首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
7TM receptors are easily fused to proteins such as G proteins and arrestin but because of the fact that their terminals are found on each side of the membrane they cannot be joined directly in covalent dimers. Here, we use an artificial connector comprising a transmembrane helix composed of Leu-Ala repeats flanked by flexible spacers and positively charged residues to ensure correct inside-out orientation plus an extracellular HA-tag to construct covalently coupled dimers of 7TM receptors. Such 15 TM concatameric homo- and heterodimers of the β2-adrenergic and the NK1 receptors, which normally do not dimerize with each other, were expressed surprisingly well at the cell surface, where they bound ligands and activated signal transduction in a manner rather similar to the corresponding wild-type receptors. The concatameric heterodimers internalized upon stimulation with agonists for either of the protomers, which was not observed upon simple coexpression of the two receptors. It is concluded that covalently joined 7TM receptor dimers with surprisingly normal receptor properties can be constructed with use of an artificial transmembrane connector, which perhaps can be used to fuse other membrane proteins.  相似文献   

2.
There is evidence for a functionally important extracellular calcium-sensing receptor in osteoblasts, but there is disagreement regarding its identity. Candidates are CASR and a putative novel calcium-sensing receptor, called Ob.CASR. To further characterize Ob.CASR and to distinguish it from CASR, we examined the extracellular cation-sensing response in MC3T3-E1 osteoblasts and in osteoblasts derived from CASR null mice. We found that extracellular cations activate ERK and serum response element (SRE)-luciferase reporter activity in osteoblasts lacking CASR. Amino acids, but not the calcimimetic NPS-R568, an allosteric modulator of CASR, also stimulate Ob.CASR-dependent SRE-luciferase activation in MC3T3-E1 osteoblasts. In addition, we found that the dominant negative Galphaq(305-359) construct inhibited cation-stimulated ERK activation, consistent with Ob.CASR coupling to Galphaq-dependent pathways. Ob.CASR is also a target for classical GPCR desensitization mechanisms, since beta-arrestins, which bind to and uncouple GRK phosphorylated GPCRs, attenuated cation-stimulated SRE-luciferase activity in CASR deficient osteoblasts. Finally, we found that Ob.CASR and CASR couple to SRE through distinct signaling pathways. Ob.CASR does not activate RhoA and C3 toxin fails to block Ob.CASR-induced SRE-luciferase activity. Mutational analysis of the serum response factor (SRF) and ternary complex factor (TCF) elements in SRE demonstrates that Ob.CASR predominantly activates TCF-dependent mechanisms, whereas CASR activates SRE-luciferase mainly through a RhoA and SRF-dependent mechanism. The ability of Ob.CASR to sense cations and amino acids and function like a G-protein coupled receptor suggests that it may belong to the family of receptors characterized by an evolutionarily conserved amino acid sensing motif (ANF) linked to an intramembranous 7 transmembrane loop region (7TM).  相似文献   

3.
A computational protocol has been devised to relate 7TM receptor proteins (GPCRs) with respect to physicochemical features of the core ligand-binding site as defined from the crystal structure of bovine rhodopsin. The identification of such receptors that already are associated with ligand information (e.g., small molecule ligands with mutagenesis or SAR data) is used to support structure-guided drug design of novel ligands. A case targeting the newly identified prostaglandin D2 receptor CRTH2 serves as a primary example to illustrate the procedure.  相似文献   

4.
5.
During the last 10 years, the concept of “biased agonism” also called “functional selectivity” swamped the pharmacology of 7 transmembrane receptors and paved the way for developing signaling pathway-selective drugs with increased efficacy and less adverse effects. Initially thought to select the activation of only a subset of the signaling pathways by the reference agonist, bias ligands revealed higher complexity as they have been shown to stabilize variable receptor conformations that associate with distinct signaling events from the reference. Today, one major challenge relies on the in vitro determination of the bias and classification of these ligands, as a prerequisite for future in vivo and clinical translation. In this review, current experimental considerations for the bias evaluation related to choice of the cellular model, of the signaling pathway as well as of the assays are presented and discussed.  相似文献   

6.
Almost all degenerative diseases of the CNS are associated with chronic inflammation. A central step in this process is the activation of brain mononuclear phagocyte cells, called microglia. While it is recognized that healthy neurons and astrocytes regulate the magnitude of microglia-mediated innate immune responses and limit excessive CNS inflammation, the endogenous signals governing this process are not fully understood. In the peripheral nervous system, recent studies suggest that an endogenous 'cholinergic anti-inflammatory pathway' regulates systemic inflammatory responses via alpha 7 nicotinic acetylcholinergic receptors (nAChR) found on blood-borne macrophages. These data led us to investigate whether a similar cholinergic pathway exists in the brain that could regulate microglial activation. Here we report for the first time that cultured microglial cells express alpha 7 nAChR subunit as determined by RT-PCR, western blot, immunofluorescent, and immunohistochemistry analyses. Acetylcholine and nicotine pre-treatment inhibit lipopolysaccharide (LPS)-induced TNF-alpha release in murine-derived microglial cells, an effect attenuated by alpha 7 selective nicotinic antagonist, alpha-bungarotoxin. Furthermore, this inhibition appears to be mediated by a reduction in phosphorylation of p44/42 and p38 mitogen-activated protein kinase (MAPK). Though preliminary, our findings suggest the existence of a brain cholinergic pathway that regulates microglial activation through alpha 7 nicotinic receptors. Negative regulation of microglia activation may also represent additional mechanism underlying nicotine's reported neuroprotective properties.  相似文献   

7.
Dror Tobi 《Proteins》2016,84(2):267-277
The dynamics of the ligand‐binding domain (LBD) and the intact ionotropic glutamate receptor (iGluR) were studied using Gaussian Network Model (GNM) analysis. The dynamics of LBDs with various allosteric modulators is compared using a novel method of multiple alignment of GNM modes of motion. The analysis reveals that allosteric effectors change the dynamics of amino acids at the upper lobe interface of the LBD dimer as well as at the hinge region between the upper‐ and lower‐ lobes. For the intact glutamate receptor the analysis show that the clamshell‐like movement of the LBD upper and lower lobes is coupled to the bending of the trans‐membrane domain (TMD) helices which may open the channel pore. The results offer a new insight on the mechanism of action of allosteric modulators on the iGluR and support the notion of TMD helices bending as a possible mechanism for channel opening. In addition, the study validates the methodology of multiple GNM modes alignment as a useful tool to study allosteric effect and its relation to proteins dynamics. Proteins 2016; 84:267–277. © 2015 Wiley Periodicals, Inc.  相似文献   

8.
Highlights
  • •Perturbation nature of signaling is a fundamental feature of allosteric regulation.
  • •Experimental and theoretical studies of allostery using perturbation approach.
  • •Structure-based statistical mechanical model of allostery.
  • •Inducing and fine-tuning targeted allosteric response.
  • •From current understanding of allosteric control to future tasks in its design.
  1. Download : Download high-res image (314KB)
  2. Download : Download full-size image
Regardless of the diversity of systems, allosteic signalling is found to be always caused by perturbations. This recurring trait of allostery serves as a foundation for developing different experimental efforts and theoretical models for the studies of allosteric mechanisms. Among computational approaches considered here particular emphasis is given to the structure-based statistical mechanical model of allostery (SBSMMA), which allows one to study the causality and energetics of allosteric communication. We argue that the reverse allosteric signaling on the basis of SBSMMA can be used for predicting latent allosteric sites and inducing a tunable allosteric response. Per-residue allosteric effects of mutations can also be explored and ‘latent drivers’ expanding the cancer mutational landscape can be predicted using SBSMMA. Most recent and important implementations of computational models in web-resources along with a brief outlook on future research directions are also discussed.  相似文献   

9.
10.
Whereas most membrane receptors are oligomeric entities, G-protein-coupled receptors have long been thought to function as monomers. Within the last 15 years, accumulating data have indicated that G-protein-coupled receptors can form dimers or even higher ordered oligomers, but the general functional significance of this phenomena is not yet clear. Among the large G-protein-coupled receptor family, class C receptors represent a well-recognized example of constitutive dimers, both subunits being linked, in most cases, by a disulfide bridge. In this review article, we show that class C G-protein-coupled receptors are multidomain proteins and highlight the importance of their dimerization for activation. We illustrate several consequences of this in terms of specific functional properties and drug development.  相似文献   

11.
X-ray crystallography was used to solve the atomic structure of the ligand binding domain of the metabotropic glutamate receptor type1 homo-dimer, making it possible to show the conformational change of this domain upon glutamate binding. Studies of dimeric metabotropic receptors thereafter have focused on the respective roles and interaction of the two subunits, on the activation mechanisms following the structural rearrangements of the ligand-binding domain, and on the functional significance of polyvalent cations, the binding of which was identified in the crystal. The direct interaction between the GABA(B) receptor and the metabotropic glutamate receptor (mGluR1) has also attracted attention. Recently, attention has focused on incorporating these structural features into a functional view of the receptors.  相似文献   

12.
The role of regulatory peptides and the existence of specific peptide receptors are becoming established. However, techniques for the ultrastructural localisation of these receptors are fraught with difficulties. We propose here a novel technique for receptor localisation using a dimeric peptide ligand and electron microscopical immunocytochemistry. The dimeric ligand is used as a bridge between the receptor and a specific anti-ligand antibody. By this method we have localised receptors for bombesin in cells of small cell lung carcinoma in culture. The results support previous biochemical evidence for the existence of said receptors and the technique should be applicable for the localisation of other receptors recognising small ligands.  相似文献   

13.
Summary The role of regulatory peptides and the existence of specific peptide receptors are becoming established. However, techniques for the ultrastructural localisation of these receptors are fraught with difficulties. We propose here a novel technique for receptor localisation using a dimerie peptide ligand and electron microscopical immunocytochemistry. The dimeric ligand is used as a bridge between the receptor and a specific anti-ligand antibody. By this method we have localised receptors for bombesin in cells of small cell lung carcinoma in culture. The results support previous biochemical evidence for the existence of said receptors and the technique should be applicable for the localisation of other receptors recognising small ligands.  相似文献   

14.
GABAB receptors modulate transmitter release and postsynaptic membrane potential at various types of central synapses. They function as heterodimers of two related seven-transmembrane domain receptor subunits. Trafficking, activation and signalling of GABAB receptors are regulated both by allosteric interactions between the subunits and by the binding of additional proteins. Recent studies have shed light on the roles of GABAB receptors in plasticity processes at excitatory synapses. This review summarizes our knowledge of the localization, structure and function of GABAB receptors in the central nervous system and their use as drug targets for neurological and psychiatric disorders.  相似文献   

15.
The investigation of two Mikania species, both previously placed in the genus Kanimia, afforded in addition to known compounds several new germ  相似文献   

16.
Current responses from CA1 neurons and stratum oriens astrocytes were recorded from hippocampal brain slices by means of the whole-cell patch-clamp technique. Anoxic depolarization (AD) was induced by an oxygen/glucose-deprived (OGD) medium also containing sodium iodoacetate and antimycin, in order to block glycolysis and oxidative phosphorylation, respectively. Anoxic depolarization has been reported to be due to the sudden increase of the extracellular K+ concentration and the accompanying explosive rise in glutamate concentration. We asked ourselves whether the release of ATP activating P2X7 receptors is also involved in the AD. Although, the AD was evoked in absolute synchrony in neurons and astrocytes, and the NMDA receptor antagonistic AP-5 depressed these responses, neither the non-selective P2 receptor antagonist PPADS, nor the highly selective P2X7 receptor antagonist A438079 interfered with the AD or its delay time in neurons/astrocytes after inducing chemical hypoxia. However, A438079, but not PPADS increased in astrocytes the slow inward current observed in a hypoxic medium. It is concluded that ATP co-released with glutamate by hypoxic stimulation has only a minor function in the present brain slice system.  相似文献   

17.
Allosteric modulators for adenosine receptors may have potential therapeutic advantage over orthosteric ligands. Allosteric enhancers at the adenosine A1 receptor have been linked to antiarrhythmic and antilipolytic activity. They may also have therapeutic potential as analgesics and neuroprotective agents. A3 allosteric enhancers are postulated to be useful against ischemic conditions or as antitumor agents. In this review, we address recent developments regarding the medicinal chemistry of such compounds. Most efforts have been and are directed toward adenosine A1 and A3 receptors, whereas limited or no information is available for A2A and A2B receptors. We also discuss some findings, mostly receptor mutation studies, regarding localization of the allosteric binding sites on the receptors.  相似文献   

18.
Activation of the P2X7 receptor (P2X7R) triggers a remarkably diverse array of membrane trafficking responses in leukocytes and epithelial cells. These responses result in altered profiles of cell surface lipid and protein composition that can modulate the direct interactions of P2X7R-expressing cells with other cell types in the circulation, in blood vessels, at epithelial barriers, or within sites of immune and inflammatory activation. Additionally, these responses can result in the release of bioactive proteins, lipids, and large membrane complexes into extracellular compartments for remote communication between P2X7R-expressing cells and other cells that amplify or modulate inflammation, immunity, and responses to tissue damages. This review will discuss P2X7R-mediated effects on membrane composition and trafficking in the plasma membrane (PM) and intracellular organelles, as well as actions of P2X7R in controlling various modes of non-classical secretion. It will review P2X7R regulation of: (1) phosphatidylserine distribution in the PM outer leaflet; (2) shedding of PM surface proteins; (3) release of PM-derived microvesicles or microparticles; (4) PM blebbing; (5) cell–cell fusion resulting in formation of multinucleate cells; (6) phagosome maturation and fusion with lysosomes; (7) permeability of endosomes with internalized pathogen-associated molecular patterns; (8) permeability/integrity of mitochondria; (9) exocytosis of secretory lysosomes; and (10) release of exosomes from multivesicular bodies. This work was supported by NIH grants R01-GM36387 and P01-HLHL18708 (G.R.D.).  相似文献   

19.
The types I, II, and III receptors (RI, RII, RIII) for transforming growth factor-beta (TGF-beta) become down-regulated in response to ligand, presumably via their internalization from the cell surface. This report examines the down-regulation of full-length RI, RII, and RIII in cells endogenously or transiently expressing these receptors. Down-regulation occurred rapidly (within 2 h after TGF-beta1 treatment at 37 degrees C) and showed a dose response, between 10 and 200 pM TGF-beta1, in cells expressing RI, RII, and RIII (Mv1lu and A549 cells). A comparison between Mv1Lu and mutant cell derivatives R-1B (lacking RI) or DR-26 (lacking RII) indicated that all three receptors were necessary for efficient down-regulation. Down-regulation experiments, utilizing TGF-beta-treated 293 cells transiently expressing different combinations of these receptors indicated that neither RII or RIII were down-regulated when expressed alone and that RI was required for maximal down-regulation of RII. RII and RIII were partially down-regulated when these receptors were coexpressed in the absence of RI (in R-1B and 293 cells). Surprisingly, TGF-beta receptors were partially down-regulated in Mv1Lu, A549, and 293 cells treated with TGF-beta1 at 4 degrees C. Microscopic examination of 293 cells coexpressing RI fused to green fluorescent protein (RI-GFP) and RII indicated that, after treatment with TGF-beta1 at 4 degrees C, RI-GFP formed aggregates at the cell surface at this temperature. RI-GFP was not detected at the surface of these cells after TGF-beta1 treatment at 37 degrees C. Our results suggest a two phase mechanism for TGF-beta1 receptor down-regulation involving receptor modulation (aggregation) at the cell surface and internalization.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号