首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
2.
3.
Native small ribosomal subunits from rabbit reticulocytes contain all initiation factors necessary for the formation of the mRNA-containing 48S pre-initiation complex. The complex formed in the presence of Met-tRNAf and 125I-labelled globin mRNA was cross-linked with diepoxybutane, and the covalent mRNA-protein complexes were isolated under denaturating conditions. The proteins of the covalent complex were identified as the 110, 95 and 66/64 kDa subunits of eIF-3. In addition, the 24 kDa cap binding protein and the ribosomal proteins S1, S3/3a, S6 and S11 were found covalently linked to the mRNA. Ribosomal proteins S3/3a and S6 were also involved in the ribosomal mRNA-binding domain of reticulocyte polysomes.  相似文献   

4.
Kinetics of dephosphorylation of eIF-2(alpha P) and reutilization of mRNA   总被引:4,自引:0,他引:4  
Phosphorylation of the alpha subunit of eukaryotic initiation factor 2 (eIF-2) causes mRNA to accumulate in 48 S complexes containing Met-tRNAf and eIF-2(alpha P). When the eIF-2 alpha kinase is inhibited by 2-aminopurine, the mRNA is slowly transferred from 48 to 80 S initiation complexes after an initial lag. The cause of this lag was examined by investigating whether mRNA and Met-tRNAf dissociated from 48 S complexes before binding to 80 S. Both compounds were quantitatively transferred from 48 to 80 S complexes after addition of 2-aminopurine and the eIF-2(alpha P) bound to 48 S complexes was dephosphorylated after an initial lag more slowly than unbound eIF-2(alpha P), which was rapidly dephosphorylated. the eIF-2(alpha P) in isolated 48 S complexes was slowly dephosphorylated by partially purified lysate phosphatases, whereas free eIF-2(alpha P) was readily dephosphorylated. These results indicated that 48 S complexes could directly join to a 60 S ribosomal subunit after eIF-2(alpha P) dephosphorylation. The lag and slow kinetics of dephosphorylation of eIF-2(alpha P) bound to 48 S complexes accounted for the slow transfer of mRNA from 48 to 80 S complexes. Moreover, the mRNA bound to 48 S complexes was more susceptible to cleavage by an endonuclease than mRNA in polyribosomes, as shown by activating the (2'-5')oligo(A)-dependent endonuclease. This finding is discussed in view of the possible role of eIF-2 alpha kinase and endonuclease in the inhibition of viral mRNA translation in interferon-treated cells.  相似文献   

5.
Insulin stimulates cellular protein synthesis in calf chondrocytes in suspension culture. This enhanced synthetic activity is seen in association with a decrease in phosphorylation of the α subunit of protein synthesis initiation factor eIF-2. [32P] associated with the α subunit is reduced approximately 50% by insulin treatment of chondrocytes incubated in [32P] containing media. Identical or closely located amino acids in the eIF-2 α subunit are phosphorylated by the chondrocyte kinase(s) and the rabbit reticulocyte hemin regulated kinase as indicated by comparative peptide fragment analysis of [32P] labeled α subunits.  相似文献   

6.
7.
Eukaryotic initiation factor (eIF) 4F, a multiprotein cap binding complex, has been shown to be phosphorylated in vivo in response to phorbol 12-myristate 13-acetate and insulin (Morley, S.J., and Traugh, J.A. (1990) J. Biol. Chem. 264, 2401-2404; Morley, S.J., and Traugh, J.A. (1990) J. Biol. Chem. 265, 10611-10616). The effect of phosphorylation on the activity of purified eIF-4F, utilizing both protein kinase C and a multifunctional S6 kinase, previously identified as protease activated kinase II, has been examined; these protein kinases modify eIF-4F p25 and p220 and eIF-4F p220, respectively. Studies with an eIF-4F-dependent protein synthesis system showed that phosphorylation of eIF-4F with either protein kinase resulted in a 3-5-fold stimulation of translation relative to the nonphosphorylated control. Chemical cross-linking of eIF-4F to cap-labeled mRNA, showed that phosphorylation increased the interaction of both the p25 and p220 subunits of eIF-4F with the 5' end of mRNA. This effect was manifested by a stimulation of initiation complex formation as measured by an increase in the association of labeled mRNA with 40 S ribosomal subunits in the translation system. Thus, phosphorylation of eIF-4F enhances binding to mRNA, resulting in a stimulation of protein synthesis at initiation.  相似文献   

8.
Infection of mouse L929 cells by mengovirus resulted in the expression of a kinase activity that selectively phosphorylated the small, 38,000-molecular-weight subunit of eucaryotic initiation factor 2 and histone H2. This kinase activity was independent of host cell RNA synthesis and was located in the postribosomal supernatant (S-100 fraction) early after infection (up to 3 h). At later times after infection (5 h), kinase activity was also associated with the polysome fraction. The kinase present in the S-100 fraction bound strongly to DEAE-cellulose, its peak activity eluting at 0.5 M KCl. Kinase activity was independent of the presence of exogenous double-stranded RNA, and KCl at concentrations greater than 0.1 M inhibited eucaryotic initiation factor 2 phosphorylation. The 67,000-molecular-weight phosphoprotein activated in interferon-treated cells by double-stranded RNA was not detected by standard phosphorylation assays in lysates from mengovirus-infected cells. Labeling of this protein in vivo during 5 h of infection was also not detected. The DEAE-cellulose-purified mengovirus kinase inhibited protein synthesis in reticulocyte lysates, and the inhibition was not reversible by high concentrations of poly(I).poly(C).  相似文献   

9.
Subjecting a HeLa cell suspension culture to an increase in incubation temperature (from 37 degrees to 42 degrees C) results in the rapid cessation of polypeptide chain synthesis followed by a gradual increase in the synthesis of a class of polypeptides referred to as the heat-shock proteins. It has been proposed that the initial, rapid shutoff of protein synthesis (less than 20 min) is due to the phosphorylation of initiation factor eIF-2 in its alpha subunit, a modification known to result in the inhibition of polypeptide synthesis. Using an in vitro translation system derived from heat-shocked HeLa cells grown in suspension culture, we were unable to find any evidence implicating eIF-2 alpha phosphorylation in the initial shutoff of translation during the heat shock response. These results suggest that the rapid inhibition of protein synthesis observed under heat shock conditions is mediated by a mechanism(s) other than eIF-2 alpha phosphorylation.  相似文献   

10.
Recently, we characterized a novel cyclic nucleotide-independent protein kinase, PK 380, from bovine adrenal cortex (Y. Kuroda and R. K. Sharma (1980) Biochem. Biophys. Res. Commun.96, 601–610). PK 380 is independent of cyclic AMP, cyclic GMP, calcium, and calcium-calmodulin for its activity. It does not phosphorylate any of the commonly used exogenous substrates but phosphorylates an endogenous 120,000-dalton peptide. In the present study we demonstrate that PK 380 specifically phosphorylates the serine residue of eukaryotic initiation factor 2α, eIF-2α. PK 380 can be differentiated from two other protein kinases, hemin-controled repressor (HCR) or double-stranded RNA-activated inhibitor (dsRI), that are also known to phosphorylate eIF-2α. Unlike the activity of HCR, PK 380 activity is independent of hemin (5–10 μm) and dependent on sulfhydryl groups. Poly(I) · poly(C), which is known to activate dsRI, does not affect the activity of PK 380. The possibility exists that the physiological substrate of PK 380 is eIF-2α. Thus, this novel protein kinase could play an important role in the translational control processes of adrenocortical cell.  相似文献   

11.
The ability of eIF-2.GDP in which the alpha subunit of eIF-2 is phosphorylated (eIF-2(alpha P).GDP) to act as a competitive inhibitor of eIF-2B-catalysed exchange of eIF-2-bound GDP has been investigated by modelling data provided by Rowlands et al. (J. Biol. Chem. 263, 5526-5533:1988). Some revision of previously determined dissociation and rate constants proved to be necessary. Under the conditions employed it was not possible to demonstrate significant inhibition of GDP exchange by eIF-2 (alpha P).GDP without substantial increase in its affinity for eIF-2B over that of eIF-2.GDP. Classic double reciprocal plots for competitive inhibition were found only when [eIF-2B] was low in relation to [eIF-2 (alpha P).GDP]. Relatively high cellular [eIF-2B] lessens the inhibitory effect of eIF-2(alpha P).GDP and suggests the possibility of other potential controls of initiation.  相似文献   

12.
When rabbit reticulocyte lysates are incubated in the absence of hemin or in the presence of low concentrations of double-stranded RNA, the rate of initiation of protein synthesis is severely reduced after a lag period in which control rates are observed. This reduced initiation rate is due to inhibition of the binding of Methionyl-tRNAf to native 40S ribosomal subunits and is caused by a macromolecular inhibitor which is activated under these conditions. This paper shows that the inhibitors activated in these two situations appear to be different entities, but that in both cases, the inhibitor has an associated protein kinase activity which is highly selective for the small subunit of elF-2, the initiation factor which catalyzes binding of Methionyl-tRNAf to 40S subunits. We present several lines of evidence in support of the hypothesis that the phosphorylation of elF-2 by these kinases is basis of the control of initiation in lysates incubated under these conditions.  相似文献   

13.
S E Carberry  D J Goss 《Biochemistry》1991,30(28):6977-6982
The interaction of wheat germ eIF-3 with the wheat germ cap-binding proteins eIF-(iso)4F and eIF-4F as a function of pH and ionic strength is described. Direct fluorescence titration experiments are used to measure the equilibrium association constants (Keq) for the binary protein/protein complexes as well as for the interaction of eIF-3 with methylated cap analogues and rabbit alpha-globin mRNA oligonucleotide analogues. The Keq values for ternary eIF-3/eIF-(iso)4F/analogue and eIF-3/eIF-4F/analogue interactions were also measured. The equilibrium binding constants were used to calculate coupling free energies, which provide an estimate of the cooperativity for the interaction of the mRNA analogues, eIF-3, and either eIF-4F or eIF-(iso)4F. These data suggest a mechanism in which the binding of eIF-(iso)4F or eIF-4F to mRNA enhances the subsequent binding of eIF-3 to the message. This may lead to favorable positioning of the complex on the ribosome and thereby enhance translation.  相似文献   

14.
Recent observations have indicated that eukaryotic initiation factor (eIF)-2 and GTP or GDP normally bind to 60 S ribosomal subunits in rabbit reticulocyte lysate and that when eIF-2 alpha is phosphorylated and polypeptide chain initiation is inhibited, eIF-2 X GDP accumulates on 60 S subunits due to impaired dissociation that is normally mediated by the reversing factor (eIF-2B). Current findings now indicate that inhibition due to phosphorylation of eIF-2 alpha is mediated, at least in part, by the inability to dissociate eIF-2 X GDP from the 60 S subunit of complete initiation complexes. At the onset of inhibition, there is an accumulation of Met-tRNA(f) and eIF-2 on the polysomes, despite a marked reduction in Met-tRNA(f) bound to 40 S subunits and Met-peptidyl-tRNA bound to the polysomes. This initial effect is not associated with the formation of "half-mers" (polysomes containing an extra unpaired 40 S subunit), and the 40 S X Met-tRNA(f) complexes, though reduced, still sediment at 43 S. When inhibition is maximal and the polysomes are largely disaggregated, there is an accumulation of 48 S complexes consisting of a 40 S subunit and Met-tRNA(f) bound to globin mRNA as well as small polysomal half-mers, such that residual protein synthesis occurs to about the same degree on "1 1/2"s and "2 1/2"s as on mono-, di-, and triribosomes. Exogenous eIF-2B increases protein synthesis on mono-, di-, and triribosomes and decreases that on half-mers. This is associated with reduced binding of Met-tRNA(f) and eIF-2 to ribosomal particles sedimenting at 80 S and greater and a shift from 48 S to 43 S complexes. These results suggest that eIF-2B must normally promote dissociation of eIF-2 X GDP from the 60 S subunit of complete initiation complexes before they can elongate but cannot when eIF-2 alpha is phosphorylated, resulting in the accumulation of these complexes, some of which dissociate into Met-tRNA(f) X 40 S X mRNA and 60 S X eIF-2 X GDP.  相似文献   

15.
The likely concentrations of free magnesium ions in assay systems measuring ternary complex formation with the eukaryotic initiation factor eIF-2 and the exchange of bound GDP have been calculated. Contrary to the suggestion of Roy et al. (Biochem. Biophys. Res. Commun. 146, 114-120) amounts of added tRNA are unlikely to sequester sufficient magnesium ions to affect significantly their role in the assays. There seems little correlation between methionyl-tRNA added and the extent of ternary complex formation in published data other than that expected from mass action. In vivo the concentration of methionyl-tRNA is probably greater than or equal to that of eIF-2 which is shown to be necessary for efficient functioning of the initiation factor.  相似文献   

16.
U A Bommer  G Lutsch  J Stahl  H Bielka 《Biochimie》1991,73(7-8):1007-1019
More than ten different protein factors are involved in initiation of protein synthesis in eukaryotes. For binding of initiator tRNA and mRNA to the 40S ribosomal subunit, the initiation factors eIF-2 and eIF-3 are particularly important. They consist of several different subunits and form stable complexes with the 40S ribosomal subunit. The location of eIF-2 and eIF-3 in these complexes as well as the interactions of the individual components have been analyzed by biochemical methods and electron microscopy. The results obtained are summarized in this article, and a model is derived describing the spatial arrangement of eIF-2 and eIF-3 together with initiator tRNA and mRNA on the 40S subunit. Conclusions on the location of functionally important sites of eukaryotic small ribosomal subunits are discussed with regard to the respective location of these sites in the prokaryotic counterpart.  相似文献   

17.
18.
We have isolated genomic and cDNA clones encoding protein synthesis initiation factor eIF-4E (mRNA cap-binding protein) of the yeast Saccharomyces cerevisiae. Their identity was established by expression of a cDNA in Escherichia coli. This cDNA encodes a protein indistinguishable from purified eIF-4E in terms of molecular weight, binding to and elution from m7GDP-agarose affinity columns, and proteolytic peptide pattern. The eIF-4E gene was isolated by hybridization of cDNA to clones of a yeast genomic library. The gene lacks introns, is present in one copy per haploid genome, and encodes a protein of 213 amino acid residues. Gene disruption experiments showed that the gene is essential for growth.  相似文献   

19.
Phosphorylation of the alpha subunit of eukaryotic initiation factor 2 (eIF-2) is a major mechanism regulating protein synthesis in rabbit reticulocytes. To determine whether phosphorylation of eIF-2 alpha is a likely regulatory mechanism in the Ehrlich cell, we have measured the percent of cellular eIF-2 alpha which is phosphorylated in cells exposed to heat shock, 2-deoxyglucose, or amino acid deprivation, conditions which rapidly decrease the concentration of 40 S initiation complexes and inhibit protein synthesis. eIF-2 alpha and eIf-2 alpha (P) were separated by isoelectric focusing and were detected by immunoblotting with a monoclonal antibody we developed for this purpose. Under the above three inhibitory conditions, phosphorylation of eIF-2 alpha increased rapidly, and this increase correlated in time with the rapid inhibition of protein synthesis. In heat-shocked cells which were returned to 37 degrees C, both phosphorylation and protein synthesis remained unchanged for 10 min and then returned toward control values slowly and in parallel. The close temporal correspondence between changes in protein synthesis and phosphorylation supports an important regulatory role for phosphorylation in protein synthesis. An increase of 25-35 percentage points, to 50-60% phosphorylation from control levels of 20-30% phosphorylation, correlated with an 80-100% inhibition of protein synthesis. This steep curve of inhibition is consistent with a mechanism in which eIF-2 alpha (P) saturates and inhibits the guanine-nucleotide exchange factor.  相似文献   

20.
R S Ranu 《FEBS letters》1986,208(1):117-122
The heme-regulated protein kinase, which specifically phosphorylates the 38-kDa subunit of initiation factor eIF-2, can utilize adenosine 5'-O-(3-thiotriphosphate) (ATP[gamma S]) as a substrate. The rate of thiophosphorylation is 5-6-times slower than that observed with ATP. It is of special interest that thiophosphorylated derivatives of eIF-2 are resistant to dephosphorylation catalyzed by eIF-2 phosphoprotein phosphatase. The thiophosphorylated eIF-2 is less effective in promoting protein synthesis in hemin-deficient lysates under physiological conditions. In addition, ATP[gamma S] could also be utilized by the self-phosphorylation activity intrinsically associated with HRI.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号