首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
A laboratory experiment was conducted to identify key hydrocarbon degraders from a marine oil spill sample (Prestige fuel oil), to ascertain their role in the degradation of different hydrocarbons, and to assess their biodegradation potential for this complex heavy oil. After a 17-month enrichment in weathered fuel, the bacterial community, initially consisting mainly of Methylophaga species, underwent a major selective pressure in favor of obligate hydrocarbonoclastic microorganisms, such as Alcanivorax and Marinobacter spp. and other hydrocarbon-degrading taxa (Thalassospira and Alcaligenes), and showed strong biodegradation potential. This ranged from >99% for all low- and medium-molecular-weight alkanes (C15–C27) and polycyclic aromatic hydrocarbons (C0- to C2- naphthalene, anthracene, phenanthrene, dibenzothiophene, and carbazole), to 75–98% for higher molecular-weight alkanes (C28–C40) and to 55–80% for the C3 derivatives of tricyclic and tetracyclic polycyclic aromatic hydrocarbons (PAHs) (e.g., C3-chrysenes), in 60 days. The numbers of total heterotrophs and of n-alkane-, aliphatic-, and PAH degraders, as well as the structures of these populations, were monitored throughout the biodegradation process. The salinity of the counting medium affects the counts of PAH degraders, while the carbon source (n-hexadecane vs. a mixture of aliphatic hydrocarbons) is a key factor when counting aliphatic degraders. These limitations notwithstanding, some bacterial genera associated with hydrocarbon degradation (mainly belonging to α- and γ-Proteobacteria, including the hydrocarbonoclastic Alcanivorax and Marinobacter) were identified. We conclude that Thalassospira and Roseobacter contribute to the degradation of aliphatic hydrocarbons, whereas Mesorhizobium and Muricauda participate in the degradation of PAHs.  相似文献   

2.
In this study, the abilities of two microbial consortia (Y and F) to degrade aliphatic–aromatic hydrocarbon mixtures were investigated. Y consortium preferentially degraded the aromatic hydrocarbon fractions in kerosene, while F consortium preferentially degraded the aliphatic hydrocarbon fractions. Degradation experiments were performed under aerobic conditions in sealed bottles containing liquid medium and n-octane or n-decane as representative aliphatic hydrocarbons or toluene, ethylbenzene or p-xylene as representative aromatic hydrocarbons (all at 100 mg/l). Results demonstrated that the Y consortium degraded p-xylene more rapidly than n-octane. It degraded toluene, ethylbenzene and p-xylene more rapidly than decane. In comparison, the F consortium degraded n-octane more rapidly than toluene, ethylbenzene or p-xylene, and n-decane more rapidly than toluene, ethylbenzene or p-xylene. 16S rRNA gene sequencing revealed that the Y consortium was dominated by Betaproteobacteria and the F consortium by Gammaproteobacteria, and in particular Pseudomonas. This could account for their metabolic differences. The substrate preferences of the two consortia showed that the aliphatic–aromatic hydrocarbon binary mixtures, especially the n-decane–toluene/ethylbenzene/p-xylene pairs, reflected their degradation ability of complex hydrocarbon compounds such as kerosene. This suggests that aliphatic–aromatic binary systems could be used as a tool to rapidly determine the degradation preferences of a microbial consortium.  相似文献   

3.
Surficial sediments from 13 sites throughout Lake Taihu, one of the largest urbanized freshwater lake systems in China, were analyzed for biomarkers (e.g., n-alkanes and hopanes) to track the origin of organic inputs (biogenic or anthropogenic), and, thus, to identify any ‘hot spots’ of hydrocarbon contamination. A distinct spatial distribution of aliphatic hydrocarbons in sediments was observed in Lake Taihu. At the northern tip of the lake (i.e., Meiliang and Wuli Bays), the highest mean aliphatic hydrocarbon concentration, with a significant contribution of an unresolved complex mixture (UCM), was found, indicating possible anthropogenic petroleum contamination (mainly from untreated and partially treated industrial and domestic sewage from Wuxi, Changzhou and other cities). This was supported by the n-alkane indices (e.g., small Carbon Preference Index and odd-to-even values) and a high degree of maturity of the hopane biomarkers. However, hydrocarbons from East Taihu were mainly biogenic, with the lowest mean concentrations, negligible or no contribution of UCM, abundance of vascular plant C23–C33 n-alkanes with a high odd-to-even predominance, and the presence of biogenic hopanes (e.g., 17β(H), 21β(H)-hopanes and hopenes). In the other areas of the lake, however, the predominance of biogenic in combination with petrogenic hydrocarbons was indicated by the biomarkers.  相似文献   

4.
Spores of Bacillus subtilis were exposed to a series of stratosphere simulations. In total, five distinct treatments measured the effect of reduced pressure, low temperature, high desiccation, and intense ultraviolet (UV) irradiation on stratosphere-isolated and ground-isolated B. subtilis strains. Environmental conditions were based on springtime data from a mid-latitude region of the lower stratosphere (20 km). Experimentally, each treatment consisted of the following independent or combined conditions: −70°C, 56 mb, 10–12% relative humidity and 0.00421, 5.11, and 54.64 W/m2 of UVC (200–280 nm), UVB (280–315 nm), UVA (315–400 nm), respectively. Bacteria were deposited on metal coupon surfaces in monolayers of ~1 × 106 spores and prepared with palagonite (particle size < 20 μm). After 6 h of exposure to the stratosphere environment, 99.9% of B. subtilis spores were killed due to UV irradiation. In contrast, temperature, desiccation, and pressure simulations without UV had no effect on spore viability up through 96 h. There were no differences in survival between the stratosphere-isolated versus ground-isolated B. subtilis strains. Inactivation of most bacteria in our simulation indicates that the stratosphere can be a critical barrier to long-distance microbial dispersal and that survival in the upper atmosphere may be constrained by UV irradiation.  相似文献   

5.
A hydrocarbon mixture containing p-xylene, naphthalene, Br-naphthalene and straight aliphatic hydrocarbons (C14 to C17) was aerobically degraded without lag phase by a natural uncontaminated potting soil at 20 °C and 6 °C. Starting concentrations were approximately 46 ppm for the aromatic and 13 ppm for the aliphatic compounds. All aliphatic hydrocarbons were degraded within 5 days at 20 °C, to levels below detection (ppb levels) but only down to 10% of initial concentration at 6 °C. Naphthalene was degraded within 12 days at 20 °C and unaffected at 6 °C. At 20 °C p-xylene was degraded within 20 days, but no degradation occurred at 6 °C. Br-naphthalene was only removed down to 30% of initial concentration at 20 °C, with no significant effect at 6 °C. The biodegradation was monitored with head space solid-phase microextraction and gas chromatography–mass spectrometry. Received: 5 October 1998 / Received revision: 4 December 1998 / Accepted: 5 December 1998  相似文献   

6.
Solar ultraviolet-B (UVB) radiation has deleterious effects on plant-dwelling mites. We assessed the biological effects of UVB radiation on the eggs of the twospotted spider mite, Tetranychus urticae Koch, under both near ambient (UV+) and UV-attenuated (UV−) conditions from spring to autumn and compared them to the effects of temperature and humidity. The ambient daily UVB irradiance increased from January to August and then decreased rapidly until December, whereas egg hatchability under UV+ was lowest in April (10.7%) and increased almost linearly until October (74.9–92.3%). In contrast, hatchability under UV− was consistently high (96.2–99.8%) through all seasons. For UV+, the stepwise multiple linear regression analysis supported the negative correlation of hatchability with cumulative UVB irradiance during egg periods (cumulative dose), but did not support that with the mean daily UVB irradiance (dose rate), suggesting that UVB-induced mortality in T. urticae eggs is cumulative dose dependent rather than dose rate dependent. The high mortality in April may have reflected the slower development caused by the relatively lower temperature and higher UVB radiation, increasing the cumulative dose, while the low mortality in October may have reflected the faster development caused by the relatively higher temperature and lower UVB radiation, decreasing the cumulative dose.  相似文献   

7.
The use of Bacillus subtilis O9 biosurfactant (surfactin) and of bioaugmentation to improve the treatment of residual hydrocarbons from ship bilge wastes was studied. A biodegradation experiment was conducted in aquaria placed outdoors under non-aseptic conditions. Three treatments were examined: culture medium plus bilge wastes, bioaugmentation with microorganisms from bilge wastes, and bioaugmentation plus biosurfactant. Samples were analyzed for viable counts, aliphatic and aromatic hydrocarbon concentrations, n-C17/pristane and n-C18/phytane ratios. While the addition of biosurfactant stimulated hydrocarbon degradation, bioaugmentation did not produce any remarkable effect. At day 10, the remaining percentages of aliphatic and aromatic hydrocarbons in aquaria, which received biosurfactant, were 6.8 and 7.2, respectively, while it took 20 days to reach comparable results with the other treatments. The biosurfactant did not affect the preferential biodegradation of n-C17/pristane and n-C18/phytane. This biosurfactant, which can be produced in a relatively simple and inexpensive process, is a promising alternative in the optimization of hydrocarbon waste treatment. Journal of Industrial Microbiology & Biotechnology (2000) 25, 70–73. Received 26 January 2000/ Accepted in revised form 09 June 2000  相似文献   

8.
Although indirect effects of solar ultraviolet (UV) radiation on insects are well known (e.g. UV radiation can modify plant chemistry), direct effects of solar radiation on insects have received little attention. Radiation in the UVB range (300–320 nm) is damaging because it is absorbed directly by proteins and DNA. UVB should be toughest on immobile or small life stages, such as eggs or early larval instars. In the present study, the effects of UVB radiation on eggs and larvae of the tobacco hornworm Manduca sexta L. (Lepidoptera: Sphingidae) are examined. The present study aimed to address: what natural levels of UV do they experience; how does UVB affect the performance of eggs; and how does it affect the performance of larvae? In addition, do M. sexta larvae use behaviour to avoid UVB exposure and, consequently, are they physiologically less robust to UVB? In these experiments, eggs and late larval instars of M. sexta are found to be robust to natural levels of UV radiation. By contrast, young larvae are not only more susceptible to damage from UVB, but also they use behavioural means to avoid it. The strategy of using behaviour may relax selection pressures on morphological and physiological mechanisms for preventing (or recovering from) damage by environmental UV radiation.  相似文献   

9.
In order to evaluate hydrocarbon inputs to Crater Lake from anthropogenic and natural sources, samples of water, aerosol, surface slick and sediment were collected and analyzed by gas chromatography-mass spectrometry (GC-MS) for determination of their aliphatic and aromatic hydrocarbon concentrations and compositions. Results show that hydrocarbons originate from both natural (terrestrial plant waxes and algae) and anthropogenic (petroleum use) sources and are entering the lake through direct input and atmospheric transport. The concentrations of petroleum hydrocarbons range from low to undetectable. The distributions and abundances of n-alkanes, polycyclic aromatic hydrocarbons (PAH) and unresolved complex mixture (UCM) from petroleum are similar for all surface slick sampling sites. The estimated levels of PAH in surface slicks range from 7–9 ng/m2 which are low. Transport of petroleum-derived hydrocarbons from the lake surface has resulted in their presence in some sediments, particularly near the boat operations mooring (total petroleum HC = 1440 μg/kg, dry wt. compared to naturally derived n-alkanes, 240 μg/kg, dry wt.). The presence of biomarkers such as the tricyclic terpanes, hopanes and steranes in shallow sediments further confirms petroleum input from boat traffic. In the deep lake sediments, petroleum hydrocarbon concentrations were very low (16 μg/kg, dry wt.). Very low concentrations of PAH were detected in shallow sediments (17–40 μg/kg at 5 m depth near the boat operations) and deep sediments (3–15 μg/kg at 580 m depth). The individual PAH concentrations in sediments (μg/kg or ppb range) are at least three orders of magnitude less than reported threshold effects levels (mg/kg or ppm range, test amphipod Hyalella azteca). Therefore, no adverse effects are expected to occur in benthic biota exposed to these sediments. Boating activities are leaving a detectable level of petroleum in surface waters and lake sediments but these concentrations are very low.  相似文献   

10.
The auxin formation in a submerged culture of the xylotrophic basidiomycete Lentinus edodes (Berk.) Sing (Lentinula edodes (Berk.) Pegler) (shiitake) is studied. Biologically active substances of an indole nature are identified, “the effect of small doses” of which lies in not only the stimulation of growth of the mycelium (indole-3-acetic acid, 2 × 10−7–2 × 10−4 g/l), but also in the induction of tryptophan-independent paths of auxin biosynthesis. The above-mentioned path is realized in the presence of exogenous indole (1 × 10−3–1 × 10−4 g/l), as well as while inducing the biosynthesis of indole-3-acetic acid by its microadditives (1 × 10−5−1 × 10−8 g/l), and is accompanied by the formation of anthranilic acid (up to 1.5 mg/l). Induction of the generative development stage of shiitake by indole derivatives is revealed. It was found that among the studied compounds only indoleacetamide at a concentration of an order of ×10−4 g/l in the culture fluid of L. edodes had a pronounced stimulatory effect on the formation of shiitake’s brown mycelial film.  相似文献   

11.
Inactivation of seven strains derived fromEscherichia coli B differing in their capacity to repair damage to their DNA (exc, pol, rec) after irradiation with far (254 nm) and middle and near (300 to 380 and 320–400 nm) UV light was investigated. The same bacterial strains were also used as hosts for the UV-irradiated pliage T7. The damage induced in bacteria and the phage by the near UV radiation was repaired only to a lesser extent by the investigated repair mechanisms or was not repaired at all.  相似文献   

12.
To assess the short- and long-term impacts of UV radiation (UVR, 280–400 nm) on the microalga Scrippsiella trochoidea, we exposed cells to three different radiation treatments (PAB: 280–700 nm, PA: 320–700 nm, and P: 400–700 nm). A significant decrease in the photochemical efficiency (ΦPSII) at high irradiance (100% of incident solar radiation, 216.0 W m−2) was observed. Photoinhibition was reduced from 62.7 to 10.9% when the cells were placed in 12% solar radiation (26.1 W m−2). In long-term experiments (11 days) using batch cultures, cell densities during the first 5 days were decreased under treaments P, PA, and PAB, reflecting a change in the irradiance experienced in the laboratory to that of incident solar irradiance. Thereafter, specific growth rates increased and UV-induced photoinhibition decreased, indicating acclimation to solar UV. Cells were found to exhibit both higher ratios of repair to UV-related damage, shorter period for recovery and increased concentrations of UV-absorbing compounds (UVabc), whose maximum absorption was found to be at 336 nm. Our data indicate that S. trochoidea is sensitive to ultraviolet radiation, but was able to acclimate relatively rapidly (ca. 6 days) by synthesizing UVabc and by increasing the rates of repair processes of D1 protein in PSII.  相似文献   

13.
Botryococcus braunii (N-836) produced 60 – 73% hydrocarbons on dry weight basis, of which C34 botryococcene was found to be the major hydrocarbon, constituting about 50 – 76 % of total content throughout the experimental studies. Major fatty acids present in this organism were C18:1 and C16:0. Saturated hydrocarbons like docosane, hexacosane and heptacosane were also found to be produced by the organism. Methyl branched fatty acids, were identified as 16-methyl heptadecanoic and 5, 9, 13 - trimethyl tetradecanoic acids by GC-MS. Maximum hydrocarbon accumulation was observed during third week of its growth.  相似文献   

14.
Low light adapted cultures of the marine diatom Thalassiosira pseudonana (3H) were cultured and incubated for 30 min under different ultraviolet (UV) wavelengths of near monochromatic light with and without background photosynthetically active radiation (PAR, 380–700 nm). Maximum damage to the quantum yield for stable charge separations was found in the UVB (280-320 nm) wavelengths without background PAR light while the damage under PAR was 30% less. UV induced damage to carbon fixation in the cells was described by a function similar to non-linear functions of inhibiting irradiance previously published with the exception that damage was slightly higher in the UVA (320–380). Various measurements of fluorescent transients were measured and the results indicate localised damage most likely on the acceptor side of the Photosystem II reaction center. However, dark adapted measurements of fluorescence transients with and without DCMU do not result in similar functions. This is also true for the relationships between fluorescence transients and carbon fixation for this species of marine diatom. The correlation between the weightings H from measurements of carbon fixation and the quantum yield for stable charge separation as calculated from induction curves with DCMU and without DCMU is R 2 0.44 and R 2 0.78, respectively. The slopes of the two measurements are 3.8 and 1.4, respectively. The strong correlation between the weightings of the induction curves without DCMU and carbon fixation are due to a loss of electron transport from the reaction center to plastoquinone. Under these experimental conditions of constant photon flux density (PFD) this is manifested as a strong linear relationship between the decrease in the operational quantum yield of Photosystem II and carbon fixation. This revised version was published online in June 2006 with corrections to the Cover Date.  相似文献   

15.
We describe a Saccharomyces cerevisiae bioluminescence assay for UV and arsenate in which bacterial luciferase genes are regulated by the promoter of the yeast gene, UFO1. UFO1 encodes the F-box subunit of the Skp1–Cdc53–F-box protein ubiquitin ligase complex and is induced by DNA damage and by arsenate. We engineered the UFO1 promoter into an existing yeast bioreporter that employs human genes for detection of steroid hormone-disrupting compounds in water bodies. Our analysis indicates that use of an endogenous yeast promoter in different mutant backgrounds allows discrimination between different environmental signals. The UFO1-engineered yeast give a robust bioluminescence response to UVB and can be used for evaluating UV protective sunscreens. They are also effective in detecting extremely low concentrations of arsenate, particularly in pdr5Δ mutants that lack a mechanism to extrude toxic chemicals; however, they do not respond to cadmium or mercury. Combined use of endogenous yeast promoter elements and mutants of stress response pathways may facilitate development of high-specificity yeast bioreporters able to discriminate between closely related chemicals present together in the environment.  相似文献   

16.
The cyanobacterium Chlorogloeopsis PCC 6912 was found to synthesize and accumulate two putative UV sunscreen compounds of the mycosporine (mycosporine-like amino acid; MAA) type: mycosporine-glycine and shinorine. These MAAs were not constitutively present in the cells; their synthesis could be induced specifically either by exposure to UVB radiation (280–320 nm) or by osmotic stress, but not by other stress factors such as heat or cold shock, nutrient limitation, or photooxidative stress. A significant synergistic enhancement of MAA synthesis was observed when both stress factors were applied in combination. Although osmotic stress could induce MAA synthesis, comparison of the intracellular contents of MAAs with those of sugar osmolytes (glucose and trehalose) indicated that MAAs play no significant role in attaining osmotic homeostasis. UVB strongly enhanced the accumulation of shinorine, whereas osmotic stress had a more pronounced effect on mycosporine-glycine. This differential effect on the steady-state contents of each MAA could be explained either by differential regulation of biosynthesis or by differential loss rates of MAAs (leakage) under each condition. A preferential leakage of mycosporine-glycine from the cells after a hypoosmotic shock was detected. The results are interpreted in terms of an adaptive necessity for a combined regulatory control responding to both UV and external osmotic conditions in organisms that accumulate water-soluble sunscreens intracellularly. Received: 26 March 1999 / Accepted: 13 July 1999  相似文献   

17.
Ultraviolet (UV) radiation affects the extracellular matrix (ECM) of the human skin. The small leucine-rich repeat protein fibromodulin interacts with type I and II collagen fibrils, thereby affecting ECM assembly. The aim of this study was to evaluate whether short wave UV (UVB) or long wave UV (UVA) irradiation influences fibromodulin expression. Exponentially growing human fibroblasts (IMR-90 cells) were exposed to increasing doses of UVB (2.5–60 mJ/cm2) or UVA (0.5–10 J/cm2). After UV irradiation fibromodulin, p21 and GADD45 levels were evaluated as well as cell viability, reactive oxygen species formation (ROS) and DNA damage. We found that fibromodulin expression: (i) increased after UVB and UVA irradiation; (ii) was 10-fold higher after UVA (10 J/cm2) versus 5-fold with UVB (10 mJ/cm2); (iii) correlated with reactive oxygen species formation, particularly after UVA; and (iv) was linked to the DNA damage binding protein (DDB1) translocation in the nucleus, particularly after UVB. These results further suggest that the UV-induced fibromodulin increase could counteract the UV-induced connective tissue damage, promoting the assembly of new collagen fibrils.  相似文献   

18.
The photo-induced toxicity of anthracene was investigated as the mortality in Antarctic shallow water amphipod, Gondogeneia antarctica, at different concentrations of anthracene and different periods of exposure to natural sunlight and artificial UVA and UVB radiations. When exposed to natural sunlight, animals contaminated in the dark and placed in clean water or in anthracene solutions showed different degrees of mortality, dose–time dependent. Effects were even more evident when these animals were exposed to artificial UVA or UVB radiations. Depuration seemed to be a slow process. The effects of UV radiation and anthracene alone and the effects of the interactions of these two stressors implied that solar radiation is an important parameter that deserves consideration in the environmental assessment of polycyclic aromatic hydrocarbons in Antarctic coastal waters. G. antarctica proved to be a good bioindicator for the phototoxicity of anthracene in Antarctic shallow waters.  相似文献   

19.
Particulate material recovered over an 18-month period from sediment traps deployed at a shallow-water nearshore Antarctic site was analysed for photosynthetic pigments, aliphatic hydrocarbons and fatty acids. All components showed a distinct seasonal variation, with high recovery rates during the summer open-water phytoplankton bloom and low rates under winter fast ice. The amount of trapped material differed between the two summers, indicating inter-annual variability of vertical flux associated with differences in the intensity of the summer phytoplankton bloom. Particulate material trapped in summer was dominated by that which originated in diatoms. High recoveries of chlorophyll a, fucoxanthin, n-C21:6 hydrocarbon, 20:5(n-3) fatty acid and shorter chain (C15–C24) aliphatic hydrocarbons all pointed to a significant summer flux of ungrazed diatoms. There were, however, also signals of zooplankton grazing activity (notably pyrophaeophorbide a), and the presence of C18:4(n-3) and C22:6(n-3) fatty acids suggested a small flux of material from flagellates and other sources. Longer chain n-alkanes (C25–C34) indicative of nanoplankton were detected all year, but there was no significant deposition of zooplankton material in any sample. The major recovery rate of photosynthetic pigments was in late summer (February to April), and the major grazing signal occurred after the peak of the summer diatom bloom. Most of the diatom bloom appeared to settle out from the water column without being grazed. The major seasonal contrast in the biochemistry of the trapped material was the dominance of the diatom signature in summer, and in winter the predominance (but at much lower recovery rates) of material from nanoplankton. Received: 2 March 1998 / Accepted: 12 June 1998  相似文献   

20.
High levels of ultraviolet-B radiation (UVB) could represent a danger to seaweeds by affecting their physiological processes and development. The aim of this work was to study the effects of UVB radiation on early developmental stages of commercially and ecologically important marine algal species in southern Chile, considering spores survival and embryos growth. Spores of Mazzaella laminarioides, Gigartina skottsbergii, Sarcothalia crispata and embryos of G. skottsbergii and Macrocystis pyrifera were submitted to treatments of a) photosynthetically active radiation (PAR: Control), b) PAR+UVA (PA) and c) PAR+UVA+UVB (PAB). UV radiation did not affect spore survival of M. laminarioides S. crispata and G. skottsbergii (P = 0.55, P = 0.6 & P = 0.25 respectively), but did provoke differences in the growth rate of G. skottsbergii embryos (P = 0.00). Differences in survival and growth of M. pyrifera embryos were also observed (P = 0.001 & P = 0.007, respectively). Differences in growth of M. pyrifera embryos were observed only in the first five days, whereas changes in survival persisted until the end of the experiment. Additionally, UVB provoked morphological alteration in M. pyrifera embryos, as evidenced by progressive curling. These results suggest that the initial stages of the subtidal algae species G. skottsbergii and M. pyrifera cultivated in laboratory conditions were sensitive to UVA and UVB radiation, and their recruitment and development could be affected as well in natural conditions found in southern South America, where the ozone layer has thinned more than in other parts of the planet.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号