首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 171 毫秒
1.
J Inazawa  R Fukunaga  Y Seto  H Nakagawa  S Misawa  T Abe  S Nagata 《Genomics》1991,10(4):1075-1078
The gene for the granulocyte colony-stimulating factor (G-CSF) receptor (CSF3R) was localized on the p35-p34.3 region of human chromosome 1 by in situ hybridization using human G-CSF receptor cDNA as the probe. Polymerase chain reaction using oligonucleotides specific for the human CSF3R produced a specifically amplified DNA fragment with DNA from mouse A9 cells that contained human chromosome 1 but not other human chromosomes. Localization of the CSF3R on chromosome 1 was further confirmed by the spot-blot hybridization of sorted human chromosomes.  相似文献   

2.
The gene for the granulocyte colony-stimulating factor (G-CSF) receptor (CSF3R) was localized on the p35–p34.3 region of human chromosome 1 by in situ hybridization using human G-CSF receptor cDNA as the probe. Polymerase chain reaction using oligonucleotides specific for the human CSF3R produced a specifically amplified DNA fragment with DNA from mouse A9 cells that contained human chromosome 1 but not other human chromosomes. Localization of the CSF3R on chromosome 1 was further confirmed by the spot-blot hybridization of sorted human chromosomes.  相似文献   

3.
Gene chromosomal assignment can be realized not only by somatic hybrid panels but also by spot-blot hybridization or polymerase chain reaction (PCR) of flow-sorted chromosomes. We propose a swine chromosome assignment strategy by PCR amplification on pooled chromosomal DNA, which allows assignment despite possible chromosomal contamination during sorting. Each pool contains three different chromosomes, each chromosome being present in one or two pools. We present concordant results obtained for eight markers already mapped to different swine chromosomes and we assign the somatostatin gene to chromosome 13, a new marker in the pig genome.  相似文献   

4.
Summary Using dual-laser sorted chromosomes and spot-blot analysis, we have previously assigned genomic DNA sequences coding for human 1(IV) procollagen to chromosome 13 (Pihlajaniemi et al. 1985). By in situ hybridization to normal chromosomes and chromosomes with 13q deletions, we now report the localization of this gene to the terminal end of the long arm of chromosome 13. In addition, Southern and slot blot hybridization analysis clearly show that these genomic sequences are present only once per haploid genome.  相似文献   

5.
The human calpastatin gene (CAST) was assigned to chromosome 5 by spot-blot hybridization analysis with flow-sorted chromosomes, and it was further sublocalized to bands 5q14----q22 using in situ hybridization to metaphase chromosomes.  相似文献   

6.
We have employed a pulsed field gel electrophoresis and Alu hybridization approach for identification of large restriction fragments on chromosome 6 and 22. This technique allows large portions of selected human chromosomes to be visualized as discrete hybridization signals. Somatic cell hybrid DNA which contains chromosome 6 or chromosome 22 was restricted with either Notl or Mlul. The restriction fragments were separated by pulsed field gel electrophoresis (PFGE) and hybridized against an Alu repetitive sequence (Blur 8). The hybridization signals result in a fingerprint-like pattern which is unique for each chromosome and each restriction enzyme. In addition, a continuous pattern of restriction fragments was demonstrated by gradually increasing puls times. This approach will also be suitable to analyze aberrant human chromosomes retained in somatic cell hybrids and can be used to analyze flow sorted human chromosomes. To this end, our method provides a valuable alternative to standard cytogenetic analysis.  相似文献   

7.
The aldolase genes represent an ancient gene family with tissue-specific isozymic forms expressed only in vertebrates. The chromosomal locations of the aldolase genes provide insight into their tissue-specific and developmentally regulated expression and evolution. DNA probes for the human aldolase-A and -C genes and for an aldolase pseudogene were used to quantify and map the aldolase loci in the haploid human genome. Genomic hybridization of restriction fragments determined that all the aldolase genes exist in single copy in the haploid human genome. Spot-blot analysis of sorted chromosomes mapped human aldolase A to chromosome 16, aldolase C to chromosome 17, the pseudogene to chromosome 10; it previously had mapped the aldolase-B gene to chromosome 9. All loci are unlinked and located on to two pairs of morphologically similar chromosomes, a situation consistent with tetraploidization during isozymic and vertebrate evolution. Sequence comparisons of expressed and flanking regions support this conclusion. These locations on similar chromosome pairs correctly predicted that the aldolase pseudogene arose when sequences from the aldolase-A gene were inserted into the homologous aldolase location on chromosome 10.  相似文献   

8.
Summary We have determined the subchromosomal location of the human insulin gene by analyzing DNA isolated from sorted human metaphase chromosomes. Metaphase chromosome suspensions were sorted into fractions according to relative Hoechst fluorescence intensity by the fluorescence activated chromosome sorter. The chromosomal DNA in each fraction was characterized by restriction endonuclease analysis. Initial sorts indicated that the insulin gene-containing fragment resided in a fraction containing chromosomes 9, 10, 11 and 12. Studies of cell lines that contained chromosome translocations permitted the assignment of the insulin gene to a derivative chromosome that contains portions of the short arm of chromosome 11. Simultaneous sorting of the normal homolog from this small derivative chromosome separated the two different sized insulin gene-containing restriction fragments in this individual. These data indicate that the two restriction fragments represent insulin gene polymorphism and not duplicate gene loci.  相似文献   

9.
To establish the chromosomal location of the human ACHE gene encoding the acetylcholine hydrolyzing enzyme acetylcholinesterase (ACHE, acetylcholine acetylhydrolase, E.C. 3.1.1.7), a human-specific polymerase chain reaction (PCR) procedure that supports the selective amplification of ACHE DNA fragments from human genomic DNA was employed with 19 human-hamster somatic cell hybrids carrying one or more human chromosomes. Informative ACHE-specific PCR fragments were produced from two cell lines, both of which include human chromosome 7, but not with DNA from 17 cell hybrids carrying various combinations of all human chromosomes other than 7. Fluorescent in situ hybridization of biotinylated ACHE DNA with metaphase chromosomes from human peripheral blood lymphocytes revealed prominent labeling on the 7q22 position. Therefore, further tests were performed to confirm the chromosome 7 location. DNA samples from the two cell lines including chromosome 7 and the ACHE gene were positive with PCR primers informative for the human cystic fibrosis CFTR gene, known to reside at the 7q31.1 position, but negative for the ACHE-related butyrylcholinesterase (BCHE, acylcholine acylhydrolase, E.C. 3.1.1.8) gene, mapped at the 3q26-ter position, confirming that these lines contain chromosome 7 but not chromosome 3. In contrast, three other cell lines including chromosome 3, but not 7, were BCHE-positive and ACHE-negative. In addition, genomic DNA from a sorted chromosome 7 library supported the production of ACHE- but not BCHE-specific PCR products, whereas with DNA from a sorted chromosome 3 library, the BCHE but not the ACHE fragment was amplified.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

10.
A restriction endonuclease fragment derived from a cloned portion of human genomic DNA corresponding to the myelin basic protein gene has been used to map the position of this gene by in situ hybridization to human metaphase chromosomes. Ten percent of the radioactively labeled sites observed were on chromosome 18. Eighty-four percent of the grains on chromosome 18 were located within the region corresponding to 18q22----qter. This represents a greater than 10-fold increase in labeling at this position over the background grain distribution found along all of the other chromosomes.  相似文献   

11.
The aldolase B gene was mapped to chromosome 9 using a rapid gene mapping system. This system uses a dual-laser sorter to identify and separate metaphase human chromosomes stained with either DIPI-chromomycin or Hoechst-chromomycin. Chromosome panels were constructed from a normal cell line by sorting 22 chromosome fractions directly onto nitrocellulose filters. Twelve labeled gene probes hybridized to the sorted chromosomal DNA fractions predicted by previous chromosome assignments. Eighteen newly cloned genes have been mapped using the same protocol.  相似文献   

12.
In the medaka, Oryzias latipes, sex is determined chromosomally. The sex chromosomes differ from those of mammals in that the X and Y chromosomes are highly homologous. Using backcross panels for linkage analysis, we mapped 21 sequence tagged site (STS) markers on the sex chromosomes (linkage group 1). The genetic map of the sex chromosome was established using male and female meioses. The genetic length of the sex chromosome was shorter in male than in female meioses. The region where male recombination is suppressed is the region close to the sex-determining gene y, while female recombination was suppressed in both the telomeric regions. The restriction in recombination does not occur uniformly on the sex chromosome, as the genetic map distances of the markers are not proportional in male and female recombination. Thus, this observation seems to support the hypothesis that the heterogeneous sex chromosomes were derived from suppression of recombination between autosomal chromosomes. In two of the markers, Yc-2 and Casp6, which were expressed sequence-tagged (EST) sites, polymorphisms of both X and Y chromosomes were detected. The alleles of the X and Y chromosomes were also detected in O. curvinotus, a species related to the medaka. These markers could be used for genotyping the sex chromosomes in the medaka and other species, and could be used in other studies on sex chromosomes.  相似文献   

13.
To establish the chromosomal location of the human ACHE gene encoding the acetylcholine hydrolyzing enzyme acetylcholinesterase (ACHE, acetylcholine acetylhydrolase, E.C. 3.1.1.7), a human-specific polymerase chain reaction (PCR) procedure that supports the selective amplification of ACHE DNA fragments from human genomic DNA was employed with 19 human-hamster somatic cell hybrids carrying one or more human chromosomes. Informative ACHE-specific PCR fragments were produced from two cell lines, both of which include human chromosome 7, but not with DNA from 17 cell hybrids carrying various combinations of all human chromosomes other than 7. Fluorescent in situ hybridization of biotinylated ACHE DNA with metaphase chromosomes from human peripheral blood lymphocytes revealed prominent labeling on the 7q22 position. Therefore, further tests were performed to confirm the chromosome 7 location. DNA samples from the two cell lines including chromosome 7 and the ACHE gene were positive with PCR primers informative for the human cystic fibrosis CFTR gene, known to reside at the 7q31.1 position, but negative for the ACHE-related butyrylcholinesterase (BCHE, acylcholine acylhydrolase, E.C. 3.1.1.8) gene, mapped at the 3q26-ter position, confirming that these lines contain chromosome 7 but not chromosome 3. In contrast, three other cell lines including chromosome 3, but not 7, were BCHE-positive and ACHE-negative. In addition, genomic DNA from a sorted chromosome 7 library supported the production of ACHE- but not BCHE-specific PCR products, whereas with DNA from a sorted chromosome 3 library, the BCHE but not the ACHE fragment was amplified. These findings assign the human ACHE gene to a single locus on chromosome 7q22 and should assist in establishing linkage between the in vivo amplification of the ACHE gene in ovarian tumors and leukemias and the phenomenon of tumor-related breakage in the long arm of chromosome 7.  相似文献   

14.
A human serum amyloid A (SAA) cDNA was used as a probe in chromosome mapping studies to detect human SAA gene sequences in DNA isolated from human/mouse somatic cell hybrids. Southern analysis of DNA from 20 hybrid cell lines, including some with translocations of human chromosomes, placed the SAA gene(s) in the p11----pter region of chromosome 11. Screening of human DNA from unrelated individuals by Southern analysis using the SAA cDNA probe revealed restriction fragment polymorphisms for HindIII and PstI. An analysis of the segregation of these polymorphisms with other markers on the short arm of chromosome 11 should more precisely map the SAA gene(s).  相似文献   

15.
A sorted, cloned Y chromosome phage library was screened for unique Y chromosome sequences. Of the thousands of plaques screened, 13 did not hybridize to radiolabeled 46,XX total chromosomal DNA. Three plaques were characterized further. Clone Y1 hybridized to multiple restriction enzyme fragments in both male and female DNA with more intense bands in male DNA. Clone Y2, also found in female and male DNA, is probably located in the pseudosutosomal region because extra copies of either the X or Y chromosomes increased Y2 restriction enzyme fragment intensity in total cellular DNA. Clone Y5 was male specific in three of four restriction enzyme digests although in the fourth a light hybridizing band was observed in both male and female DNA. Clone Y5 was sublocalized to band Yq 11.22 by hybridization to a panel of cellular DNA from patients with Y chromosome rearrangements. Clone Y5 can be used to test for retention of the proximally long arm Y suggested to cause gonadal cancer in carrier females. The long series of GA repeats in Y5, anticipated to be polymorphic, may provide a sensitive means to follow Y chromosome variation in human populations.  相似文献   

16.
Using a high-speed flow cytometer/sorter, we constructed spot-blot "stamps" measuring 3.5 × 2.0 cm containing 21 separate human chromosome fractions. Through hybridization to these stamps, 20 randomly selected cDNAs were assigned to specific chromosomes. Sequencing and BLAST database screening confirmed the location of one gene (UCHL1) and allowed the assignment of two other previously identified genes (LRP130 and cDNA IB871.)  相似文献   

17.
The polymorphic Fc gamma receptor II gene maps to human chromosome 1q   总被引:5,自引:0,他引:5  
Human receptors for IgG (Fc gamma R) play important roles in the immune response. Expression of the human Fc gamma RII gene may be relevant in immune complex related disorders such as systemic lupus erythematosus and Sjogren's syndrome. We have used spot blot analysis of dual laser-sorted human chromosomes to localize the Fc gamma RII gene to human chromosome 1. Spot blot analysis of sorted derivative chromosomes sublocalized the gene to the chromosome 1 long arm (1q12----q25.1). This subchromosomal localization involved reassigning a reciprocal chromosome translocation breakpoint. We also identified Xmn I and Taq I Fc gamma RII polymorphic restriction sites that arose before the races diverged. These common Xmn I and Taq I polymorphisms are predicted to be informative for segregation analysis with human diseases in 85% of all matings.  相似文献   

18.
Na+, K+-ATPase is a heterodimeric enzyme responsible for the active maintenance of sodium and potassium gradients across the plasma membrane. Recently, cDNAs for several tissue-specific isoforms of the larger catalytic alpha-subunit and the smaller beta-subunit have been cloned. We have hybridized rat brain and human kidney cDNA probes, as well as human genomic isoform-specific DNA fragments, to Southern filters containing panels of rodent X human somatic cell hybrid lines. The results obtained have allowed us to assign the loci for the ubiquitously expressed alpha-chain (ATP1A1) to human chromosome 1, region 1p21----cen, and for the alpha 2 isoform that predominates in neural and muscle tissues (ATP1A2) to chromosome 1, region cen----q32. A common PstI RFLP was detected with the ATP1A2 probe. The alpha 3 gene, which is expressed primarily in neural tissues (ATP1A3), was assigned to human chromosome 19. A fourth alpha gene of unknown function (alpha D) that was isolated by molecular cloning (ATP1AL1) was mapped to chromosome 13. Although evidence to date had suggested a single gene for the beta-subunit, we found hybridizing restriction fragments derived from two different human chromosomes. On the basis of knowledge of conserved linkage groups on human and murine chromosomes, we propose that the coding gene ATP 1B is located on the long arm of human chromosome 1 and that the sequence on human chromosome 4 (ATP 1BL1) is either a related gene or a pseudogene.  相似文献   

19.
Draft sequence derived from the 46-Mb gene-rich euchromatic portion of human chromosome 19 (HSA19) was utilized to generate a sequence-ready physical map spanning homologous regions of mouse chromosomes. Sequence similarity searches with the human sequence identified more than 1000 individual orthologous mouse genes from which 382 overgo probes were developed for hybridization. Using human gene order and spacing as a model, these probes were used to isolate and assemble bacterial artificial chromosome (BAC) clone contigs spanning homologous mouse regions. Each contig was verified, extended, and joined to neighboring contigs by restriction enzyme fingerprinting analysis. Approximately 3000 mouse BACs were analyzed and assembled into 44 contigs with a combined length of 41.4 Mb. These BAC contigs, covering 90% of HSA19-related mouse DNA, are distributed throughout 15 homology segments derived from different regions of mouse chromosomes 7, 8, 9, 10, and 17. The alignment of the HSA19 map with the ordered mouse BAC contigs revealed a number of structural differences in several overtly conserved homologous regions and more precisely defined the borders of the known regions of HSA19-syntenic homology. Our results demonstrate that given a human draft sequence, BAC contig maps can be constructed quickly for comparative sequencing without the need for preestablished mouse-specific genetic or physical markers and indicate that similar strategies can be applied with equal success to genomes of other vertebrate species.  相似文献   

20.
Human apoprotein(apo) CI and apo AII cDNA probes have been used to analyze the segregation of the human genes in panels of human-mouse hybrids. The apo CI (APOCI) gene segregates with chromosome 19 and the apo AII (APOA2) gene with chromosome 1. Somatic cell hybrids containing chromosome translocations were used to map the apo AII gene to the 1p21-1qter region. Human APOA2 is polymorphic for the restriction endonuclease Msp I. Comparison of human and mouse chromosome 1 reveals a conserved group including apo AII, renin and peptidase genes and suggests that APOA2 will be found distal to this group on human chromosome 1. The mouse apo AII gene is closely linked with genes that regulate HDL structure. Similar HDL regulatory genes will probably be found near human APOA2.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号