首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
A relaxed (rel) mutant was found among 70 thiopeptin-resistant isolates of Streptomyces coelicolor A3(2) which arose spontaneously. The ability of the rel mutant to accumulate ppGpp during Casamino acid deprivation was reduced 10-fold compared to the wild-type. Analysis of the ribosomal proteins by two-dimensional PAGE revealed that the mutant lacked a ribosomal protein, tentatively designated ST-L11. It was therefore classified as a relC mutant. The mutant was defective in producing A-factor and the pigmented antibiotic prodigiosin, in both liquid and agar cultures, but produced agarase normally. Production of actinorhodin, another pigmented antibiotic, was also abnormal; it appeared suddenly in agar cultures after 10 d incubation. Although aerial mycelium still formed, its appearance was markedly delayed. Whereas liquid cultures of the parent strain accumulated ppGpp, agar cultures accumulated only trace amounts. Instead, a substance characterized only as an unidentified HPLC peak accumulated intracellularly in the late growth phase, just before aerial mycelium formation and antibiotic production. This substance did not accumulate in mutant cells. It was found in S. lividans 66 and S. parvulus, but not in seven other Streptomyces species tested. The significance of these observations, and the relationship of the mutant to earlier rel isolates of Streptomyces is discussed.  相似文献   

2.
K S Kelly  K Ochi    G H Jones 《Journal of bacteriology》1991,173(7):2297-2300
Ochi (Agric. Biol. Chem. 51:829-835, 1987) has isolated a relaxed mutant of Streptomyces antibioticus, designated relC49, relC49 accumulates significantly lower levels of ppGpp than the parent stain, IMRU3720. At its maximum, the ppGpp level in relC49 was only one-fourth that observed in strain IMRU3720. Interestingly, a burst of ppGpp synthesis between 18 and 22 h of growth in IMRU3720 coincided with the onset of actinomycin production in that strain. As shown previously, the activity in protein synthesis of ribosomes from strain IMRU3720 decreases with the age of the culture. The decrease in activity was less pronounced in cultures of relC49. relC49 mycelium contains reduced levels of phenoxazinone synthase, a key enzyme involved in actinomycin biosynthesis. The rel mutation prevents the normal increase in the activity of one of the other enzymes required for production of the antibiotic, 3-hydroxyanthanilate-4-methyltransferase, and a third enzyme, actinomycin synthetase I, appears to be completely absent from relC49 mycelium. Levels of phenoxazinone synthease mRNA were examined by RNA dot blotting with the cloned phenoxazinone synthase gene as a probe. mRNA levels for phenoxazinone synthase were dramatically reduced in relC49 compared with strain IMRU3720. These results are discussed in terms of the possible regulation of the onset of actinomycin production by ppGpp.  相似文献   

3.
A strain of Streptomyces lividans, TK24, was found to produce a pigmented antibiotic, actinorhodin, although S. lividans normally does not produce this antibiotic. Genetic analyses revealed that a streptomycin-resistant mutation str-6 in strain TK24 is responsible for induction of antibiotic synthesis. DNA sequencing showed that str-6 is a point mutation in the rpsL gene encoding ribosomal protein S12, changing Lys-88 to Glu. Gene replacement experiments with the Lys88-->Glu str allele demonstrated unambiguously that the str mutation is alone responsible for the activation of actinorhodin production observed. In contrast, the strA1 mutation, a genetic marker frequently used for crosses, did not restore actinorhodin production and was found to result in an amino acid alteration of Lys-43 to Asn. Induction of actinorhodin production was also detected in strain TK21, which does not harbor the str-6 mutation, when cells were incubated with sufficient streptomycin or tetracycline to reduce the cell's growth rate, and 40 and 3% of streptomycin- or tetracycline-resistant mutants, respectively, derived from strain TK21 produced actinorhodin. Streptomycin-resistant mutations also blocked the inhibitory effects of relA and brgA mutations on antibiotic production, aerial mycelium formation or both. These str mutations changed Lys-88 to Glu or Arg and Arg-86 to His in ribosomal protein S12. The decrease in streptomycin production in relC mutants in Streptomyces griseus could also be abolished completely by introducing streptomycin-resistant mutations, although the impairment in antibiotic production due to bldA (in Streptomyces coelicolor) or afs mutations (in S. griseus) was not eliminated. These results indicate that the onset and extent of secondary metabolism in Streptomyces spp. is significantly controlled by the translational machinery.  相似文献   

4.
In Streptomyces coelicolor A3(2), deletion of relA or a specific mutation in rplK ( relC) results in an inability to synthesize ppGpp (guanosine 5'-diphosphate 3'-diphosphate) and impairs production of actinorhodin. We have found that certain rifampicin-resistant ( rif) mutants isolated from either relA or relC strains regain the ability to produce actinorhodin at the same level as the wild-type strain, although their capacity to synthesize ppGpp is unchanged. These rif mutants were found to have a missense mutation in the rpoB gene that encodes the RNA polymerase beta-subunit. This rpoB mutation was shown to be responsible for the observed changes in phenotype, as demonstrated by gene replacement experiments. Gene expression analysis revealed that the restoration of actinorhodin production in both relA and relC strains is accompanied by increased expression of the pathway-specific regulator gene actII-ORF4, which is normally decreased in the rel mutants. In addition to the restoration of antibiotic production, the rif mutants also exhibited a lower rate of RNA synthesis compared to the parental strain when grown in a rich medium, suggesting that these mutant RNA polymerases behave like "stringent" RNA polymerases. These results indicate that rif mutations can alter gene expression patterns independently of ppGpp. We propose that RNA polymerases carrying particular rif mutations in the beta-subunit can functionally mimic the modification induced by binding of ppGpp.  相似文献   

5.
K Ochi 《Journal of bacteriology》1987,169(8):3608-3616
I investigated the significance of the intracellular accumulation of guanosine 5'-diphosphate 3'-diphosphate (ppGpp) and of the coordinated decrease in the GTP pool for initiating morphological and physiological differentiation of Streptomyces griseus, a streptomycin-producing strain. In solid cultures, aerial mycelium formation was severely suppressed by the presence of excess nutrients. However, decoyinine, a specific inhibitor of GMP synthetase, enabled the cells to develop aerial mycelia in the suppressed cultures at concentrations which only partially inhibited growth. A factor (2S-isocapryloyl-3S-hydroxymethyl-gamma-butyrolactone) added exogenously had no such effect. Decoyinine was also effective in initiating the formation of submerged spores in liquid culture. The ability to produce streptomycin did not increase but decreased drastically on the addition of decoyinine. This sharp decrease in streptomycin production was accompanied by a decrease in intracellular accumulation of ppGpp. A relaxed (rel) mutant was found among 25 thiopeptin-resistant isolates which developed spontaneously. The rel mutant had a severely reduced ability to accumulate ppGpp during a nutritional shift-down and also during postexponential growth and showed a less extensive decrease in the GTP pool than that in the rel+ parental strain. The rel mutant failed to induce the enzymes amidinotransferase and streptomycin kinase, which are essential for the biosynthesis of streptomycin. The abilities to form aerial mycelia and submerged spores were still retained, but the amounts were less, and for both the onset of development was markedly delayed. The decreased ability to produced submerged spores was largely restored by the addition of decoyinine. This was accompanied by an extensive GTP pool decrease. The rel mutant produced A factor normally, indicating that synthesis of A factor is controlled neither by ppGpp nor by GTP. Conversely, a mutant defective in A-factor synthesis accumulated as much ppGpp as did the parental strain. It was concluded that morphological differentiation of S. griseus results from a decrease in the pool of GTP, whereas physiological differentiation results from a more direct function of the rel gene product (ppGpp). It is also suggested that A factor may render the cell sensitive to receive and respond to the specified signal molecules, presumably ppGpp (for physiological differentiation) or GTP (for morphological differentiation).  相似文献   

6.
A-factor is a potent pleiotropic effector produced by Streptomyces griseus and is essential for streptomycin production and spore formation in this organism. Its production is widely distributed among various actinomycetes including Streptomyces coelicolor A3(2). Genetic analysis of A-factor production was carried out with S. coelicolor A3(2), and two closely linked loci for A-factor mutations (afsA and B) were identified between cysD and leuB on the chromosomal linkage map. In contrast, genetic crosses of A-factor-negative mutants of S. griseus, using a protoplast fusion technique, failed to give a fixed locus for A-factor gene(s) and suggested involvement of an extrachromosomal or transposable genetic element in A-factor synthesis in this organism.  相似文献   

7.
A RelC deletion mutant, KO-100, of Streptomyces coelicolor A3(2) has been isolated from a collection of spontaneous thiostrepton-resistant mutants. KO-100 grows as vigorously as the parent strain and possesses a 6-bp deletion within the rplK, previously termed relC. When the wild-type rplK gene was propagated on a low-copy-number vector in mutant KO-100, the ability to produce ppGpp, actinorhodin and undecylprodigiosin, which had been lost in the RelC mutant, was completely restored. Allele replacement by gene homogenotization demonstrated that the RelC mutation is responsible for the resistance to thiostrepton and the inactivation of ppGpp, actinorhodin and undecylprodigiosin production. Western blotting showed that ribosomes from the RelC mutant KO-100 contain only one-eighth the amount of L11 protein found in ribosomes of the parent strain. The impairment of antibiotic production in KO-100 could be rescued by the introduction of mutations that confer resistance to streptomycin (str), which result in alteration of Lys-88 in ribosomal protein S12 to Glu or Arg. No accompanying restoration of ppGpp synthesis was detected in these RelC str double mutants.  相似文献   

8.
An str gene cluster containing at least four genes (strR, strA, strB, and strC) involved in streptomycin biosynthesis or streptomycin resistance or both was self-cloned in Streptomyces griseus by using plasmid pOA154. The strA gene was verified to encode streptomycin 6-phosphotransferase, a streptomycin resistance factor in S. griseus, by examining the gene product expressed in Escherichia coli. The other three genes were determined by complementation tests with streptomycin-nonproducing mutants whose biochemical lesions were clearly identified. strR complemented streptomycin-sensitive mutant SM196 which exhibited impaired activity of both streptomycin 6-phosphotransferase and amidinotransferase (one of the streptomycin biosynthetic enzymes) due to a regulatory mutation; strB complemented strain SD141, which was specifically deficient in amidinotransferase; and strC complemented strain SD245, which was deficient in linkage between streptidine 6-phosphate and dihydrostreptose. By deletion analysis of plasmids with appropriate restriction endonucleases, the order of the four genes was determined to be strR-strA-strB-strC. Transformation of S. griseus with plasmids carrying both strR and strB genes enhanced amidinotransferase activity in the transformed cells. Based on the gene dosage effect and the biological characteristics of the mutants complemented by strR and strB, it was concluded that strB encodes amidinotransferase and strR encodes a positive effector required for the full expression of strA and strB genes. Furthermore, it was found that amplification of a specific 0.7-kilobase region of the cloned DNA on a plasmid inhibited streptomycin biosynthesis of the transformants. This DNA region might contain a regulatory apparatus that participates in the control of streptomycin biosynthesis.  相似文献   

9.
Guanosine 5'-diphosphate 3'-diphosphate (ppGpp) and guanosine 5'-triphosphate 3'-diphosphate (pppGpp) were identified in the vegative mycelium of Streptomyces griseus. Adenosine 5'-diphosphate 3'-diphosphate (ppApp) and adenosine 5'-triphosphate 3'-diphosphate (pppApp) were not present but several other phosphorus-containing compounds which may have been inorganic polyphosphates were detected. During exponential growth of S. griseus the concentrations of ppGpp and pppGpp were several times higher than in the stationary stage. They fell sharply when exponential growth ended and then remained at an almost constant basal level. For the tetraphosphate the maximum concentration was about 50, and for the basal level about 10, pmol per millilitre of a culture with an optical density of 1.0. Production of streptomycin started several hours after exponential growth had ended and the concentrations of ppGpp and pppGpp had fallen. Streptomycin synthesis was delayed if the cells were resuspended just before production started in fresh medium lacking phosphate, but it was not delayed by glucose starvation. Both cultures, as well as cultures transferred to nitrogen-free medium, showed an immediate increase in ppGpp content to about four-fold the basal level. The results suggest that the guanosine polyphosphates do not directly control initiation of streptomycin production in S. griseus. Twelve additional species of Streptomyces examined all contained ppGpp and pppGpp.  相似文献   

10.
11.
12.
A-factor, 2-(6'-methylheptanoyl)-3R-hydroxymethyl-4-butanolide, is an autoregulator essential for streptomycin production and sporulation in Streptomyces griseus. S. griseus 2247 that requires no A-factor for streptomycin production or sporulation was found to have a defect in the A-factor-binding protein. This observation implied that the A-factor-binding protein in the absence of A-factor repressed the expression of both phenotypes in the wild-type strain. Screening among mutagenized S. griseus colonies for strains producing streptomycin and sporulating in the absence of A-factor yielded three mutants that were also deficient in the A-factor-binding protein. Reversal of the defect in the A-factor-binding protein of these mutants led to the simultaneous loss of streptomycin production and sporulation. These data suggested that the A-factor-binding protein played a role in repressing both streptomycin production and sporulation and that the binding of A-factor to the protein released its repression. Mutants deficient in the A-factor-binding protein began to produce streptomycin and sporulate at an earlier stage of growth than did the wild-type strain. These mutants produced approximately 10 times more streptomycin than did the parental strain. These findings are consistent with the idea that the intracellular concentration of A-factor determines the timing of derepression of the gene(s) whose expression is repressed by the A-factor-binding protein.  相似文献   

13.
Certain str mutations that confer high- or low-level streptomycin resistance result in the overproduction of antibiotics by Streptomyces spp. The str mutations that confer the high-level resistance occur within rpsL, which encodes the ribosomal protein S12, while those that cause low-level resistance are not as well known. We have used comparative genome sequencing to determine that low-level resistance is caused by mutations of rsmG, which encodes an S-adenosylmethionine (SAM)-dependent 16S rRNA methyltransferase containing a SAM binding motif. Deletion of rsmG from wild-type Streptomyces coelicolor resulted in the acquisition of streptomycin resistance and the overproduction of the antibiotic actinorhodin. Introduction of wild-type rsmG into the deletion mutant completely abrogated the effects of the rsmG deletion, confirming that rsmG mutation underlies the observed phenotype. Consistent with earlier work using a spontaneous rsmG mutant, the strain carrying DeltarsmG exhibited increased SAM synthetase activity, which mediated the overproduction of antibiotic. Moreover, high-performance liquid chromatography analysis showed that the DeltarsmG mutant lacked a 7-methylguanosine modification in the 16S rRNA (possibly at position G518, which corresponds to G527 of Escherichia coli). Like certain rpsL mutants, the DeltarsmG mutant exhibited enhanced protein synthetic activity during the late growth phase. Unlike rpsL mutants, however, the DeltarsmG mutant showed neither greater stability of the 70S ribosomal complex nor increased expression of ribosome recycling factor, suggesting that the mechanism underlying increased protein synthesis differs in the rsmG and the rpsL mutants. Finally, spontaneous rsmG mutations arose at a 1,000-fold-higher frequency than rpsL mutations. These findings provide new insight into the role of rRNA modification in activating secondary metabolism in Streptomyces.  相似文献   

14.
The optically active form of tritium-labeled A-factor (2-isocapryloyl-3R-hydroxymethyl-gamma-butyrolactone), a pleiotropic autoregulator responsible for streptomycin production, streptomycin resistance, and sporulation in Streptomyces griseus, was chemically synthesized. By using the radioactive A-factor, a binding protein for A-factor was detected in the cytoplasmic fraction of this organism. The binding protein had an apparent molecular weight of approximately 26,000, as determined by gel filtration. Scatchard analysis suggested that A-factor bound the protein in the molar ratio of 1:1 with a binding constant, Kd, of 0.7 nM. The number of the binding protein was roughly estimated to be 37 per genome. The "inducing material" virginiae butanolide C (VB-C), which has a structure very similar to that of A-factor and is essential for virginiamycin production in Streptomyces virginiae, did not inhibit binding. In addition, no protein capable of specifically binding 3H-labeled VB-C was found in S. griseus. Together with the observation that VB-C had almost no biological activity on the restoration of streptomycin production or sporulation in an A-factor-deficient mutant of S. griseus, these results indicated that the binding protein had a strict ligand specificity. Examination for an A-factor-binding protein in Streptomyces coelicolor A3(2) and Streptomyces lividans showed the absence of any specifically binding protein.  相似文献   

15.
Certain rpsL (which encodes the ribosomal protein S12) mutations that confer resistance to streptomycin markedly activate the production of antibiotics in Streptomyces spp. These rpsL mutations are known to be located in the two conserved regions within the S12 protein. To understand the roles of these two regions in the activation of silent genes, we used site-directed mutagenesis to generate eight novel mutations in addition to an already known (K88E) mutation that is capable of activating antibiotic production in Streptomyces lividans. Of these mutants, two (L90K and R94G) activated antibiotic production much more than the K88E mutant. Neither the L90K nor the R94G mutation conferred an increase in the level of resistance to streptomycin and paromomycin. Our results demonstrate the efficacy of the site-directed mutagenesis technique for strain improvement.  相似文献   

16.
Summary Six streptomycin-dependent mutants of Bacillus subtilis, two of which were asporogenous, were isolated. All six mutants, SD1, SD2, SD6, SD7, SD9 and SD10, contained a single mutation causing streptomycin dependence and asporogeny, but four of these mutants (SD6, SD7, SD9, SD10) contained a second mutation which phenotypically suppressed the asporogenous character of the streptomycin dependence mutation. All six mutants grew more slowly than the wild type strain BR151, but those defective in sporulation grew the slowest. The streptomycin dependence mutations of SD9 and SD10B (a sporeplus transformant from SD10 carrying both the dependence mutation and the phenotypic suppressor) lie near or possibly within the strA locus. Ribosomes from SD9, SD10A (a spore-minus transformant from SD10 carrying only the dependence mutation), and SD10B were stimulated in vitro by concentrations of streptomycin that inhibit the activity of wild type strain BR151 ribosomes. The level of misreading as measured by poly(U)-directed isoleucine incorporation was greatly enhanced by streptomycin in wild type strain BR151 ribosomes, but misreading of mutant SD9, SD10A, and SD10B ribosomes, irrespective of the sporulation phenotype, was little affected by streptomycin. There were no apparent differences in the patterns obtained by two-dimensional polyacrylamide gel electrophoresis of the 70S ribosomal proteins of the mutants SD9, SD10A, SD10B, and wild type strain BS151.  相似文献   

17.
We have applied a technique of interactive continuous selection (ICS) to the isolation of streptomycin-resistant mutants of the streptomycin-producing organism, Streptomyces griseus. A series of mutants, each with a different colonial morphology and expressing successively greater resistance to streptomycin, was isolated during the course of selection. Takeover of the mutants has been correlated with changes in on-line estimates of streptomycin concentration such that these estimates may be used as a real-time measure of the genetic state of the cell population. When grown in the medium employed for ICS, mutants expressed increased antibiotic production titers; the best mutant produced 10 to 20 times more streptomycin than the parent strain. Absolute improvements in the maximum specific growth rate and intrinsic resistance to streptomycin did not account for the observed growth advantage of all mutants. Rather, each mutant exhibited relative increases in specific growth rate at increasing concentrations of streptomycin. (c) 1996 John Wiley & Sons, Inc.  相似文献   

18.
A RelC deletion mutant, KO-100, of Streptomyces coelicolor A3(2) has been isolated from a collection of spontaneous thiostrepton-resistant mutants. KO-100 grows as vigorously as the parent strain and possesses a 6-bp deletion within the rplK, previously termed relC. When the wild-type rplK gene was propagated on a low-copy-number vector in mutant KO-100, the ability to produce ppGpp, actinorhodin and undecylprodigiosin, which had been lost in the RelC mutant, was completely restored. Allele replacement by gene homogenotization demonstrated that the RelC mutation is responsible for the resistance to thiostrepton and the inactivation of ppGpp, actinorhodin and undecylprodigiosin production. Western blotting showed that ribosomes from the RelC mutant KO-100 contain only one-eighth the amount of L11 protein found in ribosomes of the parent strain. The impairment of antibiotic production in KO-100 could be rescued by the introduction of mutations that confer resistance to streptomycin (str), which result in alteration of Lys-88 in ribosomal protein S12 to Glu or Arg. No accompanying restoration of ppGpp synthesis was detected in these RelC str double mutants. Received: 12 May 1997 / Accepted: 22 July 1997  相似文献   

19.
S Biro  K F Chater 《Gene》1987,56(1):79-86
Streptomyces lividans gyl DNA (for glycerol utilisation) was cloned by complementation of a Streptomyces coelicolor gyl mutant. Restriction mapping showed that the cloned DNA was highly homologous (perhaps 99%) to S. coelicolor gyl DNA. Using phage-mediated mutational cloning, an internal fragment of the S. coelicolor gyl operon was used to generate a gyl mutant of S. lividans, which subsequently served as recipient in the cloning of gyl DNA from S. griseus. A 7.5-kb SstI-generated fragment of S. griseus DNA was obtained which, as judged by analysis of restriction sites, was only perhaps 87% homologous with the S. coelicolor gyl operon. The cloned S. griseus DNA appears to contain intact gylA and gylB genes and probably also an upstream gene related to the putative gyl regulatory '0.9-kb' gene of S. coelicolor. Cloning of the fragment on a high-copy-number vector in S. lividans did not lead to high levels of the enzymes encoded by gylA and gylB. The S. griseus gylA and gylB genes were not detectably expressed in Escherichia coli glp mutants.  相似文献   

20.
DNA from Streptomyces griseus ATCC 12475 was partially digested with Sau3A and fragments were ligated into BglII-cleaved pIJ702. When the ligation mixture was used to transform protoplasts of Streptomyces lividans TK54, two transformants resistant to both thiostrepton and streptomycin were isolated. The hybrid plasmids pBV3 and pBV4 which they contained, carrying inserts of sizes 4.45 and 11.55 kbp respectively, each retransformed S. lividans to streptomycin resistance at high efficiency. Both plasmids hybridized to restriction digests of S. griseus chromosomal DNA in Southern blot experiments. In vitro deletion and sub-cloning experiments showed the sequence conferring streptomycin resistance to lie within a segment of 1.95 kbp. Extracts of TK54(pBV3) and TK54(pBV4) contained a streptomycin phosphotransferase similar to that in extracts of S. griseus. Streptomycin phosphotransferase activity appeared in extracts of S. griseus, TK54(pBV3) and TK54(pBV4) within 2 d of inoculation. When pBV3 and pBV4 were retransformed into S. griseus with selection for thiostrepton resistance, plasmid DNA of sizes corresponding to the incoming plasmids was found in the transformants. In these transformants the phosphotransferase appeared at 1.5 rather than 2 d, and reached a level over twice that of the original S. griseus strain.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号