首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Adaptation of Acinetobacter calcoaceticus from river water to aniline depends on the dynamics of parent and mutant populations. The parent, Acinetobacter strain DON26 phenotype Ani0, was common in river water and assimilated aniline effectively at micromolar concentrations, but was inhibited at higher concentrations of aniline. The Ani0 phenotype was also characterized by a broad specificity for oxidation of chloroanilines by aniline-induced cells. The mutant Ani+ phenotype was represented by DON2, isolated from a population of less than 100 cells ml-1 in a mixed river water culture, and by DON261, isolated during continuous culture of DON26. Ani+ strains assimilated aniline at a greater maximum specific rate than the parent and were able to grow at concentrations of aniline greater than 16 mM. These strains cooxidized phenol after growth at high aniline concentrations, but showed reduced activity toward chloroanilines. These changes plus kinetic data, oxygen uptake data, and the results of auxanography indicate that the mutant has an increased activity and altered specificity of the initial enzyme in the aniline catabolic pathway. The parent strain, DON26, was at a selective advantage relative to the mutant at low concentrations of aniline, but was replaced by the mutant when aniline concentrations increased. Adaptation of the mixed river water community to aniline involved selection of both phenotypes. Reversion of the Ani+ to Ani0 phenotype occurred at a frequency of 10(-2) in the absence of aniline selection. Plasmid content was not altered during either acquisition or loss of the Ani+ phenotype. Adaptive changes in Acinetobacter spp. populations illustrate important differences in the catabolic activities of natural and pollutant selected strains.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

2.
A positive selection method for isolation of nitrogenase-derepressed mutant strains of a filamentous cyanobacterium, Anabaena variabilis, is described. Mutant strains that are resistant to a glutamate analog, L-methionine-D,L-sulfoximine, were screened for their ability to produce and excrete NH4+ into medium. Mutant strains capable of producing nitrogenase in the presence of NH4+ were selected from a population of NH4+-excreting mutants. One of the mutant strains (SA-1) studied in detail was found to be a conditional glutamine auxotroph requiring glutamine for growth in media containing N2, NO3-, or low concentrations of NH4+ (less than 0.5 mM). This glutamine requirement is a consequence of a block in the assimilation of NH4+ produced by an enzyme system like nitrogenase. Glutamate and aspartate failed to substitute for glutamine because of a defect in the transport and utilization of these amino acids. Strain SA-1 assimilated NH4+ when the concentration in the medium reached about 0.5 mM, and under these conditions the growth rate was similar to that of the parent. Mutant strain SA-1 produced L-methionine-D,L-sulfoximine-resistant glutamine synthetase activity. Kinetic properties of the enzyme from the parent and mutant were similar. Mutant strain SA-1 can potentially serve as a source of fertilizer nitrogen to support growth of crop plants, since the NH4+ produced by nitrogenase, utilizing sunlight and water as sources of energy and reductant, respectively, is excreted into the environment.  相似文献   

3.
2-, 3-, and 4-chloroaniline degrading bacteria were obtained by natural genetic exchange between an aniline or toluidine degrading Pseudomonas strain and the chlorocatechol assimilating Pseudomonas sp. B13. Hybrid organisms were isolated through cocultivation of the parent strains in the chemostat as well as through conjugation on solid media in presence of chloroanilines as the selective substrates. Biochemical analysis of the gene products in the hybrid strains clearly showed that the genes coding for the aniline dioxygenase or the genes for the chlorocatechol assimilatory sequence had been transferred.  相似文献   

4.
Nitrosoguanidine-induced mutants of Acinetobacter sp. defective in exopolysaccharide biosynthesis did not differ from the parent strain in distinguishing physiological and biochemical properties, such as requirements for growth factors, utilization of mono- and disaccharides, and resistance to antibiotics. The genetic relation of parent and mutant strains was shown by 16S rRNA PCR analysis. The comparative study of parent and mutant strains with respect to resistance to unfavorable environmental factors confirmed our hypothesis that Acinetobacter sp. exopolysaccharides perform protective functions. Hybridization experiments revealed the conjugal transfer of plasmid R68.45 from Pseudomonas putida BS228 (R68.45) to mutant but not to the parent Acinetobacter sp. strains. The role of the Acinetobacter sp. exopolysaccharides in providing the genetic stability of this bacterium is discussed.  相似文献   

5.
Summary Pseudomonas multivorans strain An 1 used aniline but not chloroanilines as the sole source of carbon and energy for growth. The aniline-adapted cells, however, were able to oxygenate chloroanilines. Relative oxygenation rates for aniline, 2-chloroaniline, 3-chloroaniline, 4-chloroaniline, and 3,4-dichloroaniline were 100, 46, 66, 20, and 3%, respectively.The first intermediates in the metabolism of chloroanilines were chlorocatechols. 3-Chlorocatechol accumulated during growth of the organism in the presence of 2-chloroaniline, whereas 4-chlorocatechol was an intermediate metabolite of 3-chloroaniline and 4-chloroaniline.Chloroanilines were able to induce synthesis of the aniline oxygenating enzyme system of Pseudomonas multivorans strain An 1. In continuous culture experiments, induction of this enzyme system appeared to depend on cell density, concentration, toxicity, and pK-values of aniline or chloroanilines.Studies with 14C-labelled 3-chloroaniline and 4-chloroaniline showed that the turnover of chloroanilines did not cease with the formation of chlorocatechols, because radioactivity was detected in the CO2 released and in bacterial cell components. The results suggest that the turnover of chloroanilines is due to metabolism rather than to cometabolism.  相似文献   

6.
The Escherichia coli K12 strain X71-54 carries the lac YUN allele, coding for a lactose/H+ carrier defective in the accumulation of a number of galactosides [Wilson, Kusch & Kashket (1970) Biochem. Biophys. Res. Commun. 40, 1409-1414]. Previous studies proposed that the lower accumulation in the mutant be due to a faulty coupling of H+ and galactoside fluxes via the carrier. Immunochemical characterization of the carriers in membranes from mutant and parent strains with an antibody directed against the C-terminal decapeptide of the wild-type carrier leads to the conclusion that the mutant carrier is similar to the wild-type in terms of apparent Mr, C-terminal sequence, and level of incorporation into the membrane. The pH-dependence of galactoside transport was compared in the mutant and the parent. At pH 8.0-9.0, mutant and parent behave similarly with respect to the accumulation of beta-D-galactosyl 1-thio-beta-D-galactoside and to the ability to grow on the carrier substrate melibiose. At pH 6.0, both the maximal velocity for active transport and the level of accumulation of beta-D-galactosyl-1-thio-beta-D-galactoside are lower in the mutant. The mutant also is unable to grow on melibiose at pH 5.5. However, at pH 6.0 and low galactoside concentrations, the symport stoichiometry is 0.90 H+ per galactoside in the mutant as compared with 1.07 in the parent. These observations suggest that symport is normal in the mutant and that the lower rate of transport in the mutant is responsible for the phenotype. At higher galactoside concentrations, accumulation is determined not only thermodynamically but also kinetically, contrary to a simple interpretation of the chemiosmotic theory. Therefore lower rates of active transport can mimic the effect of uncoupling H+ and galactoside symport. Examination of countertransport in poisoned cells at pH 6.0 reveals that the rate constants for the reorientation of the loaded and unloaded carrier are altered in the mutant. The reorientation of the unloaded carrier is slower in the mutant. However, the reorientation of the galactoside-H+-carrier complex is slower for substrates like melibiose, but faster for substrates like lactose. These findings suggest that lactose-like and melibiose-like substrates interact with the carrier in slightly different ways.  相似文献   

7.
Adaptation and tolerance to bile stress are important factors for the survival of bifidobacteria in the intestinal tract. Bifidobacterium animalis is a probiotic microorganism which has been largely applied in fermented dairy foods due to its technological properties and its health-promoting effects for humans. The effect of the presence of bile on the activity and expression of F1F0-ATPase, the pool of ATP and the intracellular pH of B. animalis IPLA 4549 and its mutant with acquired resistance to bile B. animalis 4549dOx was determined. The bile-resistant mutant tolerated the acid pH better than its parent strain. Bile induced the expression of the F1F0-ATPase and increased the membrane-bound H+-ATPase activity, in both parent and mutant strains. In acidic conditions (pH 5.0), the expression and the activity of this enzyme were higher in the mutant than in the parent strain when cells were grown in the absence of bile. Total ATP content was higher for the mutant in the absence of bile, whereas the presence of bile induced a decrease of intracellular ATP levels, which was much more pronounced for the parent strain. At pH 4.0, and independently on the presence or absence of bile, the mutant showed a higher intracellular pH than its parent strain. These findings suggest that the bile-adapted B. animalis strain is able to tolerate bile by increasing the intracellular ATP reserve, and by inducing proton pumping by the F1F0-ATPase, therefore tightly regulating the internal pH, and provide a link between the physiological state of the cell and the response to bile.  相似文献   

8.
A total of 39 phenol- and p-cresol-degraders isolated from the river water continuously polluted with phenolic compounds of oil shale leachate were studied. Species identification by BIOLOG GN analysis revealed 21 strains of Pseudomonas fluorescens (4, 8 and 9 of biotypes A, C and G, respectively), 12 of Pseudomonas mendocina, four of Pseudomonas putida biotype A1, one of Pseudomonas corrugata and one of Acinetobacter genospecies 15. Computer-assisted analysis of rep-PCR fingerprints clustered the strains into groups with good concordance with the BIOLOG GN data. Three main catabolic types of degradation of phenol and p-cresol were revealed. Type I, or meta-meta type (15 strains), was characterized by meta cleavage of catechol by catechol 2,3-dioxygenase (C23O) during the growth on phenol and p-cresol. These strains carried C23O genes which gave PCR products with specific xylE-gene primers. Type II, or ortho-ortho type (13 strains), was characterized by the degradation of phenol through ortho fission of catechol by catechol 1,2-dioxygenase (C12O) and p-cresol via ortho cleavage of protocatechuic acid by protocatechuate 3,4-dioxygenase (PC34O). These strains carried phenol monooxygenase gene which gave PCR products with pheA-gene primers. Type III, or meta-ortho type (11 strains), was characterized by the degradation of phenol by C23O and p-cresol via the protocatechuate ortho pathway by the induction of PC34O and this carried C23O genes which gave PCR products with C23O-gene primers, but not with specific xylE-gene primers. In type III strains phenol also induced the p-cresol protocatechuate pathway, as revealed by the induction of p-cresol methylhydroxylase. These results demonstrate multiplicity of catabolic types of degradation of phenol and p-cresol and the existence of characteristic assemblages of species and specific genotypes among the strains isolated from the polluted river water.  相似文献   

9.
The effects of temperature, solvents, and cultural conditions on the fermentative physiology of an ethanol-tolerant (56 g/liter at 60°C) and parent strain of Clostridium thermohydrosulfuricum were compared. An ethanol-tolerant mutant was selected by successive transfer of the parent strain into media with progressively higher ethanol concentrations. Physiological differences noted in the mutant included enhanced growth, tolerance to various solvents, and alterations in the substrate range and the fermentation end product ratio. Ethanol tolerance was temperature dependent in the mutant but not in the parent strain. The mutant grew with ethanol concentrations up to 8.0% (wt/vol) at 45°C, but only up to 3.3% (wt/vol) at 68°C. Low ethanol concentration (0.2 to 1.6% [wt/vol]) progressively inhibited the parent strain to where glucose was not fermented at 2.0% (wt/vol) ethanol. Both strains grew and produced alcohols on glucose complex medium at 60°C in the presence of either 5% methanol or acetone, and these solvents when added at low concentration stimulated fermentative metabolism. The mutant produced ethanol at high concentrations and displayed an ethanol/glucose ratio (mole/mole) of 1.0 in media where initial ethanol concentrations were ≤4.0% (wt/vol), whereas when ethanol concentration was changed from 0.1% to 1.6% (wt/vol), the ethanol/glucose ratio for the parent strain changed from 1.6 to 0.6. These data indicate that C. thermohydrosulfuricum strains are tolerant of solvents and that low ethanol tolerance is not a result of disruption of membrane fluidity or glycolytic enzyme activity.  相似文献   

10.
A new, rod-shaped, Gram-negative, non-sporing sulfate reducer (strain Ani1) was enriched and isolated from marine sediment with aniline as sole electron donor and carbon source. The strain degraded aniline completely to CO2 and NH3 with stoichiometric reduction of sulfate to sulfide. Strain Ani1 also degraded aminobenzoates and further aromatic and aliphatic compounds. The strain grew in sulfide-reduced mineral medium supplemented only with vitamin B12 and thiamine. Cells contained cytochromes, carbon monoxide dehydrogenase, and sulfite reductase P582, but no desulfoviridin. Strain Ani1 is described as a new species of the genus Desulfobacterium D. anilini. Marine enrichments with the three dihydroxybenzene isomers led to three different strains of sulfate-reducing bacteria; each of them could grow only with the isomer used for enrichment. Two strains isolated with catechol (strain Cat2) or resorcinol (strain Re10) were studied in detail. Both strains oxidized their substrates completely to CO2, and contained cytochromes, carbon monoxide dehydrogenase, and sulfite reductase P 582. Desulfoviridin was not present. Whereas the rod-shaped catechol oxidizer (strain Cat2) was able to grow on 18 aromatic compounds and several aliphatic substrates, the coccoid resorcinol-degrading bacterium (strain Re10) utilized only resorcinol, 2,4-dihydroxybenzoate and 1,3-cyclohexanedion. These strains could not be affiliated with existing species of sulfate-reducing bacteria. A further coccoid sulfate-reducing bacterium (strain Hy5) was isolated with hydroquinone and identified as a subspecies of Desulfococcus multivorans. Most-probable-number enumerations with catechol, phenol, and resorcinol showed relatively large numbers (10(4)-10(6) per ml) of aryl compound-degrading sulfate reducers in marine sediment samples.  相似文献   

11.
Two protonophore-resistant mutants, designated strains CC1 and CC2, of the facultative alkaliphile Bacillus firmus OF4 811M were isolated. The ability of carbonyl cyanide m-chlorophenylhydrazone (CCCP) to collapse the protonmotive force (delta mu H+) was unimpaired in both mutants. Both resistant strains possessed elevated respiratory rates when grown at pH 7.5, in either the presence or absence of CCCP. Membrane cytochromes were also elevated: cytochrome o in particular in strain CC1, and cytochromes aa3, b, c and o in strain CC2. Strain CC2 also maintained a higher delta mu H+ than the others when grown in the absence of CCCP. When grown in the presence of low concentrations of CCCP, strains CC1 and CC2 both maintained higher values of delta mu H+ than the wild-type parent and correspondingly higher capacities for ATP synthesis. In large-scale batch culture at pH 10.5, both mutant strains grew more slowly than the parent and contained significantly reduced levels of cytochrome o. Cells of stran CC1 also displayed a markedly altered membrane lipid composition when grown at pH 10.5. Unlike previously characterized protonophore-resistant strains of B. subtilis and B. megaterium, neither B. firmus mutant possessed any ability above that of the parent strain to synthesize ATP at given suboptimal values of delta mu H+. Instead, both resistant alkaliphile strains maintained a higher delta mu H+ and a correspondingly higher delta Gp than the parent strain when growing in sublethal concentrations of CCCP, apparently as a result of mutational changes affecting respiratory chain composition. Also of note in both the mutant and the wild-type strains was a marked elevation in the level of one of the multiple terminal oxidases, an aa3-type cytochrome, during growth at pH 7.5 in the presence of CCCP or during growth at pH 10.5, i.e. two conditions that reduce the bulk delta mu H+.  相似文献   

12.
Abstract Filter matings of mutant strains of Acinetobacter calcoaceticus NCIB8250 showed that catabolic and auxotrophic markers were transferred in the absence of a conjugative plasmid. There were no specific 'donor' or 'recipient' strains. Deoxyribonuclease had no effect on the mating system. Some crosses appeared to be highly polarized towards certain parental strains whilst others showed a two-way transfer of genetic markers. There was a high frequency of transfer of the ability to utilize L(+)-mandelate from a mutant of A. calcoaceticus NCIB8250 to certain strains of a second wild-type, EBF65/65, but there was no evidence that the recombinants had acquired another plasmid. This process, whose mechanism is not clear, has some potential in the construction of novel strains but is not likely to be generally useful for mapping purposes and may even prove to be a hazard in the interpretation of results from other genetic techniques.  相似文献   

13.
We describe the isolation and characterization of a Pediococcus cerevisiae thymidine-requiring mutant and its thymidine-independent revertant. The mutant strain lacked thymidylate synthetase activity and had an absolute requirement for low concentrations (2 micrograms/ml) of thymidine in addition to a requirement for N-5-formyl tetrahydrofolic acid (folinate). Even at high concentrations (up to 500 micrograms/ml), thymine could not replace thymidine. In contrast to its wild-type parent, which grows only on folinate, the thymidine-requiring mutant (Thy- Fol+) was able to take up and grow on picogram quantities of unreduced folic acid. When both strains were grown on folinate, the Thy- Fol+ strain was at least 10(3)-fold more resistant to the folic acid analogs aminopterin and methotrexate than the wild-type strain. On the other hand, when grown on folic acid, the Thy- Fol+ strain was as sensitive to the folic acid analogs as the Thy+ Fol+ strain and was 10(2)-fold more sensitive than the wild-type strain grown on folinate. The thymidine-independent revertant (Thy+ Fol+) regained the wild-type level of thymidylate synthetase activity, but maintained the ability to take up and grow on unreduced folic acid like its Thy- Fol+ parent.  相似文献   

14.
Class II ampicillin-resistant mutants of Escherichia coli are defined as having a twofold increase in penicillinase-mediated ampicillin resistance when determined by colony formation tests on plates. In this paper, one class II mutant has been compared to its parent strain. In liquid medium, the mutant was less resistant than the parent strain both in the absence and in the presence of R1 and R-factor mediating penicillinase activity. The penicillinase activity was found to be almost completely bound to the cells in the parent strain, whereas it was excreted to a great extent in the class II mutant strain. In liquid medium, resistance was well correlated to the cell-bound penicillinase activity, whereas the excreted penicillinases were also of great importance for survival on ampicillin plates. The mutant also had a changed resistance to a great number of other antibacterial drugs. The mutant was found to be more sensitive than the parent strain to osmotic shock, especially when treated with ethylenediaminetetraacetic acid or washed with sodium ions. However, the osmotic stability was restored by the presence of 1 mm Mg(2+) ions. The class II mutant was more sensitive than the parent strain to sodium cholate, and it adsorbed the phages T4 and T3-1 at a slower rate than did the parent strain. The two strains adsorbed T6 at the same rate. The class II phenotype could be gradually reversed by increasing concentrations of divalent cations. The pleiotropic changes in the phenotype are apparently unrelated to the specific targets for the antibacterial agents tested. They are secondary consequences of a cell envelope mutation. The findings indicate that the class II mutation mediates a structural change in the lipopolysaccharide of the cell envelope.  相似文献   

15.
用紫外线照射和氯化锂夹层平板培养法对产氢红杆菌(Rhodobacter sp.R7)进行复合诱变,分离获得了一株产氢效率提高的类胡萝卜素突变株R726.该突变株在表观特征、光谱学特征、色谱特征、生长和产氢性能等方面与出发菌株有明显不同,但16S rDNA序列一致.R726菌株有550 nm类胡萝卜素特征性吸收峰,类胡萝卜素组成上比出发菌株少一黄色类胡萝卜素组分,生长和产氢性能均高于出发菌株,产氢效率比出发菌株提高了33.3%,类胡萝卜素含量比出发株提高了53.8%.  相似文献   

16.
用紫外线照射和氯化锂夹层平板培养法对产氢红杆菌(Rhodobacter sp. R7)进行复合诱变, 分离获得了一株产氢效率提高的类胡萝卜素突变株R726。该突变株在表观特征、光谱学特征、色谱特征、生长和产氢性能等方面与出发菌株有明显不同, 但16S rDNA序列一致。R726菌株有 550 nm类胡萝卜素特征性吸收峰, 类胡萝卜素组成上比出发菌株少一黄色类胡萝卜素组分, 生长和产氢性能均高于出发菌株, 产氢效率比出发菌株提高了33.3%, 类胡萝卜素含量比出发株提高了53.8%。  相似文献   

17.
Previous studies have implicated glutamine synthetase (L-glutamate:ammonia ligase [adenosine diphosphate for-ing], EC 6.6.1.2) as a major controlling element of the nitrogen fixation (nif) genes in Klebsiella pneumoniae. We report here the isolation of a new class of K. pneumoniae mutants which exhibit altered patterns of nif and hut (histidine utlization) regulation. The expression of nif in these mutants, which were isolated as Gln+ (glutamine nonrequiring) revertants of a particular glnA mutation, is extremely sensitive to ammonia repression. These mutants have a Nif- Hut- phenotype at external ammonia concentrations at which wild-type strains are Nif+ Hut+. On the other hand, these mutants can be fully derepressed for nif at very low ammonia concentrations. We adopted the nomenclature "GlnR- (Nif- Hut-)" to facilitate discussion of the phenotype of these mutant strains. The mutations in these strains which confer the GlnR- phenotype map at or near glnA, the structural gene for glutamine synthetase.  相似文献   

18.
林分类型是影响土壤可溶性有机碳、氮库大小的重要因素,但目前对其研究主要集中在表层土壤(0~10 cm).本研究以亚热带地区天然林、毛竹林、格式栲人工林和杉木人工林为对象,用3种不同的浸提方式(冷水、热水和KCl溶液)提取表层(0~10 cm)和深层(40~60 cm)土壤中可溶性有机碳(DOC)和有机氮(DON),研究林分类型对表层和深层土壤可溶性有机碳、氮库的影响.结果表明: 林分类型对表层土壤DOC及其占土壤总有机碳(TOC)的比重有显著影响,深层土壤受林分类型的影响不显著;不同林分土壤DON含量仅在表层土壤存在显著差异,在深层土壤差异不显著.林分间土壤微生物生物量碳的差异仅在表层土壤达到显著水平.DON占土壤总氮(TN)的比重在各林分表层和深层土壤间差异均不显著.3种浸提方法得到的DOC和DON库大小顺序为热水>KCl>冷水,不同浸提方法得到的DOC库及DON库的相关性均达到显著水平,表明冷水、热水和KCl溶液浸提得到的有机碳、氮库含有相似组分.冷水和热水浸提方法得到的表层土壤DOC和DON含量及DOC占TOC比重在天然林和毛竹林均显著大于格式栲和杉木人工林,表明天然林和毛竹林土壤可溶性有机碳、氮含量高于格式栲和杉木人工林,更有利于土壤肥力的恢复.  相似文献   

19.
Morphological mutants of Micrococcus lysodeikticus (luteus) were isolated by treatment with N-methyl-N'-nitro-N-nitrosoguanidine. They occurred on plates in large, regular cell packets, whereas the parent cells usually grew as groups of two or four cells or as short chains. The mutants required a much higher concentration of Mg2+ for growth than the parent cells. The concentrations of Mg2+ and other components of the culture medium tested did not significantly affect the morphology of either the parent or mutant strains. The mutant strains were not agglutinated by antiserum to M. lysodeikticus, which mainly interacts with teichuronic acid on the cell surface, and chemical analysis of isolated cell walls of the mutants indicated the absence of teichuronic aicd. No significant differences were detected between the parent and mutant strains in the amounts of other cell wall components, e.g., peptidoglycan, protein, and teichoic acid. They possible roles of teichuronic acid in cell separation and attachment of divalent cations are discussed.  相似文献   

20.
E.RUSTRIAN, J.P. DELGENES AND R. MOLETTA. 1996. Experiments were performed to examine the effect of volatile fatty acids(VFA) as carbon source, on the phoshate uptake parameters in four Acinetobacter strains. Acetic and butyric acids were equally good carbon sources for phosphate removal, while propionic acid was the least efficient substrate. The best ratios of assimilated phosphate vs VFA consumed were 0-178 wit acetic acid by Ac.calcoaceticus NRRL 4270, 0.21 with propionic acid by Ac.calcoaceticus NRRL 4270 AND 0.187 with butyric acid by Acinetobacter sp.SUCT 5.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号