the different interactions between heterogeneous PS‐20 components and the 30 kDa MWCO membrane were not uniform. As a result, the retentate after the 30 kDa MWCO membrane filtration step contains no POE sorbitan and increased amount of POE sorbitan di‐esters and tri‐esters. © 2013 American Institute of Chemical Engineers Biotechnol. Prog., 29:1503–1511, 2013  相似文献   

9.
The screening of catalysts, substrates or conditions in the early stages of bioprocess development requires an enormous number of experiments and is a tedious, expensive and time-consuming task. Currently available screening systems can only be operated in batch or fed-batch mode, which can lead to severe misinterpretations of screening results. For example, catalysts that are inhibited by substrates or accumulating products will be excluded from further investigations in the early stages of process development despite the fact that they might be superior to other candidates in a different operational mode. Important and advantageous properties such as turnover stability can also be overshadowed by product inhibition. The aim of this study was to develop a novel screening system that enables continuous feeding of substrates and continuous removal of products. A prototype based on the membrane reactor concept was designed and operated for a model reaction, the hydrolysis of cellulose.  相似文献   

10.
11.
12.
The presence of recalcitrant compounds in both wastewaters and soils is an important environmental problem. Oxidative enzymes from white-rot fungi have been successfully utilised for the in vitro degradation of xenobiotics, such as the azo dye Orange II and the polycyclic aromatic hydrocarbon anthracene (compounds with high and low solubilities, respectively). Two different reactor configurations are proposed: (i) an enzymatic membrane reactor for the treatment of soluble compounds, consisting of a continuous stirred tank reactor coupled to an ultrafiltration membrane to facilitate the retention and recycling of enzyme; and (ii) a two-phase enzymatic reactor for the degradation of poorly soluble compounds, consisting of an immiscible solvent, which contains the contaminant at high concentrations, and the aqueous phase containing the enzyme and cofactors involved in the catalytic cycle. In this paper, factors affecting the design and operation of both systems are discussed, and experimental results concerning the efficiency and stability of the processes are presented.  相似文献   

13.
The presence of recalcitrant compounds in both wastewaters and soils is an important environmental problem. Oxidative enzymes from white-rot fungi have been successfully utilised for the in vitro degradation of xenobiotics, such as the azo dye Orange II and the polycyclic aromatic hydrocarbon anthracene (compounds with high and low solubilities, respectively). Two different reactor configurations are proposed: (i) an enzymatic membrane reactor for the treatment of soluble compounds, consisting of a continuous stirred tank reactor coupled to an ultrafiltration membrane to facilitate the retention and recycling of enzyme; and (ii) a two-phase enzymatic reactor for the degradation of poorly soluble compounds, consisting of an immiscible solvent, which contains the contaminant at high concentrations, and the aqueous phase containing the enzyme and cofactors involved in the catalytic cycle. In this paper, factors affecting the design and operation of both systems are discussed, and experimental results concerning the efficiency and stability of the processes are presented.  相似文献   

14.
Tryptophan synthesis was investigated in a two-phase system employing an organic liquid membrane. A diffusion cell was constructed to study the transport of the various components of the reaction through an organic layer of cyclohexane. The organic phase was supported by two polymeric membranes, and Aliquat-336 was used as the anion exchanger. A differential in pH was maintained between the aqueous phases to facilitate extraction of the product from the reaction phase. A mathematical model was developed to estimate effective diffusivities and predict the sensitivity of the system to changes in the partition coefficients and liquid membrane thickness. The use of liquid membrane emulsion-type reactors is discussed.  相似文献   

15.
A sequencing batch membrane biofilm reactor (SBMBfR) was developed for simultaneous carbon, nitrogen, and phosphorus removal from wastewater. This reactor was composed of two functional parts: (1) a gas-permeable membrane on which a nitrifying biofilm formed and (2) a bulk solution in which bacteria, mainly denitrifying polyphosphate-accumulating organisms (DNPAOs), were suspended. The reactor was operated sequentially under anaerobic condition and then under membrane aeration condition in one cycle. During the anaerobic period, organic carbon was consumed by DNPAOs; this was accompanied by phosphate release. During the subsequent membrane aeration period, nitrifying bacteria utilized oxygen supplied directly to them from the inside of the membrane. Consequently, the nitrite and nitrate products diffused into the bulk solution, where they were used by DNPAOs as electron acceptors for phosphate uptake. In a long-term sequencing batch operation, the mean removal efficiencies of total organic carbon (TOC), total nitrogen (T-N), and total phosphorus (T-P) under steady-state condition were 99%, 96%, and 90%, respectively. In addition, fluorescence in situ hybridization (FISH) clearly demonstrated the difference in bacterial community structure between the membrane biofilm and the suspended sludge: ammonia-oxidizing bacteria belonging to the Nitrosomonas group were dominant in the region adjacent to the membrane throughout the operation, and the occupation ratio of the well-known polyphosphate-accumulating organism (PAO) Candidatus "Accumulibacter phosphates" in the suspended sludge gradually increased to a maximum of 37%.  相似文献   

16.
The technical aspects of the membrane extraction of a compound either from aqueous phase into apolar organic solvent phase or from the apolar phase to the aqueous one and the enzymatic conversion of the solute in a multiphase enzyme membrane reactor are considered. The application possibilities, the selection aspects of membrane material as well as the solvent phase, the water content and its control, the method of the enzyme immobilisation and the operation of the extraction/reaction system are discussed.  相似文献   

17.
In recent years, environmental problems caused by the use of fossil fuels and the depletion of petroleum reserves have driven the world to adopt biodiesel as an alternative energy source to replace conventional petroleum-derived fuels because of biodiesel's clean and renewable nature. Biodiesel is conventionally produced in homogeneous, heterogeneous, and enzymatic catalysed processes, as well as by supercritical technology. All of these processes have their own limitations, such as wastewater generation and high energy consumption. In this context, the membrane reactor appears to be the perfect candidate to produce biodiesel because of its ability to overcome the limitations encountered by conventional production methods. Thus, the aim of this paper is to review the production of biodiesel with a membrane reactor by examining the fundamental concepts of the membrane reactor, its operating principles and the combination of membrane and catalyst in the catalytic membrane. In addition, the potential of functionalised carbon nanotubes to serve as catalysts while being incorporated into the membrane for transesterification is discussed. Furthermore, this paper will also discuss the effects of process parameters for transesterification in a membrane reactor and the advantages offered by membrane reactors for biodiesel production. This discussion is followed by some limitations faced in membrane technology. Nevertheless, based on the findings presented in this review, it is clear that the membrane reactor has the potential to be a breakthrough technology for the biodiesel industry.  相似文献   

18.
This paper reports the results of a series of experiments designed to test conditions that would permit NaCl to diffuse through 100 Da molecular weight cut-off (MWCO) and 1,000 Da MWCO membranes. For the 100 Da MWCO membrane, the membrane becomes completely impermeable to NaCl when dialyzed against distilled water (DW), but inclusion of one of a variety of different salts in the dialyzing solution maintains membrane permeability to NaCl. A titration experiment revealed that a minimum concentration of 0.1 mM of a salt such as KH2PO4 is required to sustain membrane permeability. In contrast, diffusion through the 1,000 Da MWCO membrane was slightly higher when DW was used as the dialysate. We conclude that the 100 Da MWCO membrane works well for a variety of dialysis applications provided that a maintenance salt is included in all dialyzing solutions.  相似文献   

19.
Two-phase anaerobic digestion of cheese whey was investigated in a system consisting of a stirred acidogenic reactor followed by a stirred methanogenic reactor, the latter being coupled to a membrane filtration system to enable removal of soluble effluent whilst retaining solids. The acidogenic reactor was operated at a hydraulic retention time (HRT) of one day, giving maximum acidification of 52.25% with up to 5 g/l volatile fatty acids, of which 63.7% was acetic acid and 24.7% was propionic acid. The methanogenic reactor received an organic load up to 19.78 g COD/ld, corresponding to a HRT of 4 days, at which 79% CODs and 83% BOD(5) removal efficiencies were obtained. Average removals of COD, BOD(5) and TSS in the two-phase anaerobic digestion process were 98.5%, 99% and 100%, respectively. The daily biogas production exceeded 10 times reactor volume and biogas methane content was greater than 70%.  相似文献   

20.
The use of microchannel reactor based technologies within the scope of bioprocesses as process intensification and production platforms is gaining momentum. Such trend can be ascribed a particular set of characteristics of microchannel reactors, namely the enhanced mass and heat transfer, combined with easier handling and smaller volumes required, as compared to traditional reactors. In the present work, a continuous production process of 4-cholesten-3-one by the enzymatic oxidation of cholesterol without the formation of any by-product was assessed. The production was carried out within Y-shaped microchannel reactors in an aqueous-organic two-phase system. Substrate was delivered from the organic phase to aqueous phase containing cholesterol oxidase and the product formed partitions back to the organic phase. The aqueous phase was then forced through a plug-flow reactor, containing immobilized catalase. This step aimed at the reduction of hydrogen peroxide formed as a by-product during cholesterol oxidation, to avoid cholesterol oxidase deactivation due to said by-product. This setup was compared with traditional reactors and modes of operation. The results showed that microchannel reactor geometry outperformed traditional stirred tank and plug-flow reactors reaching similar conversion yields at reduced residence time. Coupling the plug-flow reactor containing catalase enabled aqueous phase reuse with maintenance of 30% catalytic activity of cholesterol oxidase while eliminating hydrogen peroxide. A final production of 36 m of cholestenone was reached after 300 hours of operation.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号