首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
The fascicle material properties in bone-fascicle-bone units were determined for the anterior and posterior cruciate ligaments (ACL, PCL), the lateral collateral ligament (LCL) and the patellar tendon (PT) from three young human donor knees. Groups of fascicles from each tissue were isolated with intact bone ends and failed at a high strain rate in a saline bath at 37 degrees C. In each knee tested the load related material properties (linear modulus, maximum stress and energy density to maximum stress) for the patellar tendon were significantly larger than corresponding values for the cruciate and collateral ligaments. Bundles from different ligaments in the same knee were similar to each other in their mechanical behavior. In addition, no significant differences were present in the maximum strains recorded for any of the four tissue types examined. The results presented have implications in studies of ligament injury. They are also important in the design and use of synthetic and biological ligament replacements and in tissue and whole knee modeling.  相似文献   

2.
Recruitment of knee joint ligaments   总被引:6,自引:0,他引:6  
On the basis of earlier reported data on the in vitro kinematics of passive knee-joint motions of four knee specimens, the length changes of ligament fiber bundles were determined by using the points of insertion on the tibia and femur. The kinematic data and the insertions of the ligaments were obtained by using Roentgenstereophotogrammetry. Different fiber bundles of the anterior and posterior cruciate ligaments and the medial and lateral collateral ligaments were identified. On the basis of an assumption for the maximal strain of each ligament fiber bundle during the experiments, the minimal recruitment length and the probability of recruitment were defined and determined. The motions covered the range from extension to 95 degrees flexion and the loading conditions included internal or external moments of 3 Nm and anterior or posterior forces of 30 N. The ligament length and recruitment patterns were found to be consistent for some ligament bundles and less consistent for other ligament bundles. The most posterior bundle of each ligament was recruited in extension and the lower flexion angles, whereas the anterior bundle was recruited for the higher flexion angles. External rotation generally recruited the collateral ligaments, while internal rotation recruited the cruciate ligaments. However, the anterior bundle of the posterior cruciate ligament was recruited with external rotation at the higher flexion angles. At the lower flexion angles, the anterior cruciate and the lateral collateral ligaments were recruited with an anterior force. The recruitment of the posterior cruciate ligament with a posterior force showed that neither its most anterior nor its most posterior bundle was recruited at the lower flexion angles. Hence, the posterior restraint must have been provided by the intermediate fiber bundles, which were not considered in the experiment. At the higher flexion angles, the anterior bundles of the anterior cruciate ligament and the posterior cruciate ligament were found to be recruited with anterior and posterior forces, respectively. The minimal recruitment length and the recruitment probability of ligament fiber bundles are useful parameters for the evaluation of ligament length changes in those experiments where no other method can be used to determine the zero strain lengths, ligament strains and tensions.  相似文献   

3.
Large variable deformations of the ligament cannot be adequately quantified by one-dimensional and/or localized measurements. To obtain accurate measurement of non-uniform strains over the entire surface of anterior cruciate ligament (ACL), we used a photoelastic coating technique and a method that allowed us to photograph an ACL around its longitudinal axis. A cadaver knee was modified to expose its ACL for observation, and the ligament was then coated with a photoelastic material. The knee was locked in a jig that allowed simulation of natural knee motion. The jig containing the knee was then mounted on a stand, which allowed the exposed ACL to be photographed from any angle around its longitudinal axis while set at a chosen degree of knee flexion. The jig itself was rotated on its stand so as to obtain a panoramic view of the ACL at a given knee angle. The obtained images of the photoelastic fringe patterns yielded significant information for understanding how the strain distributions along the fiber bundles change in association with knee motion. From the results we obtained using the photoelastic measuring method, we reached the following conclusions. Reciprocal functioning between the anterior and the posterior bundles from extension to flexion of the knee does occur. Strain distribution is not uniform even along the same bundle. The strain behavior of the ACL under uniaxial tensile test does not duplicate the conditions in which the ACL is damaged during knee motion. The differences in strains on the ACL under active and passive knee motions may not be as large as those reported previously in the literature.  相似文献   

4.
To determine whether mathematical relations between strains in different bundles and loads would be needed to predict injury of the anterior cruciate ligament (ACL), this work tested the hypothesis that strains developed in two bundles of the ACL were significantly different under the application of a number of loads important to injury etiology of the ACL. To provide the data for testing this hypothesis, liquid mercury strain gages were installed on both the anteromedial (AMB) and posterolateral (PLB) bundles of the ACL of ten specimens, which were then subjected to passive flexion/extension, hyperextension moment, anterior force, internal and external axial moments, quadriceps, and hamstrings forces. Various combinations of these loads were also applied. Flexion angles ranged from 8 deg of hyperextension through 120 deg of flexion. The data were analyzed using a repeated measures analysis of variance. The analyses indicated that significant strain differences existed between the two bundles only for passive flexion/extension. However, the analyses did not support the hypothesis that AMB and PLB strains are significantly different from each other under the application of external and muscular loads. Because noticeable differences (> 3 percent) between bundle strains did exist in some load cases for limited ranges of flexion and the PLB strain was consistently higher than the AMB strain, it may be sufficient to consider strain in only the PLB when predicting ligament damage based on strain-load relations.  相似文献   

5.
The areas of the femoral origin of the cruciate ligaments have approximately the shape of sectors of ellipses, the one for the anterior ligament on the lateral condyle posteroproximally and the one for the posterior ligament on the medial condyle distally. By means of a new technique of dissection, combined with the use of X-rays, the change in distance between the origin and insertion and so the change of tension of single bundles of the ligaments could be analyzed. Only a rather thin bundle in each cruciate ligament is in constant tension: "guiding bundles." The maximal diminution of distance between the origin and insertion for some bundles is 65%. In the anterior cruciate ligament the majority of fibres are taut in extreme extension: "limiting bundles." The same is true in the posterior cruciate ligament in extreme flexion. There are also some fibres, especially in the posterior cruciate ligament, that are taut only in an intermediate position. The geometric analysis of the function of different groups of fibers was performed by a modification of Menschik's concept of a four-bar link.  相似文献   

6.
The screw-home mechanism and coupling between forces in cruciate ligaments during passive knee joint flexion were investigated for various boundary conditions, flexion axis alignments and posterior cruciate ligaments (PCL)/anterior cruciate ligament (ACL) conditions. A developed non-linear 3D finite element model was used to perform detailed elasto-static response analyses of the human tibiofemoral joint as a function of flexion angle varying from 10 degrees hyper-extension to 90 degrees flexion. The tibia rotated internally as the femur flexed and externally as the femur extended. The re-alignment of the flexion axis by +/-5 degrees rotation about the axial (distal-proximal) axis, transection of the ACL and changes in cruciate ligament initial strains substantially influenced the 'screw-home' motion. On the other hand, restraint on this coupled rotation diminished ACL forces in flexion. A remarkable coupling was predicted between ACL and PCL forces in flexion; forces in both cruciate ligaments increased as the initial strain or pretension in one of them increased whereas they both diminished as one of them was cut or became slack. This has important consequences in joint functional biomechanics following a ligament injury or replacement surgery and, hence, in the proper management of joint disorders.  相似文献   

7.
目的:通过对聚对苯二甲酸乙二醇酯(Polyethylene terephthalate,PET)材料的编织和力学性能的分析,初步探讨使用该材料构建组织工程韧带支架的可行性。方法:将不同强度的PET单纤维通过经编法编织成支架材料;然后使用电子拉力机对编织好的支架材料以及消毒处理后的支架材料进行力学性能测试并进行分析。结果:PET编织构建的支架材料结构稳定,其极限抗张强度已达到了前交叉韧带的力学要求。辐照消毒对支架材料的力学性能无短期影响。结论:该支架材料编织结构设计合理,具有优良的力学性能,消毒后对其力学性能无短期影响,有望通过改进生物学性能后成为一种较理想的组织工程前交叉韧带支架材料。  相似文献   

8.
After immense amounts of research, the root cause for the significantly higher rates of anterior cruciate ligament (ACL) failure incidents in females as compared to males still remains unknown and the existing sex-based disparity has not diminished. To date, the possibility that the female ACL is mechanically weaker than the male ACL has not been directly investigated. Although it has been established in the literature that the female ACL is smaller in size, the differences in the structural and material properties of the ACL between sexes have not been studied. The aim of this cadaveric study was to determine if any sex-based differences in the tensile properties of the human ACL exist when considering age as well as ACL and body anthropometric measurements as covariates. Ten male and 10 female unpaired cadaveric knees (mean age 36.75 years) were used for this study. The geometry of the ACL (including length, cross-sectional area, and volume) was analyzed using a 3-D scanning system. The femur-ACL tibia complex was tested to failure along the longitudinal axis of the ligament in a tensile testing machine. The structural properties of the ACL as well as its mechanical properties were determined. Analysis of covariance was performed to assess the effect of sex on tensile properties. The female ACL was found to have a lower mechanical properties (8.3% lower strain at failure; 14.3% lower stress at failure, 9.43% lower strain energy density at failure, and most importantly, 22.49% lower modulus of elasticity) when considering age, ACL, and body anthropometric measurements as covariates.  相似文献   

9.
The knee is one of the most frequently injured joints in the human body. A recent study suggests that axial compressive loads on the knee may play a role in injury to the anterior cruciate ligament (ACL) for the flexed knee, because of an approximate 10 degrees posterior tilt in the tibial plateau (J. Orthop. Res. 16 (1998) 122-127). The hypothesis of the current study was that excessive axial compressive loads in the human tibio-femoral (TF) joint would cause relative displacement and rotation of the tibia with respect to the femur, and result in isolated injury to the ACL when the knee is flexed to 60 degrees , 90 degrees or 120 degrees . Sixteen isolated knees from eleven fresh cadaver donors (74.3+/-10.5 yr) were exposed to repetitive TF compressive loads increasing in intensity until catastrophic injury. ACL rupture was documented in 14/16 cases. The maximum TF joint compressive force for ACL failure was 5.1+/-2.1 kN for all flexion angles combined. For the 90 degrees flexed knee, the injury occurred with a relative anterior displacement of 5.4+/-3.8mm, a lateral displacement of 4.1+/-1.4mm, and a 7.8+/-7.0 degrees internal rotation of the tibia with respect to the femur.  相似文献   

10.
The knee joint is partially stabilized by the interaction of multiple ligament structures. This study tested the interdependent functions of the anterior cruciate ligament (ACL) and the medial collateral ligament (MCL) by evaluating the effects of ACL deficiency on local MCL strain while simultaneously measuring joint kinematics under specific loading scenarios. A structural testing machine applied anterior translation and valgus rotation (limits 100 N and 10 N m, respectively) to the tibia of ten human cadaveric knees with the ACL intact or severed. A three-dimensional motion analysis system measured joint kinematics and MCL tissue strain in 18 regions of the superficial MCL. ACL deficiency significantly increased MCL strains by 1.8% (p<0.05) during anterior translation, bringing ligament fibers to strain levels characteristic of microtrauma. In contrast, ACL transection had no effect on MCL strains during valgus rotation (increase of only 0.1%). Therefore, isolated valgus rotation in the ACL-deficient knee was nondetrimental to the MCL. The ACL was also found to promote internal tibial rotation during anterior translation, which in turn decreased strains near the femoral insertion of the MCL. These data advance the basic structure-function understanding of the MCL, and may benefit the treatment of ACL injuries by improving the knowledge of ACL function and clarifying motions that are potentially harmful to secondary stabilizers.  相似文献   

11.
The biomechanical properties of the medial collateral and anterior cruciate ligaments from 30 New Zealand White rabbits were measured. Because of its complex geometry, the ACL was divided into two portions (medial and lateral) to provide uniform loading. This allowed an examination of the intra-ligamentous properties. A laser micrometer system was used to measure the cross-sectional area for tensile stress and a video dimension analyzer was used to measure the strain. The mechanical properties (stress-strain curves) of the MCL and ACL were different, with the modulus (determined between 4 and 7% strain) in the MCL (1120 +/- 153 MPa) more than twice that of either portion of the ACL (516 +/- 64 and 516 +/- 69 MPa for the medial and lateral portions, respectively). This higher modulus correlated with the more uniform and dense appearance of the collagen fibrils examined with scanning electron microscopy (SEM).  相似文献   

12.
Obtaining tibio-femoral (TF) contact forces, ligament deformations and loads during daily life motor tasks would be useful to better understand the aetiopathogenesis of knee joint diseases or the effects of ligament reconstruction and knee arthroplasty. However, methods to obtain this information are either too simplified or too computationally demanding to be used for clinical application. A multibody dynamic model of the lower limb reproducing knee joint contact surfaces and ligaments was developed on the basis of magnetic resonance imaging. Several clinically relevant conditions were simulated, including resistance to hyperextension, varus–valgus stability, anterior–posterior drawer, loaded squat movement. Quadriceps force, ligament deformations and loads, and TF contact forces were computed. During anterior drawer test the anterior cruciate ligament (ACL) was maximally loaded when the knee was extended (392 N) while the posterior cruciate ligament (PCL) was much more stressed during posterior drawer when the knee was flexed (319 N). The simulated loaded squat revealed that the anterior fibres of ACL become inactive after 60° of flexion in conjunction with PCL anterior bundle activation, while most components of the collateral ligaments exhibit limited length changes. Maximum quadriceps and TF forces achieved 3.2 and 4.2 body weight, respectively. The possibility to easily manage model parameters and the low computational cost of each simulation represent key points of the present project. The obtained results are consistent with in vivo measurements, suggesting that the model can be used to simulate complex and clinically relevant exercises.  相似文献   

13.
In this study, the force and stress distribution within the anteromedial (AM) and posterolateral (PL) bundles of the anterior cruciate ligament (ACL) in response to an anterior tibial load with the knee at full extension was calculated using a validated three-dimensional finite element model (FEM) of a human ACL. The interaction between the AM and PL bundles, as well as the contact and friction caused by the ACL wrapping around the bone during knee motion, were included in the model. The AM and PL bundles of the ACL were simulated as incompressible homogeneous and isotropic hyperelastic materials. The multiple-degrees-of-freedom (DOF) knee kinematics of a cadaveric knee were first obtained using a robotic/universal force-moment sensor testing system. These data were used as the boundary conditions for the FEM of the ACL to calculate the forces in the ACL. The calculated forces were compared to the in situ force in the ACL, determined experimentally, to validate the model. The validated FEM was then used to calculate the force and stress distribution within the ACL under an anterior tibial load at full extension. The AM and PL bundles shared the force, and the stress distribution was non-uniform within both bundles with the highest stress localized near the femoral insertion site. The contact and friction caused by the ACL wrapping around the bone during knee motion played the role of transferring the force from the ACL to the bone, and had a direct effect on the force and stress distribution of the ACL. This validated model will enable the analysis of force and stress distribution in the ACL in response to more complex loading conditions and has the potential to help design improved surgical procedures following ACL injuries.  相似文献   

14.
Knee hyperextension has been described as a mechanism of isolated anterior cruciate ligament (ACL) tears, but clinical and experimental studies have produced contradictory results for the ligament injuries and the injury sequence caused by the hyperextension loading mechanism. The hypothesis of this study was that bicruciate ligament injuries would occur as a result of knee hyperextension by producing high tibio-femoral (TF) compressive forces that would cause anterior translation of the tibia to rupture the ACL, while joint extension would simultaneously induce rupture of the posterior cruciate ligament (PCL). Six human knees were loaded in hyperextension until gross injury, while bending moments and motions were recorded. Pressure sensitive film documented the magnitude and location of TF compressive forces. The peak bending moment at failure was 108?N?m±46?N?m at a total extension angle of 33.6?deg±11?deg. All joints failed by simultaneous ACL and PCL damages at the time of a sudden drop in the bending moment. High compressive forces were measured in the anterior compartments of the knee and likely produced the anterior tibial subluxation, which contributed to excessive tension in the ACL. The injury to the PCL at the same time may have been due to excessive extension of the joint. These data, and the comparisons with previous experimental studies, may help explain the mechanisms of knee ligament injury during hyperextension. Knowledge of forces and constraints that occur clinically could then help diagnose primary and secondary joint injuries following hyperextension of the human knee.  相似文献   

15.
The effects of changes in cruciate ligament material and prestrain on knee joint biomechanics following ligament reconstruction surgery by a tendon are not adequately known. A 3D nonlinear finite element model of the entire knee joint was used to investigate the joint response at different flexion angles under a quadriceps force while varying ACL and PCL initial strains or material properties. The ACL and PCL forces as well as tibiofemoral contact forces/areas substantially increased with greater ACL or PCL initial strains or stiffness. The patellofemoral contact force slightly increased whereas the tibial extensor moment slightly decreased with tenser or stiffer ACL. Reverse trends were predicted with slacker ACL. Results confirm the hypotheses that changes in the prestrain of one cruciate ligament substantially influence the force in the other cruciate ligament and the entire joint and that the use of the patellar tendon (PT) as a replacement for cruciate ligaments markedly alters the joint biomechanics with trends similar to those predicted when increasing prestrains. Forces in both ACL and PCL ligaments increased as one of them became tenser or stiffer and diminished as it became slacker. These results have important consequences in joint biomechanics following ligament injuries or replacement and tend to recommend the use of grafts with smaller prestrains (i.e. slacker than intact) when using the PT as the replacement material with stiffness greater than that of replaced ligament itself.  相似文献   

16.
The effects of changes in cruciate ligament material and prestrain on knee joint biomechanics following ligament reconstruction surgery by a tendon are not adequately known. A 3D nonlinear finite element model of the entire knee joint was used to investigate the joint response at different flexion angles under a quadriceps force while varying ACL and PCL initial strains or material properties. The ACL and PCL forces as well as tibiofemoral contact forces/areas substantially increased with greater ACL or PCL initial strains or stiffness. The patellofemoral contact force slightly increased whereas the tibial extensor moment slightly decreased with tenser or stiffer ACL. Reverse trends were predicted with slacker ACL. Results confirm the hypotheses that changes in the prestrain of one cruciate ligament substantially influence the force in the other cruciate ligament and the entire joint and that the use of the patellar tendon (PT) as a replacement for cruciate ligaments markedly alters the joint biomechanics with trends similar to those predicted when increasing prestrains. Forces in both ACL and PCL ligaments increased as one of them became tenser or stiffer and diminished as it became slacker. These results have important consequences in joint biomechanics following ligament injuries or replacement and tend to recommend the use of grafts with smaller prestrains (i.e. slacker than intact) when using the PT as the replacement material with stiffness greater than that of replaced ligament itself.  相似文献   

17.
The purpose of this study is to investigate the effect of anterior portion of anterior cruciate ligament, posterior cruciate ligament, anterior and deep portions of medial collateral ligament and the tibio-femoral articular contacts on passive knee motion. A well-accepted reference model for a normal tibio-femoral joint is reconstructed from the literature. The proposed three-dimensional dynamic tibio-femoral model includes the isometric fascicles, ligament bundles and irregularly shaped medial-lateral contact surfaces. With the approach we aim to analyze bone shape and ligament related abnormalities of knee kinematics. The rotations, translations and the contact forces during passive knee flexion were compared against a reference model and the results were found in close accordance. This study demonstrated that isometric ligament bundles play an important role in understanding the femur shape from contact points on tibia. Femoral condyles are not necessarily spherical. The surgical treatments should consider both ligament bundle lengths and contact surface geometries to achieve a problem free knee kinematics after a knee surgery.  相似文献   

18.
Valgus moments on the knee joint during single-leg landing have been suggested as a risk factor for anterior cruciate ligament (ACL) injury. The purpose of this study was to test the influence of isolated valgus moment on ACL strain during single-leg landing. Physiologic levels of valgus moments from an in vivo study of single-leg landing were applied to a three-dimensional dynamic knee model, previously developed and tested for ACL strain measurement during simulated landing. The ACL strain, knee valgus angle, tibial rotation, and medial collateral ligament (MCL) strain were calculated and analyzed. The study shows that the peak ACL strain increased nonlinearly with increasing peak valgus moment. Subjects with naturally high valgus moments showed greater sensitivity for increased ACL strain with increased valgus moment, but ACL strain plateaus below reported ACL failure levels when the applied isolated valgus moment rises above the maximum values observed during normal cutting activities. In addition, the tibia was observed to rotate externally as the peak valgus moment increased due to bony and soft-tissue constraints. In conclusion, knee valgus moment increases peak ACL strain during single-leg landing. However, valgus moment alone may not be sufficient to induce an isolated ACL tear without concomitant damage to the MCL, because coupled tibial external rotation and increasing strain in the MCL prevent proportional increases in ACL strain at higher levels of valgus moment. Training that reduces the external valgus moment, however, can reduce the ACL strain and thus may help athletes reduce their overall ACL injury risk.  相似文献   

19.
This communication reports the results of a three-dimensional finite element (FE) model of stresses in a surgically altered femur and tibia. The model incorporated a novel approach in implementing orthotropic and inhomogeneous bone properties and non-uniform distributed loading. Cortical, cancellous, and subchondral bone of the femur and the tibia were modeled. Mechanical properties for the cortical and cancellous bone were mapped from published data characterizing the anisotropy and inhomogeneity of the bone properties. Mesh adequacy was determined using stress convergence and strain energy error convergence. Qualitatively, the results of the study compare well with experimental principal compressive strains from the literature. With respect to tunnel placement in anterior cruciate ligament reconstruction, the model predicted stress-shielding at the postero-lateral region of the tunnel wall, and increased stress at the postero-medial region of the tunnel wall. The stresses in the cancellous bone beneath the tunnel were, in general, lower than those above the tunnel. Prolonged stress shielding leads to bone resorption of the posterior tunnel wall leading to tunnel enlargement, and possible compromise of the ACL reconstruction. The stresses on the femoral cortex produced from a button-type fixation were noticeable for low levels of loading; the stress levels were very similar in models incorporating bone properties of patients aged 45 and 65. Repeated compression of the femoral cortex at these stress levels may cause microdamage to the cortex eventually resulting in fatigue failure.  相似文献   

20.
Musculoskeletal models are widely used to investigate joint kinematics and predict muscle force during gait. However, the knee is usually simplified as a one degree of freedom joint and knee ligaments are neglected. The aim of this study was to develop an OpenSim gait model with enhanced knee structures. The knee joint in this study included three rotations and three translations. The three knee rotations and mediolateral translation were independent, with proximodistal and anteroposterior translations occurring as a function of knee flexion/extension. Ten elastic elements described the geometrical and mechanical properties of the anterior and posterior cruciate ligaments (ACL and PCL), and the medial and lateral collateral ligaments (MCL and LCL). The three independent knee rotations were evaluated using OpenSim to observe ligament function. The results showed that the anterior and posterior bundles of ACL and PCL (aACL, pACL and aPCL, pPCL) intersected during knee flexion. The aACL and pACL mainly provided force during knee flexion and adduction, respectively. The aPCL was slack throughout the range of three knee rotations; however, the pPCL was utilised for knee abduction and internal rotation. The LCL was employed for knee adduction and rotation, but was slack beyond 20° of knee flexion. The MCL bundles were mainly used during knee adduction and external rotation. All these results suggest that the functions of knee ligaments in this model approximated the behaviour of the physical knee and the enhanced knee structures can improve the ability to investigate knee joint biomechanics during various gait activities.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号