首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Hormonal regulation of phosphatidylinositol breakdown   总被引:3,自引:0,他引:3  
J N Fain  S H Lin  I Litosch  M Wallace 《Life sciences》1983,32(18):2055-2067
Cyclic AMP and Ca2+ are intracellular mediators of hormone action. Catecholamines interact with beta adrenoceptors to activate adenylate cyclase or with alpha 2 adrenoceptors to inhibit adenylate cyclase. Alpha 1 adrenoceptor activation results in elevation of cytosol Ca2+ and an increased breakdown of phosphatidylinositol. In blowfly salivary glands, 5-hydroxytryptamine (5-HT) interacts with beta type receptors resulting in adenylate cyclase activation while alpha type receptors are involved in phosphatidylinositol breakdown and elevation of cytosol Ca2+. The link between Ca2+ mobilization and phosphatidylinositol breakdown remains to be established but breakdown of the receptor-regulated pool of phosphatidylinositol is not secondary to the rise in Ca2+. Direct addition of 5-HT to cell-free homogenates of blowfly salivary glands results in activation of phosphatidylinositol breakdown in the absence of Ca2+. In rat liver plasma membrane preparations, vasopressin increases phosphatidylinositol breakdown in the absence of Ca2+ or cytosol if deoxycholate is present. The data do not indicate whether hormone activation increases the availability of substrate to enzymatic hydrolysis or activates phospholipase C. However, they demonstrate that hormones directly accelerate phosphatidylinositol breakdown.  相似文献   

2.
Cyclic AMP-increasing agents such as PGE2 and dibutyryl cAMP inhibited the fMLP-induced inositol phospholipids metabolism mainly through the suppression of the conversion of phosphatidylinositol(PI) to phosphatidylinositol 4,5-bisphosphate(PIP2). A part of this inhibition was found to be caused by the inhibitory effect of cAMP on PI kinase using isolated plasma membranes. On the other hand, 12-O-tetradecanoyl phorbol acetate(TPA) mainly inhibited the conversion of phosphatidylinositol 4-phosphate(PIP) to PIP2 without a significant effect on the fMLP-induced breakdown of PIP2, though direct effect of TPA on PI and PIP kinases was not demonstrated in isolated plasma membranes. Concerning Ca2+ mobilization, both cAMP-increasing agents and TPA inhibited the fMLP-induced second phase of Ca2+ elevation, while they did not affect the first phase of Ca2+ rapid increase. However, Ca2+ ionophore ionomycin-induced Ca2+ elevation was only inhibitable by TPA but not PGE2. These results suggest that cAMP inhibits the fMLP-induced Ca2+ influx, while TPA stimulates Ca2+ removal from cytosol.  相似文献   

3.
K Machoczek  M Fischer  H D S?ling 《FEBS letters》1989,251(1-2):207-212
Lipocortins I and II, known to inhibit phospholipase A2, have been purified from bovine lung and tested with respect to their ability to affect the enzymatic activities of phosphoinositide- and polyphosphoinositide-specific phospholipase C from human platelets, rat liver cytosol or rat brain membranes. At 0.67 microM, both lipocortins led to complete inhibition of phospholipase C activity with either phosphatidylinositol or phosphatidylinositol 4,5-bisphosphate as substrate. The inhibition could be overcome by increasing the substrate concentration. Ultracentrifugation studies with lipocortin II showed a direct interaction between phosphatidylinositol and the lipocortin, indicating that the lipocortins inhibit phospholipase C not directly but by interacting with the substrate. In experiments with plasma membranes from [3H]inositol-labeled HL-60 cells, lipocortin II did not affect PI-specific phospholipase C activity in the absence or presence of calcium plus or minus GTP-gamma-S.  相似文献   

4.
The phospholipase C (PLC) isoform most important during agonist-activated IP(3) production in vascular smooth muscle is still unknown. When PLC activity in rat tail artery homogenate was determined, this activity was shown to be inhibited by an antibody directed against PLCbeta2. Antibodies directed against the gamma1, beta1, beta3 and delta1 isoforms of PLC failed to inhibit PLC activity in this tissue. Both PLCbeta2 and PLCgamma1 were isolated from rat tail artery by DEAE column chromatography and PLCbeta2 activity was shown to be 3-fold greater than PLCgamma1 activity. When rat tail artery was treated with norepinephrine (10 mM), PLCbeta2 was shown to translocate from cytosol to membranes. When subcellular fractions of rat tail artery were isolated by sucrose density gradient centrifugation, including nuclei, plasma membrane, and cytosol, PLCbeta2 was detected in the plasma membrane and the cytosol but not in the nuclei. PLCdelta1 and PLCgamma1 were found only in cytosol. This evidence is consistent with the model wherein an agonist such as norepinephrine can activate smooth muscle contraction via interaction with a plasma membrane receptor which can easily interact with a plasma membrane-associated isoform of PLC, such as PLCbeta2.  相似文献   

5.
Subcellular fractions were isolated from a rat beta-cell tumour by centrifugation of homogenates on Percoll and Urografin density gradients. Fractions were incubated with [gamma-32P]ATP, and labelling of phosphatidylinositol 4-phosphate and phosphatidylinositol 4,5-bisphosphate was used to measure phosphatidylinositol kinase and phosphatidylinositol 4-phosphate kinase activities, respectively. The distribution of enzyme markers in density gradients indicated that phosphatidylinositol kinase was located in both the plasma membrane and the secretory-granule membrane. Phosphatidylinositol 4-phosphate kinase activity was low in all fractions. Phosphatidylinositol kinase activity of secretory granules and plasma membranes was decreased to 10-20% of its initial value by raising the free [Ca2+] from 1 microM to 5 microM. The enzyme had a Km (apparent) for ATP of 110 microM (secretory granule) or 120 microM (plasma membrane) and a Ka for Mg2+ of 7 mM (secretory granule) or 6 mM (plasma membrane). Ca2+-sensitivity of phosphatidylinositol kinase in calmodulin-depleted secretory granules and plasma membranes was not affected by addition of exogenous calmodulin, although activity was stimulated by trifluoperazine in the presence of 0.1 microM or 40 microM-Ca2+. Trifluoperazine oxide had no effect on the enzyme activity of secretory granules. Plasma membranes had a phosphatidylinositol 4-phosphate phosphatase activity which was stimulated by raising the free [Ca2+] from 0.1 to 40 microM. The secretory granule showed no phosphatidylinositol 4-phosphate-degrading activity. These results suggest the presence in the tumour beta-cell of Ca2+-sensitive mechanisms responsible for the metabolism of polyphosphoinositides in the secretory granule and plasma membrane.  相似文献   

6.
A technique employing sucrose-density centrifugation for the enrichment of rat liver microsomes and rat liver plasma membranes in separate subcellular fractions is described. The fractions are enriched in glucose 6-phosphatase and 5'-nucleotidase, respectively, and are free of cytochrome oxidase activity. Vanadate-sensitive Ca2+ transport activity (half-maximal inhibition at approximately 10 microM vanadate, corresponding to approximately 12 nmol/mg of protein) was detected in only that fraction enriched in microsomal membranes. Inhibition by vanadate of ATP-dependent Ca2+ transport is noncompetitive with respect to added Ca2+ but competitive with respect to added ATP. Because it inhibits ATP-dependent Ca2+ transport in rat liver microsomes but not in rat liver plasma membranes, vanadate becomes a useful tool to distinguish in vitro between these two transport systems.  相似文献   

7.
5'-guanylylimidodiphosphate (GppNHp) in the presence of deoxycholate, stimulated the phospholipase C-mediated hydrolysis of exogenous [3H]phosphatidylinositol 4,5-bisphosphate ([3H]PIP2) to myo-[3H]inositol 1,4,5-trisphosphate in rat liver plasma membranes. Activation was not specific for guanine nucleotides as 5'-adenylylimidodiphosphate, imidodiphosphate and pyrophosphate stimulated the enzyme with similar efficacies and potencies. Enzyme activation by GppNHp was most pronounced when [3H]PIP2 was used as substrate. No added Ca++ was required for [3H]PIP2 breakdown but hydrolysis was inhibited by divalent ion chelators. GppNHp stimulation was apparent in the presence of Ca++ or Mg++ as well as chelator concentrations that partially inhibited the enzyme, indicating that this effect was not attributed to changes in affinity of these divalent cations for the enzyme or substrate. These results suggest that guanine nucleotides can stimulate the hydrolysis of exogenous [3H]PIP2 in rat liver membranes by a non-specific effect probably due to the interaction of the diphosphate moiety with the enzyme or substrate.  相似文献   

8.
We have characterized a plasma membrane phosphatidylinositol 4,5-bisphosphate (PIP2)-specific phospholipase C (PLC) and a cytosolic phosphatidylinositol (PI)-specific PLC in human liver. Epinephrine, 1 x 10(-5) M, and vasopressin, 1 x 10(-8) M, stimulated PIP2-PLC which was enhanced by guanosine 5'-O-(3-thiotriphosphate) (GTP gamma S). PI-PLC stimulation was not observed by these agents. Insulin and insulin-like growth factors (IGF-I and IGF-II) in the presence and absence of GTP gamma S did not stimulate PIP2-PLC or PI-PLC in plasma membranes and cytosol preparations nor phosphoinositide breakdown in isolated human hepatocytes. Furthermore, serendipitly we found that PIP2-PLC activity was increased in liver membranes from obese patients with type II diabetes when compared to obese and lean controls. We conclude that in human liver, insulin and IGFs are not members of the family of hormones generating inositol trisphosphate (IP3) as a second messenger. Furthermore, the increased PIP2-PLC in diabetic liver may result in: (a) increased intracellular concentrations of IP3 and thus increased Ca2+, which has been postulated to induce insulin resistance; and (b) increased diacylglycerol and thus increased protein kinase C which phosphorylates the insulin receptor at serine residues inactivating the insulin receptor kinase. While the mechanism of increased PIP2-PLC activity in diabetes is unknown, it may initiate a cascade of events that result in insulin resistance.  相似文献   

9.
The effect of regucalcin, a calcium-binding protein isolated from rat liver cytosol, on deoxyuridine 5′-triphosphatase (dUTPase) in the cytosol of rat liver was investigated. Addition of Ca2+ up to 5.0 μM to the enzyme reaction mixture caused a significant decrease of dUTPase activity, while Zn2+, Cd2+, Co2+, Al3+, Mn2+ and Ni2+ (10 μM) did not have an appreciable effect. The Ca2+-induced decrease of dUTPase activity was reversed by the presence of regucalcin; the effect was complete at 1.0 μM of the protein. Regucalcin had no effect on the basal activity of the enzyme. Meanwhile, the reversible effect of regucalcin on the Ca2+ (10 μM)-induced decrease of dUTPase activity was not altered by the coexistence of Cd2+ or Zn2+ (10 μM). The present data suggest that liver cytosolic dUTPase is uniquely regulated by Ca2+ of various metals, and that the Ca2+ effect is reversed by regucalcin.  相似文献   

10.
The role of Ca2+ in stimulation of the malate-aspartate shuttle by norepinephrine and vasopressin was studied in perfused rat liver. Shuttle capacity was indexed by measuring the changes in both the rate of production of glucose from sorbitol and the ratio of lactate to pyruvate during the oxidation of ethanol. (T. Sugano et al. (1986) Amer. J. Physiol. 251, E385-E392). Asparagine (0.5 mM), but not alanine (0.5 mM) decreased the ethanol-induced responses. Norepinephrine and vasopressin had no effect on the ethanol-induced responses when the liver was perfused with sorbitol or glycerol. In the presence of 0.25 mM alanine, norepinephrine, vasopressin, and A23187 decreased the ethanol-induced responses that occurred with the increase of flux of Ca2+. In liver perfused with Ca2+-free medium, asparagine also decreased the ethanol-induced responses, but norepinephrine and vasopressin had no effect. Aminooxyacetate inhibited the effects of norepinephrine, A23187, and asparagine. Regardless of the presence or absence of perfusate Ca2+, the combination of glucagon and alanine had no effect on the ethanol-induced responses. Norepinephrine caused a decrease in levels of alpha-ketoglutarate, aspartate, and glutamate in hepatocytes incubated with Ca2+. The present data suggest that the redistribution of cellular Ca2+ may activate the efflux of aspartate from mitochondria in rat liver, resulting in an increase in the capacity of the malate-aspartate shuttle.  相似文献   

11.
Calcium modulates fatty acid dynamics in rat liver plasma membranes   总被引:1,自引:0,他引:1  
Modulation of free fatty acid binding in isolated rat liver plasma membranes was evaluated using the fluorescent fatty acids trans-parinaric and cis-parinaric acid as analogues for saturated and unsaturated fatty acids, respectively. Binding of trans-parinarate but not cis-parinarate was inhibited by physiological levels of Ca2+. The effect was reversed by addition of excess EGTA. Calcium decreased the aqueous to lipid partition coefficient, Kp, of trans-parinaric acid for liver plasma membranes while increasing the Kp for cis-parinaric acid. In addition, Ca2+ also altered the fluorescence lifetime, the quantum yield, and the relative partitioning of trans-parinaric and cis-parinaric acid into fluid and solid phases. Calcium and EGTA did not affect the binding of 1,6-diphenyl-1,3,5-hexatriene. The effect of Ca2+ on the liver plasma membrane structure was to increase the rigidity of the membrane, primarily the solid domain. The fluorescence polarization of trans-parinarate, cis-parinarate, and 1,6-diphenyl-1,3,5-hexatriene at 24 degrees C in liver plasma membranes in the absence of Ca2+ was 0.295 +/- 0.008, 0.253 +/- 0.007, and 0.284 +/- 0.005, respectively. Calcium (2.4 mM) increased the polarization of these probe molecules in liver plasma membranes by 8-10%. EGTA (3.4 mM) reversed or abolished the increase in polarization. Thus, the fluorescent fatty acids trans-parinarate and cis-parinarate may be used to monitor fatty acid binding by isolated membranes, to evaluate factors such as Ca2+ which modulate fatty acid binding, and to investigate the microenvironment in which the fatty acids residue. The data suggest that Ca2+ may be an important regulator of fatty acid uptake by the liver plasma membrane, and thereby interact with intermediary metabolism of lipids at a step not involving lipolytic or synthetic enzymes.  相似文献   

12.
The phosphatidylinositol-4-phosphate kinase activity in rat liver showed a subcellular distribution different from that of phosphatidylinositol kinase. It was preferentially associated with plasma membrane-rich subcellular fractions, while no or minimal activity could be ascribed to mitochondria, lysosomes, Golgi membranes or the endoplasmic reticulum. The plasma membrane enzyme phosphorylated endogenous and exogenously added phosphatidylinositol 4-phosphate at comparable initial rates. The phosphorylation of endogenous substrate was strongly inhibited by Triton X-100, while the phosphorylation of added substrate was enhanced, suggesting that endogenous phosphatidylinositol 4-phosphate was readily available to the enzyme in unperturbed plasma membranes. The total activity of phosphatidylinositol-4-phosphate kinase in rat liver was only 1/20 that of phosphatidylinositol kinase. The enzyme activity showed an unusually broad pH-optimum in the neutral range. Mg2+ was the preferred divalent cation and Km towards ATP was about 3-fold higher than the corresponding value for phosphatidylinositol kinase.  相似文献   

13.
Incubation of a crude rat liver plasma membrane preparation with [gamma-32P]ATP resulted in a rapid Mg2+-dependent incorporation of 32P into phosphatidylinositol 4-phosphate and phosphatidylinositol 4,5-bisphosphate. Preincubation of the membranes with cholera toxin under ADP-ribosylating conditions reduced the labeling of the polyphosphoinositides. This action of cholera toxin required NAD+ and guanine nucleotides, was dose-dependent with respect to cholera toxin, and could not be mimicked by cAMP. It therefore appears that ADP-ribosylation of the stimulatory guanine nucleotide-binding regulatory protein of adenylate cyclase, or another G-protein, in rat liver plasma membranes affects the activity of enzymes in the polyphosphoinositide pathway.  相似文献   

14.
The activation of phosphoinositide-specific phospholipase C by ethanol was compared in hepatocytes isolated from ethanol-fed rats and from pair-fed control animals. Ethanol (100-300 mM) caused a dose-dependent transient increase in cytosolic free Ca2+ levels in indo-1-loaded hepatocytes from both groups of animals. The rate of Ca2+ increase was similar in hepatocytes from control and ethanol-fed rats, but the decay of the Ca2+ increase was somewhat slower in the latter preparation. The ethanol-induced Ca2+ increase caused activation of glycogen phosphorylase, with 50% response at 50 mM-ethanol and a maximal response at 150-200 mM-ethanol, not significantly different in hepatocytes from control and ethanol-fed animals. Ins(1,4,5)P3 formation in response to ethanol (300 mM) or vasopressin (2 nM or 40 nM) was also similar in the two preparations. It is concluded that long-term ethanol feeding does not lead to an adaptive response with respect to the ethanol-induced phospholipase C activation in rat hepatocytes. The ability of ethanol in vitro to decrease membrane molecular order in liver plasma membranes from ethanol-fed and control rats was measured by e.s.r. Membranes from ethanol-fed animals had a significantly lower baseline order parameter compared with control preparations (0.313 and 0.327 respectively), indicative of decreased membrane molecular order. Addition of 100 mM-ethanol significantly decreased the order parameter in control preparations by 2.1%, but had no effect on the order parameter of plasma membranes from ethanol-fed rats, indicating that the plasma membranes had developed tolerance to ethanol, similar to other membranes in the liver. Thus the membrane structural changes associated with this membrane tolerance do not modify the ethanol-induced activation of phospholipase C. The transient activation of phospholipase C by ethanol in hepatocytes may play a role in maintaining an adaptive phenotype in rat liver.  相似文献   

15.
1. Plasma membranes from ascites hepatoma cells (AH-7974, AH-130) contained much smaller amounts of calmodulin (about half) and cyclic AMP phosphodiesterase (about one-third) compared to plasma membranes of rat livers. 2. Some of calmodulin molecules in liver plasma membranes were released by repeated washing. The 'washed' liver plasma membranes showed the presence of specific binding sites for externally added calmodulin molecules (bovine brain) (N = 140 pmol/mg protein, Kd = 7.9 . 10(-8) M). The calmodulin content of AH-7974 plasma membranes was not reduced by repeated washing. The binding of calmodulin to the 'washed' AH-7974 plasma membranes was only of nonspecific nature with negative cooperativity. 3. Plasma membranes (liver and AH-7974) appeared to contain both calmodulin-dependent and calmodulin-independent phosphodiesterase, but the stimulation by externally added Ca2+ plus calmodulin was rather small. Externally added calmodulin-dependent phosphodiesterase (bovine brain) was bound more to 'washed' liver plasma membranes than to 'washed' AH-7974 plasma membranes. Newly bound phosphodiesterase appeared to be more sensitive to the stimulation by Ca2+ plus calmodulin in 'washed' hepatoma plasma membranes than in 'washed' liver plasma membranes. 4. Preincubation of 'washed' plasma membranes (liver and hepatoma) with calmodulin did not affect the binding of phosphodiesterase, but the sensitivity of phosphodiesterase to the stimulation by Ca2+ plus calmodulin in hepatoma plasma membranes was lost.  相似文献   

16.
The ornithine decarboxylase activity and the polyamine content in the fraction of plasma membranes and cytosol of the rat liver are studied in the early period (1-4 weeks) of nitrosodiethyl amine-induced hepatocarcinogenesis. The enzyme activity and polyamine levels in the cytosol of the rat liver cells are found to increase sharply during the first month of the disease, the maximum being observed the first-second week. By the end of the fourth week these indices become lower but they remain significantly higher than the normal levels. The polyamine level increases considerably in the fraction of plasma membranes with the maximum observed the second week.  相似文献   

17.
A phospholipase C prepared from lymphocytes readily hydrolysed pure phosphatidyl-inositol but was relatively ineffective against phosphatidylinositol in erythrocyte "ghosts" and rat liver microsomal fraction and also against sonicated lipid extracts from these membranes. In contrast, a phospholipase C prepared from Staphylcoccus aureus readily hydrolysed phosphatidylinositol in sonicated lipid extracts but had only low activity against purified phosphatidylinositol. Unlike the enzyme from lymphocytes, the S. aureus phospholipase C did not require Ca2+ for its activity and was inhibited by cations. The previously reported specificity of this enzyme was confirmed by our observation of hydrolysis of approx. 75% of the phosphatidylinositol in ox, sheep and cat erythrocyte "ghosts" together with no detectable effect on the major erythrocyte membrane phospholipids. The phosphatidylinositol of rat liver microsomal fraction was hydrolysed only to a maximum of 15%. Some preliminary experiments showed that approx. 60% of the phosphatidylinositol of ox or sheep erythrocytes could be hydrolysed without causing substantial haemolysis.  相似文献   

18.
Chlortetracycline complexes with di- and trivalent cations resulting in an enhancement of its fluorescence emission intensity. Rabbit peritoneal neutrophils loaded with chlortetracycline gave a fluorescence response, even in the absence of extracellular Ca2+ and Mg2+, by a decrease in fluorescence intensity. The shift in the fluorescence emission maximum to lower wavelengths after the response suggested the response to be due to Ca2+ and not Mg2+ flux. The response was elicited by three mechanisms--a receptor-mediated mechanism by the chemotactic peptide, an ionophore-mediated one by lasalocid, and a detergent-mediated response by digitonin. These observations indicated that the response was due to transport of calcium across membranes in the intracellular compartments and may be physiologically significant. Whereas extracellular Ca2+ did not significantly affect the chemotactic peptide and lasalocid-mediated responses, Ca2+ inhibited the digitonin-mediated responses in a dose-dependent manner possibly due to extracellular Ca2+ flooding the cytosol through the digitonin-permeabilized plasma membrane and equilibrating the Ca2+ gradient across the intracellular membranes. The data collectively indicate that the fluorescence response is due to release of Ca2+ across intracellular membranes from a Ca2+ storage site into the cytosol.  相似文献   

19.
Regulation of phosphatidylinositol kinase (EC 2.7.1.67) and phosphatidylinositol 4-phosphate (PtdIns4P) kinase (EC 2.7.1.68) was investigated in highly enriched plasma-membrane and cytosolic fractions derived from cloned rat pituitary (GH3) cells. In plasma membranes, phosphatidylinositol 4,5-bisphosphate [PtdIns(4,5)P2] added exogenously enhanced incorporation of [32P]phosphate from [gamma-32P]MgATP2- into PtdIns(4,5)P2 and PtdIns4P to 150% of control; half-maximal effect occurred with 0.03 mM exogenous PtdIns(4,5)P2. Exogenous PtdIns4P and phosphatidylinositol (PtdIns) had no effect. When plasma membranes prepared from cells prelabelled to isotopic steady state with [3H]inositol were used, there was a MgATP2- dependent increase in the content of [3H]PtdIns(4,5)P2 and [3H]PtdIns4P that was enhanced specifically by exogenous PtdIns(4,5)P2 also. Degradation of 32P- and 3H-labelled PtdIns(4,5)P2 and PtdIns4P within the plasma-membrane fraction was not affected by exogenous PtdIns(4,5)P2. Phosphoinositide kinase activities in the cytosolic fraction were assayed by using exogenous substrates. Phosphoinositide kinase activities in cytosol were inhibited by exogenously added PtdIns(4,5)P2. These findings demonstrate that exogenously added PtdIns(4,5)P2 enhances phosphoinositide kinase activities (and formation of polyphosphoinositides) in plasma membranes, but decreases these kinase activities in cytosol derived from GH3 cells. These data suggest that flux of PtdIns to PtdIns4P to PtdIns(4,5)P2 in the plasma membrane cannot be increased simply by release of membrane-associated phosphoinositide kinases from product inhibition as PtdIns(4,5)P2 is hydrolysed.  相似文献   

20.
Studies are reported of the biochemical and pharmacological characteristics of the stimulation of phosphatidylinositol metabolism that is produced in appropriate target tissues by stimulation of various receptors that use Ca(2+) as their second messenger. (1) Muscarinic cholinergic and alpha-adrenergic phosphatidylinositol responses were observed in rat lacrimal gland, and a response to caerulein was detected in the longitudinal smooth muscle of guinea-pig ileum. (2) The muscarinic cholinergic phosphatidylinositol response of rat lacrimal gland, like that of several other tissues, is not dependent on the availability of extracellular Ca(2+). (3) Three phosphatidylinositol responses, namely to histamine in guinea-pig ileum smooth muscle, to alpha-adrenergic stimulation in rat vas deferens and to muscarinic cholinergic stimulation in rat lacrimal gland, were all found to involve phosphatidylinositol breakdown. (4) The stereospecificity of the muscarinic receptor responsible for the phosphatidylinositol response of guinea-pig pancreas was tested by using the two stereoisomeric forms of acetyl-beta-methylcholine; the S-isomer was very much more active than the R-isomer in provoking both phosphatidylinositol breakdown and its labelling with (32)P, as it is in provoking other physiological responses such as contractility or secretion. (5) Pilocarpine, a muscarinic partial agonist, provoked a significantly smaller phosphatidylinositol breakdown in rat parotid fragments than did carbamoylcholine, a potent muscarinic agonist. (6) All of these results are consistent with, but do not prove, a previously offered hypothesis that suggests that phosphatidylinositol breakdown is a reaction essential to stimulus-response coupling at a variety of cell-surface receptors that mobilize Ca(2+) from and through the plasma membranes of target tissues.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号