首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 93 毫秒
1.
The molecular basis of salt tolerance of L-myo-inositol 1-P synthase (MIPS; EC 5.5.1.4) from Porteresia coarctata (Roxb.) Tateoka (PcINO1, AF412340) earlier reported from this laboratory, has been analyzed by in vitro mutant and hybrid generation and subsequent biochemical and biophysical studies of the recombinant proteins. A 37-amino acid stretch between Trp-174 and Ser-210 has been confirmed as the salt-tolerance determinant domain in PcINO1 both by loss or gain of salt tolerance by either deletion or by addition to salt-sensitive MIPS(s) of Oryza (OsINO1) and Brassica juncea (BjINO1). This was further verified by growth analysis under salt environment of Schizosaccharomyces pombe transformed with the various gene constructs and studies on the differential behavior of mutant and wild proteins by Trp fluorescence, aggregation, and circular dichroism spectra in the presence of salt. 4,4'-Dianilino-1,1'-binaphthyl-5,5-disulfonic acid binding experiments revealed a lower hydrophobic surface on PcINO1 than OsINO1, contributed by this 37-amino acid stretch explaining the differential behavior of OsINO1 and PcINO1 both with respect to their enzymatic functions and thermodynamic stability in high salt environment. Detailed amino acid sequence comparison and modeling studies revealed the interposition of polar and charged residues and a well-connected hydrogen-bonding network formed by Ser and Thr in this stretch of PcINO1. On the contrary, hydrophobic residues clustered in two continuous stretches in the corresponding region of OsINO1 form a strong hydrophobic patch on the surface. It is conceivable that salt-tolerant MIPS proteins may be designed out of the salt-sensitive plant MIPS proteins by replacement of the corresponding amino acid stretch by the designated 37-amino acid stretch of PcINO1.  相似文献   

2.
l-myo-Inositol-1-phosphate synthase (EC 5.5.1.4, MIPS), an evolutionarily conserved enzyme protein, catalyzes the synthesis of inositol, which is implicated in a number of metabolic reactions in the biological kingdom. Here we report on the isolation of the gene (PINO1) for a novel salt-tolerant MIPS from the wild halophytic rice, Porteresia coarctata (Roxb.) Tateoka. Identity of the PINO1 gene was confirmed by functional complementation in a yeast inositol auxotrophic strain. Comparison of the nucleotide and deduced amino acid sequences of PINO1 with that of the homologous gene from Oryza sativa L. (RINO1) revealed distinct differences in a stretch of 37 amino acids, between amino acids 174 and 210. Purified bacterially expressed PINO1 protein demonstrated a salt-tolerant character in vitro compared with the salt-sensitive RINO1 protein as with those purified from the native source or an expressed salt-sensitive mutant PINO1 protein wherein amino acids 174-210 have been deleted. Analysis of the salt effect on oligomerization and tryptophan fluorescence of the RINO1 and PINO1 proteins revealed that the structure of PINO1 protein is stable toward salt environment. Furthermore, introgression of PINO1 rendered transgenic tobacco plants capable of growth in 200-300 mm NaCl with retention of approximately 40-80% of the photosynthetic competence with concomitant increased inositol production compared with unstressed control. MIPS protein isolated from PINO1 transgenics showed salt-tolerant property in vitro confirming functional expression in planta of the PINO1 gene. To our knowledge, this is the first report of a salt-tolerant MIPS from any source.  相似文献   

3.
Improving crop tolerance to osmotic stresses is a longstanding goal of agricultural biotechnology. In the present work the PcINO1 gene coding for a salt-tolerant L-myo-inositol-1-phosphate synthase (MIPS) from Porteresia coarctata (Roxb.) Tateoka, a halophytic wild rice was introgressed into cultivated mustard, Brassica juncea var B85. The transgenic plants demonstrate increased tolerance to salinity and oxidative stress with elevated level of inositol in both roots and shoots. The yield and crop quality of transgenic Brassica plants remain uncompromised and the plants were able to stably grow, set seeds and germinate in saline environments. When targeted to seeds of Nicotiana, PcINO1 was able to improve the seed survival rate under salinity and dehydration. Inositol and its derivatives regulate stress responses in various ways, serving as compatible solutes or signaling molecules. It is implicated that engineering inositol metabolism may affect the plant metabolic network leading to a stress tolerant phenotype as enumerated here in transgenic crop plants. How inositol itself or its derivatives affect the overall metabolic pathways leading to a stress-tolerant phenotype remains an intriguing question for future investigations.  相似文献   

4.
5.
Introgression and functional expression of either the PcINO1 (l-myo-inositol 1-phosphate synthase or MIPS coding gene from the wild halophytic rice, Porteresia coarctata) or McIMTI (inositol methyl transferase, IMTI coding gene from common ice plant Mesembryanthemum crystallinum) has earlier been shown to confer salt tolerance to transgenic tobacco plants (Sheveleva et al., Plant Physiol 115:1211–1219, 1997; Majee et al., J Biol Chem 279:28539–28552, 2004). In this communication, we show that transgenic tobacco plants co-expressing PcINO1 and McIMT1 gene either in cytosol or in chloroplasts accumulate higher amount of total inositol (free and methyl inositol) compared to non-transgenic plants. These transgenic plants were more competent in terms of growth potential and photosynthetic activity and were less prone to oxidative stress under salt stress. A positive correlation between the elevated level of total inositol and methylated inositol and the capability of the double transgenic plants to withstand a higher degree of salt stress compared to the plants expressing either PcINO1 or McIMT1 alone is inferred.  相似文献   

6.
The salt-tolerant varieties of rice (Oryza sativa L.) exhibit enhanced activity of the chloroplast form of L-myo-inositol 1-phosphate synthase (EC 5.5.4.1) under NaCl treatment either during the seedling stage or in fully grown plants during field growth. The salt-induced enhancement was noticeable only in chloroplasts from light-grown plants. The effects of these treatments on the cytosolic inositol synthase activity were less pronounced. While the effect of salt on the activity of the two forms was marginal in the salt-sensitive varieties during seedling growth, salinity affected the chloroplast inositol synthase activity adversely in these varieties during growth of the plants under field conditions. The salt-enhanced activities of inositol synthase(s) in the highly salt-tolerant varieties studied were found to be comparable to that observed in Porteresia coarctata, a halophytic wild rice species. The implications of these findings, which suggest a role of the inositol pathway in osmoregulation, are discussed.  相似文献   

7.
8.
The moisture content/probit viability relationship for storedseeds of Zizania palustris L. and Spartina anglica C. E. Hubbardwas linear and independent of the rate of embryo drying. Theseresults provide firm evidence of recalcitrant storage physiologyin these taxa. Preliminary tests strongly suggest that freshseeds of Porteresia coarctata (Roxb.) Tateoka are also intolerantof desiccation In Z. palustris apparent differences in desiccation tolerancebetween individuals can be partly explained by wide variationin individual embryo moisture contents during desiccation. Long-termstorage experiments in solutions of polyethylene glycol 6000(PEG) suggest that the actual variation in desiccation toleranceis confined to a narrow range of embryo water potentials inthe range –2 to –3 MPa. Despite the presence of prolonged dormancy in seeds of Z. palustrisand S. anglica there is no evidence of a significant effectof dormancy or storage period (up to the point of visible germination)on the limits of desiccation tolerance Aquatic grasses, seeds, storage, desiccation intolerance  相似文献   

9.
Salinity stress is a major abiotic stress that affects plant growth and limits crop production. Roots are the primary site of salinity perception, and salt sensitivity in roots limits the productivity of the entire plant. To better understand salt stress responses in canola, we performed a comparative proteomic analysis of roots from the salt-tolerant genotype Safi-7 and the salt-sensitive genotype Zafar. Plants were exposed to 0, 150, and 300 mM NaCl. Our physiological and morphological observations confirmed that Safi-7 was more salt-tolerant than Zafar. The root proteins were separated by two-dimensional gel electrophoresis and MALDI-TOF mass spectrometry was applied to identify proteins regulated in response to salt stress. We identified 36 and 25 protein spots whose abundance was significantly affected by salt stress in roots of plants from the tolerant and susceptible genotype, respectively. Functional classification analysis revealed that the differentially expressed proteins from the tolerant genotype could be assigned to 14 functional categories, while those from the susceptible genotype could be classified into 9 functional categories. The most significant differences concerned proteins involved in glycolysis (Glyceraldehyde-3-phosphate dehydrogenase, Fructose-bisphosphate aldolase, Phosphoglycerate kinase 3), stress (heat shock proteins), Redox regulation (Glutathione S-transferase DHAR1, L-ascorbate peroxidase), energy metabolism (ATP synthase subunit B), and transport (V-type proton ATPase subunit B1) which were increased only in the tolerant line under salt stress. Our results provide the basis for further elucidating the molecular mechanisms of salt-tolerance and will be helpful for breeding salt-tolerant canola cultivars.  相似文献   

10.
Zeng X  Yuan Z  Tong X  Li Q  Gao W  Qin M  Liu Z 《Molecular biology reports》2012,39(5):5737-5744
Oryzoideae (Poaceae) plants have economic and ecological value. However, the phylogenetic position of some plants is not clear, such as Hygroryza aristata (Retz.) Nees. and Porteresia coarctata (Roxb.) Tateoka (syn. Oryza coarctata). Comprehensive molecular phylogenetic studies have been carried out on many genera in the Poaceae. The different DNA sequences, including nuclear and chloroplast sequences, had been extensively employed to determine relationships at both higher and lower taxonomic levels in the Poaceae. Chloroplast DNA ndhF gene and atpB-rbcL spacer were used to construct phylogenetic trees and estimate the divergence time of Oryzoideae, Bambusoideae, Panicoideae, Pooideae and so on. Complete sequences of atpB-rbcL and ndhF were generated for 17 species representing six species of the Oryzoideae and related subfamilies. Nicotiana tabacum L. was the outgroup species. The two DNA datasets were analyzed, using Maximum Parsimony and Bayesian analysis methods. The molecular phylogeny revealed that H. aristata (Retz.) Nees was the sister to Chikusichloa aquatica Koidz. Moreover, P. coarctata (Roxb.) Tateoka was in the genus Oryza. Furthermore, the result of evolution analysis, which based on the ndhF marker, indicated that the time of origin of Oryzoideae might be 31 million years ago.  相似文献   

11.
12.
13.
14.
Trehalose is a non-reducing disaccharide of glucose that confers tolerance against abiotic stresses in many diverse organisms, including higher plants. It was previously reported that overexpression of the yeast trehalose-6-phosphate synthase gene in tomato results in improved tolerance against abiotic stresses. However, these transgenic tomato plants had stunted growth and pleiotropic changes in appearance. In this study, transgenic tomato plants were generated by the introduction of a gene encoding a bifunctional fusion of trehalose-6-phosphate synthase and trehalose-6-phosphate phosphatase genes from Escherichia coli under the control of the CaMV35S promoter. Transgenic plants accumulated higher levels of trehalose in their leaves and exhibited enhanced drought and salt tolerance and photosynthetic rates under salt stress conditions than wild-type plants. All of the transgenic plants had normal growth patterns and appearances. Therefore, the system described in this study can be used for practical application of the gene in crop improvement.  相似文献   

15.
16.
A novel salt-tolerant, N2-fixing and phosphate-solubilizing, Gluconacetobacter sp. (PA12) tagged with gusA gene, colonized Porteresia coarctata (wild rice) and Pokkali (salt-tolerant variety) more intensively when compared to Ponni (salt-sensitive variety). This was confirmed using a colony-counting method.  相似文献   

17.
In an attempt to isolate and identify the target genes relevant to salt tolerance in a mangrove plant (Sesuvium portulacastrum L.), a subtracted cDNA library was constructed via suppressive subtractive hybridization (SSH), in which the poly(A)+RNA isolated from salt-tolerant S. portulacastrum leaves was used as a tester, whereas the driver was poly(A)+RNA, derived from salt-sensitive S. portulacastrum leaves. Screening of this subtracted cDNA library revealed five clones, of which the expression levels in the salt-tolerant plant were markedly higher than those observed in the salt-sensitive plant, indicating that these candidate clones may be involved in salt-tolerance pathways. Among the clones isolated, P66, P175, and P233 are novel because no significant similarity was obtained upon alignment with the GenBank database. Clone P89 demonstrated high homology with NADPH of Arabidopsis thaliana, whereas clone P152 was highly homologous with the gene encoding late embryogenesis abundant (LEA) protein of A. thaliana. The full-length gene of clone P152, with a predicated 344 amino acid residues, was shown to bear LEA-2 domains, a signature motif for proteins that have been enriched under salty and drought conditions. It is thus implied that clone P152 would be a salt-tolerance gene of S. portulacastrum. In addition, we have also developed a strategy for the extraction of total RNA from mangrove plants.  相似文献   

18.
Sugarcane is a glycophyte whose growth and yield can be negatively affected by salt stress. As the arable lands with potential saline soils expand annually, the increase of salt-tolerance in sugarcane cultivars is highly desired. We, herein, employed in vitro and in vivo conditions in order to screen sugarcane plants for salt tolerance at the cellular and at the whole plant levels. Calli of sugarcane cv. Khon Kaen 3 (KK3) were selected after culturing in selective media containing various NaCl concentrations, and regenerated plants were then reselected after culturing in selective media containing higher NaCl concentrations. The surviving plants were finally selected after an exposure to 254 mM NaCl under greenhouse conditions. A total of 11 sugarcane plants survived the selection process. Four plants that exhibited tolerance to the four different salt concentrations applied during the aforementioned screening process were then selected for the undertaking of further molecular, biochemical, and physiological studies. The construction of a dendrogram has revealed that the most salt-tolerant plant was characterized by the lowest genetic similarity to the original cultivar. The relative expression levels of six genes (i.e., SoDREB, SoNHX1, SoSOS1, SoHKT, SoBADH, and SoMIPS) were found to be significantly higher in the salt-tolerance clones than those measured in the original plant. The measured proline levels, the glycine betaine content, the relative water content, the SPAD unit, the contents of chlorophyll a and b, as well as the K+/Na+ ratios of the salt-tolerant clones were also found to be significantly higher than those of the original plant.When the salt-tolerant clones were grown in a low saline soil, they exhibited a higher Brix percentage than that of the original cultivar.  相似文献   

19.
Iron-sulfur cluster biosynthesis involving the nitrogen fixation (Nif) proteins has been proposed as a general mechanism acting in various organisms. NifU-like protein may play an important role in protecting plants against abiotic and biotic stresses. An iron-sulfur cluster scaffold protein gene, IbNFU1, was isolated from a salt-tolerant sweetpotato (Ipomoea batatas (L.) Lam.) line LM79 in our previous study, but its role in sweetpotato stress tolerance was not investigated. In the present study, the IbNFU1 gene was introduced into a salt-sensitive sweetpotato cv. Lizixiang to characterize its function in salt tolerance. The IbNFU1-overexpressing sweetpotato plants exhibited significantly higher salt tolerance compared with the wild-type. Proline and reduced ascorbate content were significantly increased, whereas malonaldehyde (MDA) content was significantly decreased in the transgenic plants. The activities of superoxide dismutase (SOD) and photosynthesis were significantly enhanced in the transgenic plants. H2O2 was also found to be significantly less accumulated in the transgenic plants than in the wild-type. Overexpression of IbNFU1 up-regulated pyrroline-5-carboxylate synthase (P5CS) and pyrroline-5-carboxylate reductase (P5CR) genes under salt stress. The systemic up-regulation of reactive oxygen species (ROS) scavenging genes was found in the transgenic plants under salt stress. These findings suggest that IbNFU1gene is involved in sweetpotato salt tolerance and enhances salt tolerance of the transgenic sweetpotato plants by regulating osmotic balance, protecting membrane integrity and photosynthesis and activating ROS scavenging system.  相似文献   

20.
A heterogeneous collection of rice genotypes which included seven salt-tolerant rice lines, one salt-sensitive improved line, one wild rice (Oryza rufipogon) and one salt-tolerant wild rice relative (Porteresia coarctata) was screened with ten salt-tolerance-linked simple sequence repeat markers, of which nine were from the Saltol QTL mapped on rice 1st chromosome and the rest one from 8th chromosome, having high phenotypic variance for salt tolerance. Variation in molecular weight (in the form of base pairs) of the different amplified products using RM primers was used to find out the genetic relationship among the studied rice genotypes. Genomic DNA of the studied genotypes was also amplified with a reported allele mining primer for a salt-inducible gene (salT). The amplified products were sequenced and aligned to find out the closeness among the rice lines for the studied gene. Dendrogram derived from marker profiles showed partial similarity with salT gene-derived tree. Commonly, all the salt-tolerant lines were grouped into a single cluster, including IR36 (a salt-sensitive line) to which O. rufipogon (the wild rice) and P. coarctata (the wild rice relative) joined separately. The taxonomic identity and evolutionary relationship among the three groups (rice, wild rice and wild rice relative) were bioinformatically analysed using the nucleotide sequence of the studied salT gene.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号