首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Rhodopsin is the G-protein coupled photoreceptor that initiates the rod phototransduction cascade in the vertebrate retina. Using specific isotope enrichment and magic angle spinning (MAS) NMR, we examine the spatial structure of the C10-C11=C12-C13-C20 motif in the native retinylidene chromophore, its 10-methyl analogue, and the predischarge photoproduct metarhodopsin-I. For the rhodopsin study 11-Z-[10,20-(13)C(2)]- and 11-Z-[11,20-(13)C(2)]-retinal were synthesized and incorporated into bovine opsin while maintaining a natural lipid environment. The ligand is covalently bound to Lys(296) in the photoreceptor. The C10-C20 and C11-C20 distances were measured using a novel 1-D CP/MAS NMR rotational resonance experimental procedure that was specifically developed for the purpose of these measurements [Verdegem, P. J. E., Helmle, M., Lugtenburg, J., and de Groot, H. J. M. (1997) J. Am. Chem. Soc. 119, 169]. We obtain r(10,20) = 0.304 +/- 0.015 nm and r(11,20) = 0.293 +/- 0.015 nm, which confirms that the retinylidene is 11-Z and shows that the C10-C13 unit is conformationally twisted. The corresponding torsional angle is about 44 degrees as indicated by Car-Parrinello modeling studies. To increase the nonplanarity in the chromophore, 11-Z-[10,20-(13)C(2)]-10-methylretinal and 11-Z-[(10-CH(3)), 13-(13)C(2)]-10-methylretinal were prepared and incorporated in opsin. For the resulting analogue pigment r(10,20) = 0.347 +/- 0.015 nm and r((10)(-)(CH)()3())(,)(13) = 0.314 +/- 0.015 nm were obtained, consistent with a more distorted chromophore. The analogue data are in agreement with the induced fit principle for the interaction of opsin with modified retinal chromophores. Finally, we determined the intraligand distances r(10,20) and r(11,20) also for the photoproduct metarhodopsin-I, which has a relaxed all-E structure. The results (r(10,20) >/= 0.435 nm and r(11,20) = 0.283 +/- 0.015 nm) fully agree with such a relaxed all-E structure, which further validates the 1-D rotational resonance technique for measuring intraligand distances and probing ligand structure. As far as we are aware, these results represent the first highly precise distance determinations in a ligand at the active site of a membrane protein. Overall, the MAS NMR data indicate a tight binding pocket, well defined to bind specifically only one enantiomer out of four possibilities and providing a steric complement to the chromophore in an ultrafast ( approximately 200 fs) isomerization process.  相似文献   

2.
High-resolution solid-state NMR methods have been used to analyze the conformation of the chromophore in the late photointermediate metarhodopsin-I, from observation of (13)C nuclei introduced into the beta-ionone ring (at the C16, C17, and C18 methyl groups) and into the adjoining segment of the polyene chain (at C8). Bovine rhodopsin in its native membrane was also regenerated with retinal that was (13)C-labeled close to the 11-Z bond (C20 methyl group) to provide a reporter for optimizing and quantifying the photoconversion to metarhodopsin-I. Indirect photoconversion via the primary intermediate, bathorhodopin, was adopted as the preferred method since approximately 44% conversion to the metarhodopsin-I component could be achieved, with only low levels (approximately 18%) of ground-state rhodopsin remaining. The additional photoproduct, isorhodopsin, was resolved in (13)C spectra from C8 in the chain, at levels of approximately 38%, and was shown using rotational resonance NMR to adopt the 6-s-cis conformation between the ring and the polyene chain. The C8 resonance was not shifted in the metarhodopsin-I spectral component but was strongly broadened, revealing that the local conformation had become less well defined in this segment of the chain. This line broadening slowed rotational resonance exchange with the C17 and C18 ring methyl groups but was accounted for to show that, despite the chain being more relaxed in metarhodopsin-I, its average conformation with respect to the ring was similar to that in the ground state protein. Conformational restraints are also retained for the C16 and C17 methyl groups on photoactivation, which, together with the largely preserved conformation in the chain, argues convincingly that the ring remains with strong contacts in its binding pocket prior to activation of the receptor. Previous conclusions based on photocrosslinking studies are considered in view of the current findings.  相似文献   

3.
Sugihara M  Hufen J  Buss V 《Biochemistry》2006,45(3):801-810
To study the origin and the effects of steric strain on the chromophore conformation in rhodopsin, we have performed quantum-mechanical calculations on the wild-type retinal chromophore and four retinal derivatives, 13-demethyl-, 10-methyl-13-demethyl-, 10-methyl-, and 9-demethylretinal. For the dynamics of the whole protein, a combined quantum mechanics/molecular mechanics method (DFTB/CHARMM) was used and for the calculation of excited-state properties the nonempirical CASSCF/CASPT2 method. After relaxation inside the protein, all chromophores show significant nonplanar distortions from C10 to C13, most strongly for 10-methylretinal and least pronounced for 9-demethylretinal. In all five cases, the dihedral angle of the C10-C11=C12-C13 bond is negative which attests to the strong chiral discrimination exerted by the protein pocket. The calculations show that the nonplanar distortion of the chromophore, including the sense of rotation, is caused by a combination of two effects: the fitting of both ends to the protein matrix which imposes a distance constraint and the bonding arrangement at the Schiff base terminus. With both the counterion Glu113 and Lys296 displaced off the plane of the chromophore, their binding to N16 exerts a torque on the chromophore. As a result, the polyene chain, from N16 to C13, is twisted in a clockwise manner against the remaining part of the chromophore, leading to a C11=C12 bond with the observed negative dihedral angle. Shifts of the absorption maxima are reproduced correctly, in particular, the red shift of the 10-methyl and the strong blue shift of the 9-demethyl analogue relative to the wild type. Calculated positive rotatory strengths of the alpha-CD bands are in agreement with the calculated absolute conformation of the mutant chromophores.  相似文献   

4.
The conformation of retinal bound to the G protein-coupled receptor rhodopsin is intimately linked to its photochemistry, which initiates the visual process. Site-directed deuterium ((2)H) NMR spectroscopy was used to investigate the structure of retinal within the binding pocket of bovine rhodopsin. Aligned recombinant membranes were studied containing rhodopsin that was regenerated with retinal (2)H-labeled at the C(5), C(9), or C(13) methyl groups by total synthesis. Studies were conducted at temperatures below the gel to liquid-crystalline phase transition of the membrane lipid bilayer, where rotational and translational diffusion of rhodopsin is effectively quenched. The experimental tilt series of (2)H NMR spectra were fit to a theoretical line shape analysis [Nevzorov, A. A., Moltke, S., Heyn, M. P., and Brown, M. F. (1999) J. Am. Chem. Soc. 121, 7636-7643] giving the retinylidene bond orientations with respect to the membrane normal in the dark state. Moreover, the relative orientations of pairs of methyl groups were used to calculate effective torsional angles between different planes of unsaturation of the retinal chromophore. Our results are consistent with significant conformational distortion of retinal, and they have important implications for quantum mechanical calculations of its electronic spectral properties. In particular, we find that the beta-ionone ring has a twisted 6-s-cis conformation, whereas the polyene chain is twisted 12-s-trans. The conformational strain of retinal as revealed by solid-state (2)H NMR is significant for explaining the quantum yields and mechanism of its ultrafast photoisomerization in visual pigments. This work provides a consensus view of the retinal conformation in rhodopsin as seen by X-ray diffraction, solid-state NMR spectroscopy, and quantum chemical calculations.  相似文献   

5.
Solid-state 2H NMR spectroscopy gives a powerful avenue to investigating the structures of ligands and cofactors bound to integral membrane proteins. For bacteriorhodopsin (bR) and rhodopsin, retinal was site-specifically labeled by deuteration of the methyl groups followed by regeneration of the apoprotein. 2H NMR studies of aligned membrane samples were conducted under conditions where rotational and translational diffusion of the protein were absent on the NMR time scale. The theoretical lineshape treatment involved a static axial distribution of rotating C-C2H3 groups about the local membrane frame, together with the static axial distribution of the local normal relative to the average normal. Simulation of solid-state 2H NMR lineshapes gave both the methyl group orientations and the alignment disorder (mosaic spread) of the membrane stack. The methyl bond orientations provided the angular restraints for structural analysis. In the case of bR the retinal chromophore is nearly planar in the dark- and all-trans light-adapted states, as well upon isomerization to 13-cis in the M state. The C13-methyl group at the "business end" of the chromophore changes its orientation to the membrane upon photon absorption, moving towards W182 and thus driving the proton pump in energy conservation. Moreover, rhodopsin was studied as a prototype for G protein-coupled receptors (GPCRs) implicated in many biological responses in humans. In contrast to bR, the retinal chromophore of rhodopsin has an 11-cis conformation and is highly twisted in the dark state. Three sites of interaction affect the torsional deformation of retinal, viz. the protonated Schiff base with its carboxylate counterion; the C9-methyl group of the polyene; and the beta-ionone ring within its hydrophobic pocket. For rhodopsin, the strain energy and dynamics of retinal as established by 2H NMR are implicated in substituent control of activation. Retinal is locked in a conformation that is twisted in the direction of the photoisomerization, which explains the dark stability of rhodopsin and allows for ultra-fast isomerization upon absorption of a photon. Torsional strain is relaxed in the meta I state that precedes subsequent receptor activation. Comparison of the two retinal proteins using solid-state 2H NMR is thus illuminating in terms of their different biological functions.  相似文献   

6.
Buss V 《Chirality》2001,13(1):13-23
CASSCF and GAUSSIAN CIS calculations were performed on ground and excited states of different conformations of 11-cis-retinal protonated Schiff bases, the chromophore of rhodopsin, in order to study their chiroptical properties and attempt a correlation between absolute conformation and CD-spectral data. Geometries were taken from molecular models, from published rhodopsin models, and from retinal conformations obtained from molecular dynamics with geometry restraints. In all the cases studied we find that a positive sense of twist about the C12-C13 bond correlates with a calculated positive CD of the long wavelength absorption band; the twist of the C6-C7 bond modulates this primary contribution of the C12-C13 bond. The correlation of the beta-band with structural features is not straightforward. Calculations on bathorhodopsin lend support to the idea that this intermediate is a highly twisted all-trans-conformation.  相似文献   

7.
Isomerization of the 11-cis retinal chromophore in the visual pigment rhodopsin is coupled to motion of transmembrane helix H6 and receptor activation. We present solid-state magic angle spinning NMR measurements of rhodopsin and the metarhodopsin II intermediate that support the proposal that interaction of Trp265(6.48) with the retinal chromophore is responsible for stabilizing an inactive conformation in the dark, and that motion of the beta-ionone ring allows Trp265(6.48) and transmembrane helix H6 to adopt active conformations in the light. Two-dimensional dipolar-assisted rotational resonance NMR measurements are made between the C19 and C20-methyl groups of the retinal and uniformly 13C-labeled Trp265(6.48). The retinal C20-Trp265(6.48) contact present in the dark-state of rhodopsin is lost in metarhodopsin II, and a new contact is formed with the C19 methyl group. We have previously shown that the retinal translates 4-5 A toward H5 in metarhodopsin II. This motion, in conjunction with the Trp-C19 contact, implies that the Trp265(6.48) side-chain moves significantly upon rhodopsin activation. NMR measurements also show that a packing interaction in rhodopsin between Trp265(6.48) and Gly121(3.36) is lost in metarhodopsin II, consistent with H6 motion away from H3. However, a close contact between Gly120(3.35) on H3 and Met86(2.53) on H2 is observed in both rhodopsin and metarhodopsin II, suggesting that H3 does not change orientation significantly upon receptor activation.  相似文献   

8.
The photochemical reaction of cyclopentatrienylidene 11-cis-locked-rhodopsin derived from cyclopentatrienylidene 11-cis-locked-retinal and cattle opsin was spectrophotometrically studied. The difference absorption spectrum between the cyclopentatrienylidene 11-cis-locked-rhodopsin and its retinal oxime had its maximum at 495 nm (P-495). Irradiation of P-495 at -196 degrees C with either blue light or orange light caused no spectral change, supporting the cis-trans isomerization hypothesis for formation of bathorhodopsin. Upon irradiation of P-495 at 0 degree C with orange light, however, its absorption spectrum shifted to a shorter wavelength owing to formation of a hypsochromic product. The difference absorption spectrum between this product (P-466) and its retinal oxime showed its maximum at 466 nm. Analysis of retinal isomers by high-performance liquid chromatography showed that this spectral shift was not accompanied by photoisomerization of the chromophore. P-466 could almost completely be photoconverted to the original pigment (P-495) by irradiation at 0 degree C with blue light with little formation of the other isomeric form of its chromophore. The alpha-band of the circular dichroism spectrum of P-495 was very small in comparison with that of rhodopsin, while that of P-466 was comparable to it. These facts suggest that P-495 has a planar conformation in the side chain of the chromophore and that P-466 has a twisted one, probably at the C8-C9 single bond. Cyclic-GMP phosphodiesterase in frog rod outer segment was activated by neither P-495 nor P-466. This result suggests that the isomerization of the retinylidene chromophore of rhodopsin is indispensable in the phototransduction process.  相似文献   

9.
The molecular dynamics of the rhodopsin chromophore (11-cis-retinal) has been followed over a 3-ns path, whereby 3 × 106 discrete conformational states of the molecule were recorded. It is shown that within a short time, 0.3–0.4 ns from the start of simulation, the retinal β-ionone ring rotates about the C6–C7 bond through ~60° relative to the initial configuration, and the whole chromophore becomes twisted. The results of ab initio quantum chemical calculations indicate that for the final conformation of the chromophore center (t = 3 ns) the rhodopsin absorption maximum is shifted by 10 nm toward longer wavelengths as compared with the initial state (t = 0). In other words, the energy of transition of such a system into the excited singlet state S1 upon photon capture will be lower than that for the molecule where the β-ionone ring of the chromophore is coplanar to its polyene chain.  相似文献   

10.
Magic angle sample spinning (MASS) 13C NMR spectra have been obtained of bovine rhodopsin regenerated with retinal prosthetic groups isotopically enriched with 13C at C-5 and C-14. In order to observe the 13C retinal chromophore resonances, it was necessary to employ low temperatures (-15-----35 degrees C) to restrict rotational diffusion of the protein. The isotropic chemical shift and principal values of the chemical shift tensor of the 13C-5 label indicate that the retinal chromophore is in the twisted 6-s-cis conformation in rhodopsin, in contrast to the planar 6-s-trans conformation found in bacteriorhodopsin. The 13C-14 isotropic shift and shift tensor principal values show that the Schiff base C = N bond is anti. Furthermore, the 13C-14 chemical shift (121.2 ppm) is within the range of values (120-123 ppm) exhibited by protonated (C = N anti) Schiff base model compounds, indicating that the C = N linkage is protonated. Our results are discussed with regard to the mechanism of wavelength regulation in rhodopsin.  相似文献   

11.
Solid-state 2H NMR spectroscopy gives a powerful avenue to investigating the structures of ligands and cofactors bound to integral membrane proteins. For bacteriorhodopsin (bR) and rhodopsin, retinal was site-specifically labeled by deuteration of the methyl groups followed by regeneration of the apoprotein. 2H NMR studies of aligned membrane samples were conducted under conditions where rotational and translational diffusion of the protein were absent on the NMR time scale. The theoretical lineshape treatment involved a static axial distribution of rotating C-C2H3 groups about the local membrane frame, together with the static axial distribution of the local normal relative to the average normal. Simulation of solid-state 2H NMR lineshapes gave both the methyl group orientations and the alignment disorder (mosaic spread) of the membrane stack. The methyl bond orientations provided the angular restraints for structural analysis. In the case of bR the retinal chromophore is nearly planar in the dark- and all-trans light-adapted states, as well upon isomerization to 13-cis in the M state. The C13-methyl group at the “business end” of the chromophore changes its orientation to the membrane upon photon absorption, moving towards W182 and thus driving the proton pump in energy conservation. Moreover, rhodopsin was studied as a prototype for G protein-coupled receptors (GPCRs) implicated in many biological responses in humans. In contrast to bR, the retinal chromophore of rhodopsin has an 11-cis conformation and is highly twisted in the dark state. Three sites of interaction affect the torsional deformation of retinal, viz. the protonated Schiff base with its carboxylate counterion; the C9-methyl group of the polyene; and the β-ionone ring within its hydrophobic pocket. For rhodopsin, the strain energy and dynamics of retinal as established by 2H NMR are implicated in substituent control of activation. Retinal is locked in a conformation that is twisted in the direction of the photoisomerization, which explains the dark stability of rhodopsin and allows for ultra-fast isomerization upon absorption of a photon. Torsional strain is relaxed in the meta I state that precedes subsequent receptor activation. Comparison of the two retinal proteins using solid-state 2H NMR is thus illuminating in terms of their different biological functions.  相似文献   

12.
Singh D  Hudson BS  Middleton C  Birge RR 《Biochemistry》2001,40(14):4201-4204
In the absence of a high-resolution diffraction structure, the orientation and conformation of the protonated Schiffs base retinylidinium chromophore of rhodopsin within the opsin matrix has been the subject of much speculation. There have been two recent reliable and precise NMR results that bear on this issue. One involves a determination of the C20-C10 and C20-C11 distances by Verdegem et al. [Biochemistry 38, 11316-11324 (1999)]. The other is the determination of the orientation of the methine C to methyl group vectors C5-C18, C9-C19, and C13-C20 relative to the membrane normal by Gr?bner et al. [Nature 405 (6788), 810-813 (2000)]. Using molecular orbital methods that include extensive configuration interaction, we have determined what we propose to be the minimum energy conformation of this chromophore. The above NMR results permit us to check this structure in the C10-C11=C12-C13 region and then to check the global structure via the relative orientation of the three C18, C19, and C20 methyl groups. This method provides a detailed structure and also the orientation for the retinyl chromophore relative to the membrane normal and argues strongly that the protein does not appreciably alter the chromophore geometry from its minimum energy configuration that is nearly planar s-trans at the 6-7 bond. Finally, the chromophore structure and orientation presented in the recently published X-ray diffraction structure is compared with our proposed structure and with the deuterium NMR results.  相似文献   

13.
In previous work, we reconstituted salinixanthin, the C(40)-carotenoid acyl glycoside that serves as a light-harvesting antenna to the light-driven proton pump xanthorhodopsin, into a different protein, gloeobacter rhodopsin expressed in Escherichia coli, and demonstrated that it transfers energy to the retinal chromophore [Imasheva, E. S., et al. (2009) Biochemistry 48, 10948]. The key to binding of salinixanthin was the accommodation of its ring near the retinal β-ionone ring. Here we examine two questions. Do any of the native Gloeobacter carotenoids bind to gloeobacter rhodopsin, and does the 4-keto group of the ring play a role in binding? There is no salinixanthin in Gloeobacter violaceous, but a simpler carotenoid, echinenone, also with a 4-keto group but lacking the acyl glycoside, is present in addition to β-carotene and oscillol. We show that β-carotene does not bind to gloeobacter rhodopsin, but its 4-keto derivative, echinenone, does and functions as a light-harvesting antenna. This indicates that the 4-keto group is critical for carotenoid binding. Further evidence of this is the fact that salinixanthol, an analogue of salinixanthin in which the 4-keto group is reduced to hydroxyl, does not bind and is not engaged in energy transfer. According to the crystal structure of xanthorhodopsin, the ring of salinixanthin in the binding site is turned out of the plane of the polyene conjugated chain. A similar conformation is expected for echinenone in the gloeobacter rhodopsin. We suggest that the 4-keto group in salinixanthin and echinenone allows for the twisted conformation of the ring around the C6-C7 bond and probably is engaged in an interaction that locks the carotenoid in the binding site.  相似文献   

14.
We present molecular dynamics simulations of bovine rhodopsin in a membrane mimetic environment based on the recently refined X-ray structure of the pigment. The interactions between the protonated Schiff base and the protein moiety are explored both with the chromophore in the dark-adapted 11-cis and in the photoisomerized all-trans form. Comparison of simulations with Glu181 in different protonation states strongly suggests that this loop residue located close to the 11-cis bond bears a negative charge. Restrained molecular dynamics simulations also provide evidence that the protein tightly confines the absolute conformation of the retinal around the C12-C13 bond to a positive helicity. 11-cis to all-trans isomerization leads to an internally strained chromophore, which relaxes after a few nanoseconds by a switching of the ionone ring to an essentially planar all-trans conformation. This structural transition of the retinal induces in turn significant conformational changes of the protein backbone, especially in helix VI. Our results suggest a possible molecular mechanism for the early steps of intramolecular signal transduction in a prototypical G-protein-coupled receptor.  相似文献   

15.
In recent years, structural information about bacteriorhodopsin has grown substantially with the publication of several crystal structures. However, precise measurements of the chromophore conformation in the various photocycle states are still lacking. This information is critical because twists about the chromophore backbone chain can influence the Schiff base nitrogen position, orientation, and proton affinity. Here, we focus on the C14-C15 bond, using solid-state nuclear magnetic resonance spectroscopy to measure the H-C14-C15-H dihedral angle. In the resting state (bR(568)), we obtain an angle of 164 +/- 4 degrees, indicating a 16 degrees distortion from a planar all-trans chromophore. The dihedral angle is found to decrease to 147 +/- 10 degrees in the early M intermediate (M(o)) and to 150 +/- 4 degrees in the late M intermediate (M(n)). These results demonstrate changes in the chromophore conformation undetected by recent X-ray diffraction studies.  相似文献   

16.
A S Ulrich  M P Heyn  A Watts 《Biochemistry》1992,31(42):10390-10399
The orientation and conformation of retinal within bacteriorhodopsin of the purple membrane of Halobacterium halobium was established by solid-state deuterium NMR spectroscopy, through the determination of individual chemical bond vectors. The chromophore ([2,4,4,16,16,17,17,17,18,18-2H11]retinal) was specifically deuterium-labeled on the cyclohexene ring and incorporated into the protein. A uniaxially oriented sample of purple membrane patches was prepared and measured at a series of inclinations relative to the spectrometer field. 31P NMR was used to characterize the mosaic spread of the oriented sample, and computer simulations were applied in the analysis of the 2H NMR and 31P NMR spectral line shapes. From the deuterium quadrupole splittings, the specific orientations of the three labeled methyl groups on the cyclohexene ring could be calculated. The two adjacent methyl groups (on C1) of the retinal were found to lie approximately horizontal in the membrane and make respective angles of 94 degrees +/- 2 degrees and 75 degrees +/- 2 degrees with the membrane normal. The third group (on C5) points toward the cytoplasmic side with an angle of 46 degrees +/- 3 degrees. These intramolecular constraints indicate that the cyclohexene ring lies approximately perpendicular to the membrane surface and that it has a (6S)-trans conformation. From the estimated angle of the tilt of the chomophore long axis, it is concluded that the polyene chain is slightly curved downward to the extracellular side of the membrane.  相似文献   

17.
From our earlier extensive protein-lipid reconstitution studies, the conditions under which bacteriorhodopsin forms organised 2D arrays in large unilamellar vesicles have been established using freeze-fracture electron microscopy. In a background bilayer matrix of phosphatidylcholine (diC(14:0)), the protein can form arrays only when the anionic purple membrane lipid, phosphatidylglycerol phosphate (or the sulphate derivative) is present. Here we have now extended this work to investigate the effect of bilayer thickness on array formation. Phosphatidylcholines with various chain lengths (diC(12:0), diC(14:0) and diC(16:0)) and which form bilayers of well defined bilayer thickness, have been used as the matrix into which bacteriorhodopsin, together with minimal levels (c. 4-10 lipids per bacteriorhodopsin) of diphytanyl phosphatidyl-glycerol phosphate, has been reconstituted. Arrays are formed in all complexes and bhickness appears only to alter the type of array formed, either as an orthogonal or as an hexagonal array. Secondly, we have previously deduced the entire conformation of retinal within the bacteriorhodopsin binding pocket in oriented purple membrane fragments. Using solid state deuterium NMR of the specifically deutero-methylated retinal labelled at each of the methyl positions in the molecule, the C-CD(3) bond vectors of the chromophore have been resolved to +/- 2 degrees . The ring conformation is 6-S-trans, but the polyene chain is slightly curved when in the protein binding site. Here, we describe studies on the protein in both the ground state and the trapped M(412)-state of the photocycle, to show that the orientation of the central methyl group (C(19)) on the polyene chain, which is at 40 degrees +/- 1 degrees with respect to the membrane normal, only changes its orientation by approximately 4 degrees upon 13-cis-isomerization. Thus, it is the Schiff base end of the chromophore which moves upon light incidence acting as a local switch on the protein in the photocycle, whilst the ring end of the chromophore moves rather less.  相似文献   

18.
Lemaître V  Yeagle P  Watts A 《Biochemistry》2005,44(38):12667-12680
The formation of photointermediates and conformational changes observed in the retinal chromophore of bilayer-embedded rhodopsin during the early steps of the protein activation have been studied by molecular dynamics (MD) simulation. In particular, the lysine-bound retinal has been examined, focusing on its conformation in the dark-adapted state (10 ns) and on the early steps after the isomerization of the 11-cis bond to trans (up to 10 ns). The parametrization for the chromophore is based on a recent quantum study [Sugihara, M., Buss, V., Entel, P., Elstner, M., and Frauenheim, T. (2002) Biochemistry 41, 15259-15266] and shows good conformational agreement with recent experimental results. The isomerization, induced by switching the function governing the dihedral angle for the C11=C12 bond, was repeated with several different starting conformations. From the repeated simulations, it is shown that the retinal model exhibits a conserved activation pattern. The conformational changes are sequential and propagate outward from the C11=C12 bond, starting with isomerization of the C11=C12 bond, then a rotation of methyl group C20, and followed by increased fluctuations at the beta-ionone ring. The dynamics of these changes suggest that they are linked with photointermediates observed by spectroscopy. The exact moment when these events occur after the isomerization is modulated by the starting conformation, suggesting that retinal isomerizes through multiple pathways that are slightly different. The amplitudes of the structural fluctuations observed for the protein in the dark-adapted state and after isomerization of the retinal are similar, suggesting a subtle mechanism for the transmission of information from the chromophore to the protein.  相似文献   

19.
13C- and 2H-labeled retinal derivatives have been used to assign normal modes in the 1100-1300-cm-1 fingerprint region of the resonance Raman spectra of rhodopsin, isorhodopsin, and bathorhodopsin. On the basis of the 13C shifts, C8-C9 stretching character is assigned at 1217 cm-1 in rhodopsin, at 1206 cm-1 in isorhodopsin, and at 1214 cm-1 in bathorhodopsin. C10-C11 stretching character is localized at 1098 cm-1 in rhodopsin, at 1154 cm-1 in isorhodopsin, and at 1166 cm-1 in bathorhodopsin. C14-C15 stretching character is found at 1190 cm-1 in rhodopsin, at 1206 cm-1 in isorhodopsin, and at 1210 cm-1 in bathorhodopsin. C12-C13 stretching character is much more delocalized, but the characteristic coupling with the C14H rock allows us to assign the "C12-C13 stretch" at approximately 1240 cm-1 in rhodopsin, isorhodopsin, and bathorhodopsin. The insensitivity of the C14-C15 stretching mode to N-deuteriation in all three pigments demonstrates that each contains a trans (anti) protonated Schiff base bond. The relatively high frequency of the C10-C11 mode of bathorhodopsin demonstrates that bathorhodopsin is s-trans about the C10-C11 single bond. This provides strong evidence against the model of bathorhodopsin proposed by Liu and Asato [Liu, R., & Asato, A. (1985) Proc. Natl. Acad. Sci. U.S.A. 82, 259], which suggests a C10-C11 s-cis structure. Comparison of the fingerprint modes of rhodopsin (1098, 1190, 1217, and 1239 cm-1) with those of the 11-cis-retinal protonated Schiff base in methanol (1093, 1190, 1217, and 1237 cm-1) shows that the frequencies of the C-C stretching modes are largely unperturbed by protein binding. In particular, the invariance of the C14-C15 stretching mode at 1190 cm-1 does not support the presence of a negative protein charge near C13 in rhodopsin. In contrast, the frequencies of the C8-C9 and C14-C15 stretches of bathorhodopsin and the C10-C11 and C14-C15 stretches of isorhodopsin are significantly altered by protein binding. The implications of these observations for the mechanism of wavelength regulation in visual pigments and energy storage in bathorhodopsin are discussed.  相似文献   

20.
The synthesis of 2' beta-methyl-16 alpha,17 alpha-cyclohexanoprogesterone and its MM2 conformational analysis have been performed. The acetyl side chain was shown to have an unusual conformation with the torsion angle C13-C17-C20-O20 being -32.1 degrees. This conformation is by 5.4 kJ.mol-1 more stable than the usual one with the torsion angle 130.3 degrees. 2' beta-Methyl-16 alpha,17 alpha-cyclohexanoprogesterone proved to be inactive as a progestogen (pregnancy maintenance and McPhail tests). The lack of the activity may be due to the additional methyl group in D'-ring causing a change of the conformation of the 17 beta-acetyl side chain, thus hindering the formation of the conformation necessary for binding to the progesterone receptor.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号