首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Actin and myosin are the two main proteins required for cell motility and muscle contraction. The structure of their strongly bound complex—rigor state—is a key for delineating the functional mechanism of actomyosin motor. Current knowledge of that complex is based on models obtained from the docking of known atomic structures of actin and myosin subfragment 1 (S1; the head and neck region of myosin) into low-resolution electron microscopy electron density maps, which precludes atomic- or side-chain-level information. Here, we use radiolytic protein footprinting for global mapping of sites across the actin molecules that are impacted directly or allosterically by myosin binding to actin filaments. Fluorescence and electron paramagnetic resonance spectroscopies and cysteine actin mutants are used for independent, residue-specific probing of S1 effects on two structural elements of actin. We identify actin residue candidates involved in S1 binding and provide experimental evidence to discriminate between the regions of hydrophobic and electrostatic interactions. Focusing on the role of the DNase I binding loop (D-loop) and the W-loop residues of actin in their interactions with S1, we found that the emission properties of acrylodan and the mobility of electron paramagnetic resonance spin labels attached to cysteine mutants of these residues change strongly and in a residue-specific manner upon S1 binding, consistent with the recently proposed direct contacts of these loops with S1. As documented in this study, the direct and indirect changes on actin induced by myosin are more extensive than known until now and attest to the importance of actin dynamics to actomyosin function.  相似文献   

2.
The three-dimensional structure of human leukocyte antigens HLA-DR*0301 and HLA-DR*0302 have been calculated using the homology modeling approach. General structural features of our models are similar to those of related HLA molecules. The typical layout of segments of the secondary structure is well preserved. However polypeptide chains are less tightly bound, which causes slightly broader opening of the binding groove. It also results in the modified layout of pockets in the binding groove. Amino acids defining the restricted sequence diversity of studied proteins are easily available for interactions with ligands.A set of docking simulations was performed using modeled structures of both HLA molecules and various specific peptide ligands. The control docking of influenza hemagglutinin peptide into HLA-DR*0101 molecule gives the complex structure which is in good agreement with that from crystallographic studies. The extensive analysis of the structure of modeled complexes of HLA-DR*0301 and HLA-DR*0302 with various ligands indicates that sequence microvariation of both alleles is not directly controlling the binding specificity. Preferences for binding of specific ligands, as evaluated from interactions in modeled complexes, agree qualitatively with experimental observations. Thus the computer aided docking simulations can be successfully used to calculate the three-dimensional structure of HLA-ligand complexes. However detailed explanation of binding specificity can not be achieved using presently available modeling procedures.Electronic Supplementary Material available.  相似文献   

3.
A paradox of eukaryotic cells is that while some species assemble a complex actin cytoskeleton from a single ortholog, other species utilize a greater diversity of actin isoforms. The physiological consequences of using different actin isoforms, and the molecular mechanisms by which highly conserved actin isoforms are segregated into distinct networks, are poorly known. Here, we sought to understand how a simple biological system, composed of a unique actin and a limited set of actin‐binding proteins, reacts to a switch to heterologous actin expression. Using yeast as a model system and biomimetic assays, we show that such perturbation causes drastic reorganization of the actin cytoskeleton. Our results indicate that defective interaction of a heterologous actin for important regulators of actin assembly limits certain actin assembly pathways while reinforcing others. Expression of two heterologous actin variants, each specialized in assembling a different network, rescues cytoskeletal organization and confers resistance to external perturbation. Hence, while species using a unique actin have homeostatic actin networks, actin assembly pathways in species using several actin isoforms may act more independently.  相似文献   

4.
Guan JQ  Almo SC  Reisler E  Chance MR 《Biochemistry》2003,42(41):11992-12000
The solution structures of isolated monomeric actins in their Mg(2+)-ATP and Ca(2+)-ATP bound forms and in complexes with gelsolin segment-1 have been probed using hydroxyl radicals (*OH) generated by synchrotron X-ray radiolysis. Proteolysis and mass spectrometry analysis of 28 peptides containing 58 distinct reactive probe sites within actin were used to monitor conformational variations linked to divalent cation and gelsolin segment-1 binding. The solvent accessibilities of the probe sites, as measured by footprinting in solution for the Ca(2+)-G-actin and Mg(2+)-G-actin complexes with gelsolin segment-1, were consistent with available crystallographic data. This included a specific protection at the contact interface between the partners, as revealed by reduced reactivity of peptide 337-359 in the complex. Aside from the specific protection indicated previously, the oxidation rates for the reactive residues of the isolated Ca(2+)-G-actin were similar to those of the actin gelsolin segment-1 complexes; however, the reactivity of numerous residues in the isolated Mg(2+)-G-actin form was significantly reduced. Specifically, Mg(2+)-G-actin has a set of protected sites relative to Ca(2+)-G-actin that suggest a structural reorganization in subdomains 4 and 2 and a C-terminus more closely packed onto subdomain 1. These conformational variations for isolated Mg(2+)-G-actin provide a structural basis for its greater tendency to polymerize into filaments as compared to Ca(2+)-G-actin.  相似文献   

5.
Several atomic models of the actomyosin interface have been proposed based on the docking together of their component structures using electron microscopy and resonance energy-transfer measurements. Although these models are in approximate agreement in the location of the binding interfaces when myosin is tightly bound to actin, their relationships to molecular docking simulations based on computational free-energy calculations are investigated here. Both rigid-docking and flexible-docking conformational search strategies were used to identify free-energy minima at the interfaces between atomic models of myosin and actin. These results suggest that the docking model produced by resonance energy-transfer data is closer to a free-energy minimum at the interface than are the available atomic models based on electron microscopy. The conformational searches were performed using both scallop and chicken skeletal muscle myosins and identified similarly oriented actin-binding interfaces that serve to validate that these models are at the global minimum. These results indicate that the existing docking models are close to but not precisely at the lowest-energy initial contact site for strong binding between myosin and actin that should represent an initial contact between the two proteins; therefore, conformational changes are likely to be important during the transition to a strongly bound complex.  相似文献   

6.
Zabell AP  Post CB 《Proteins》2002,46(3):295-307
A method is described for docking a large, flexible ligand using intra-ligand conformational restraints from exchange-transferred NOE (etNOE) data. Numerous conformations of the ligand are generated in isolation, and a subset of representative conformations is selected. A crude model of the protein-ligand complex is used as a template for overlaying the selected ligand structures, and each complex is conformationally relaxed by molecular mechanics to optimize the interaction. Finally, the complexes were assessed for structural quality. Alternative approaches are described for the three steps of the method: generation of the initial docking template; selection of a subset of ligand conformations; and conformational sampling of the complex. The template is generated either by manual docking using interactive graphics or by a computational grid-based search of the binding site. A subset of conformations from the total number of peptides calculated in isolation is selected based on either low energy and satisfaction of the etNOE restraints, or a cluster analysis of the full set. To optimize the interactions in the complex, either a restrained Monte Carlo-energy minimization (MCM) protocol or a restrained simulated annealing (SA) protocol were used. This work produced 53 initial complexes of which 8 were assessed in detail. With the etNOE conformational restraints, all of the approaches provide reasonable models. The grid-based approach to generate an initial docking template allows a large volume to be sampled, and as a result, two distinct binding modes were identified for a fifteen-residue peptide binding to an enzyme active site.  相似文献   

7.
Bacteriorhodopsin (bR) provides light-driven vectorial proton transport across a cell membrane. Creation of electrochemical potential at the membrane is a universal step in energy transformation in a cell. Published atomic crystallographic models of early intermediate states of bR show a significant difference between them, and conclusions about pumping mechanisms have been contradictory. Here, we present a quantitative high-resolution crystallographic study of conformational changes in bR induced by X-ray absorption. It is shown that X-ray doses that are usually accumulated during data collection for intermediate-state studies are sufficient to significantly alter the structure of the protein. X-ray-induced changes occur primarily in the active site of bR. Structural modeling showed that X-ray absorption triggers retinal isomerization accompanied by the disappearance of electron densities corresponding to the water molecule W402 bound to the Schiff base. It is demonstrated that these and other X-ray-induced changes may mimic functional conformational changes of bR leading to misinterpretation of the earlier obtained X-ray crystallographic structures of photointermediates.  相似文献   

8.
Actin carries out many of its cellular functions through its filamentous form; thus, understanding the detailed structure of actin filaments is an essential step in achieving a mechanistic understanding of actin function. The acrosomal bundle in the Limulus sperm has been shown to be a quasi-crystalline array with an asymmetric unit composed of a filament with 14 actin-scruin pairs. The bundle in its true discharge state penetrates the jelly coat of the egg. Our previous electron crystallographic reconstruction demonstrated that the actin filament cross-linked by scruin in this acrosomal bundle state deviates significantly from a perfect F-actin helix. In that study, the tertiary structure of each of the 14 actin protomers in the asymmetric unit of the bundle filament was assumed to be constant. In the current study, an actin filament atomic model in the acrosomal bundle has been refined by combining rigid-body docking with multiple actin crystal structures from the Protein Data Bank and constrained energy minimization. Our observation demonstrates that actin protomers adopt different tertiary conformations when they form an actin filament in the bundle. The scruin and bundle packing forces appear to influence the tertiary and quaternary conformations of actin in the filament of this biologically active bundle.  相似文献   

9.
Cofilin is a major cytoskeletal protein that binds to both monomeric actin (G-actin) and polymeric actin (F-actin) and is involved in microfilament dynamics. Although an atomic structure of the G-actin-cofilin complex does not exist, models of the complex have been built using molecular dynamics simulations, structural homology considerations, and synchrotron radiolytic footprinting data. The hydrophobic cleft between actin subdomains 1 and 3 and, alternatively, the cleft between actin subdomains 1 and 2 have been proposed as possible high-affinity cofilin binding sites. In this study, the proposed binding of cofilin to the subdomain 1/subdomain 3 region on G-actin has been probed using site-directed mutagenesis, fluorescence labeling, and chemical cross-linking, with yeast actin mutants containing single reactive cysteines in the actin hydrophobic cleft and with cofilin mutants carrying reactive cysteines in the regions predicted to bind to G-actin. Mass spectrometry analysis of the cross-linked complex revealed that cysteine 345 in subdomain 1 of mutant G-actin was cross-linked to native cysteine 62 on cofilin. A cofilin mutant that carried a cysteine substitution in the α3-helix (residue 95) formed a cross-link with residue 144 in actin subdomain 3. Distance constraints imposed by these cross-links provide experimental evidence for cofilin binding between actin subdomains 1 and 3 and fit a corresponding docking-based structure of the complex. The cross-linking of the N-terminal region of recombinant yeast cofilin to actin residues 346 and 374 with dithio-bis-maleimidoethane (12.4 Å) and via disulfide bond formation was also documented. This set of cross-linking data confirms the important role of the N-terminal segment of cofilin in interactions with G-actin.  相似文献   

10.
A replica‐exchange Monte Carlo (REMC) ensemble docking approach has been developed that allows efficient exploration of protein–protein docking geometries. In addition to Monte Carlo steps in translation and orientation of binding partners, possible conformational changes upon binding are included based on Monte Carlo selection of protein conformations stored as ordered pregenerated conformational ensembles. The conformational ensembles of each binding partner protein were generated by three different approaches starting from the unbound partner protein structure with a range spanning a root mean square deviation of 1–2.5 Å with respect to the unbound structure. Because MC sampling is performed to select appropriate partner conformations on the fly the approach is not limited by the number of conformations in the ensemble compared to ensemble docking of each conformer pair in ensemble cross docking. Although only a fraction of generated conformers was in closer agreement with the bound structure the REMC ensemble docking approach achieved improved docking results compared to REMC docking with only the unbound partner structures or using docking energy minimization methods. The approach has significant potential for further improvement in combination with more realistic structural ensembles and better docking scoring functions. Proteins 2017; 85:924–937. © 2016 Wiley Periodicals, Inc.  相似文献   

11.
Using BIACORE SPR, we have examined the mechanism of temperature effects on the binding kinetics of two closely related antibody Fabs (H10 and H26) which recognize coincident epitopes on hen egg-white lysozyme (HEL), and whose association and dissociation kinetics are best described by the two-step conformational change model which we interpret as molecular encounter and docking. Time-course series data obtained at a series of six temperatures (6, 10, 15, 25, 30 and 37 degrees C) showed that temperature differentially affects the rate constants of the encounter and docking steps. Docking is more temperature-sensitive than the encounter step, and energetically less favorable at higher temperatures. At elevated temperatures, the time required for docking is longer and the apparent increase in off-rate reflects the greater proportion of the molecules failing to dock and remaining in the less stable encounter state. As a consequence, distribution of free energy change between the encounter and docking steps is altered. At physiological temperature (37 degrees C) the docking step of the H26 complex is energetically unfavorable and most complexes essentially do not dock. There is a significant decrease in total free energy change of the H26 complex at higher temperatures. Elevated temperature changes the rate-limiting step of H26--HEL association from the encounter to the docking step, but not that of H10--HEL. Our results indicate that the mechanism by which elevated temperature reduces the affinities of antigen--antibody complexes is to decrease the net docking rate, and/or stability of the docked complex; at higher temperatures, a smaller proportion of the complexes actually anneal to a more stable docked state. This mechanism may have broad applicability to other receptor--ligand complexes.  相似文献   

12.
Ribonuclease P (RNase P) is a ribonucleoprotein (RNP) enzyme that catalyzes the Mg2+-dependent 5′ maturation of precursor tRNAs. In all domains of life, it is a ribozyme: the RNase P RNA (RPR) component has been demonstrated to be responsible for catalysis. However, the number of RNase P protein subunits (RPPs) varies from 1 in bacteria to 9 or 10 in eukarya. The archaeal RPR is associated with at least 4 RPPs, which function in pairs (RPP21-RPP29 and RPP30-POP5). We used solution NMR spectroscopy to determine the three-dimensional structure of the protein-protein complex comprising Pyrococcus furiosus RPP21 and RPP29. We found that the protein-protein interaction is characterized by coupled folding of secondary structural elements that participate in interface formation. In addition to detailing the intermolecular contacts that stabilize this 30-kDa binary complex, the structure identifies surfaces rich in conserved basic residues likely vital for recognition of the RPR and/or precursor tRNA. Furthermore, enzymatic footprinting experiments allowed us to localize the RPP21-RPP29 complex to the specificity domain of the RPR. These findings provide valuable new insights into mechanisms of RNP assembly and serve as important steps towards a three-dimensional model of this ancient RNP enzyme.  相似文献   

13.
Spectrin assembles into an anti-parallel heterodimeric flexible rod-like molecule through a multistep process initiated by a high affinity interaction between discrete complementary homologous motifs or "repeats" near the actin binding domain. Attempts to determine crystallographic structures of this critical dimer initiation complex have so far been unsuccessful. Therefore, in this study we determined the subunit-subunit docking interface and a plausible medium resolution structure of the heterodimer initiation site using homology modeling coupled with structural refinement based on experimentally determined distance constraints. Intramolecular and intermolecular cross-links formed by the "zero length" cross-linking reagent, 1-ethyl-3-(3-dimethylaminopropyl)carbodiimide were identified after trypsin digestion of cross-linked heterodimer complex using liquid chromatography-tandem mass spectrometry analysis. High confidence assignment of cross-linked peptides was facilitated by determination of cross-linked peptide masses with an uncertainty of a few parts per million using a high sensitivity linear ion trap mass spectrometer equipped with a Fourier-transform ion cyclotron resonance detector. Six interchain cross-links distinguished between alternative docking models, and these distance constraints, as well as three intrachain cross-links, were used to further refine an initial homology-based structure. The final model is consistent with all available physical data, including protease protection experiments, isothermal titration calorimetry analyses, and location of a common polymorphism that destabilizes dimerization. This model supports the hypothesis that initial docking of the correct alpha and beta repeats from among many very similar repeats in both subunits is driven primarily by long range electrostatic interactions.  相似文献   

14.
Gap junctions are clusters of closely packed intercellular membrane channels embedded in the plasma membranes of two adjoining cells. The central pore of the membrane channels serves as a conduit between cell cytoplasms for molecules less than 1000 Da in size. Advances in the purification of gap junctions and electron cryocrystallography and computer reconstruction techniques have produced new insights into the intercellular channel structure. Methods are described here for the purification of gap junction membranes, biochemical treatments to produce hemichannel layers ("split junctions"), assessment of the purity of gap junction preparations, electron cryomicroscopy, image processing and reconstruction, three-dimensional visualization, and interpretation. The critical step in electron crystallographic structure determination remains the isolation of crystalline material in sufficient and pure quantities for recording of electron microscope images. Along with sodium dodecyl sulfate-polyacrylamide gel electrophoresis and Western blotting, the quality of gap junction purification is assessed using electron microscopy of negatively stained preparations. Electron microscopy is also used to assess the crystallinity of the purified gap junctions and split junctions. Electron cryocrystallography is a powerful technique for high-resolution structural characterization. Image processing is used to combine and enhance two-dimensional images. Electron crystallographic analysis is used to generate a three-dimensional structure from a set of electron micrographs. This three-dimensional information is extracted from a set of images recorded after tilting the specimen in the electron microscope stage and recombined using Fourier analysis techniques analogous to those used in X-ray crystallography. Computer modeling of the three-dimensional gap junction structures is a useful tool for analyzing hemichannel docking.  相似文献   

15.
Synchrotron X-ray protein footprinting is used to study structural changes upon formation of the ClpA hexamer. Comparative solvent accessibilities between ClpA monomer and ClpA hexamer samples are in agreement throughout most of the sequence, with calculations based on two previously proposed hexameric models. The data differ substantially from the proposed models in two parts of the structure: the D1 sensor 1 domain and the D2 loop region. The results suggest that these two regions can access alternate conformations in which their solvent protection is greater than that in the structural models based on crystallographic data. In combination with previously reported structural data, the footprinting data provide support for a revised model in which the D2 loop contacts the D1 sensor 1 domain in the ATP-bound form of the complex. These data provide the first direct experimental support for the nucleotide-dependent D2 loop conformational change previously proposed to mediate substrate translocation.  相似文献   

16.
A challenge in protein-protein docking is to account for the conformational changes in the monomers that occur upon binding. The RosettaDock method, which incorporates sidechain flexibility but keeps the backbone fixed, was found in previous CAPRI rounds (4 and 5) to generate docking models with atomic accuracy, provided that conformational changes were mainly restricted to protein sidechains. In the recent rounds of CAPRI (6-12), large backbone conformational changes occur upon binding for several target complexes. To address these challenges, we explicitly introduced backbone flexibility in our modeling procedures by combining rigid-body docking with protein structure prediction techniques such as modeling variable loops and building homology models. Encouragingly, using this approach we were able to correctly predict a significant backbone conformational change of an interface loop for Target 20 (12 A rmsd between those in the unbound monomer and complex structures), but accounting for backbone flexibility in protein-protein docking is still very challenging because of the significantly larger conformational space, which must be surveyed. Motivated by these CAPRI challenges, we have made progress in reformulating RosettaDock using a "fold-tree" representation, which provides a general framework for treating a wide variety of flexible-backbone docking problems.  相似文献   

17.
The three-dimensional interaction of the enzyme-activated (suicide) inhibitor AA 231-1 [N(2-chloromethyl)-3,3-difluoro-azetidin-2-one] with human leukocyte elastase has been studied using computer graphics and molecular mechanics. Systematic conformational analyses and energy minimizations have been performed for the inhibitor AA 231-1 and its presumed complexes formed during the enzymatic process of inactivation, i.e., the Michaelis complex, the acyl-enzyme, and the inactivated enzyme with the covalently bound inhibitor. The β-lactam ring characteristics of modeled AA 231-1 were in agreement with crystallo-graphic data of related structures. Lowest energy conformatinos were found when the angle between the planes of the β-lactam ring and that of its phenyl substituent was about −60 or 60°. To study the interaction with the enzyne, the enzyme-inhibitor complexes were constructed by docking the inhibitor in the active site using enzyme coordinates from an X-ray crystallographic structure. The whole enzyme structure was used for conformational analyses and energy mechanics. Favorable conformations for the Michaelis complex have been obtained in which the carbonyl oxygen of the inhibitor was located in the oxyanion hole and the hydroxyl of Ser195 was in position to interact with the β-lactam carbonyl carbon on the α face of AA 231-1. Simulations of the approach of the benzylic carbon by the nucleophilic amino acid His40 or His57 through an SN2 displacement on the halomethyl group of AA 231-1 were performed. The results agreed with the alkylation of the imidazole nitroge Nϵ2 of His57 leading to the inactivated enzyme (bis-adduct form).  相似文献   

18.
Ci S  Ren T  Su Z 《The protein journal》2008,27(2):71-78
The three-dimensional structure of the GABA A receptor that included the ligand/agonist binding site was constructed and validated by using molecular modeling technology. Moreover, the putative binding-mode of GABA and diazepam with GABAA receptor were investigated by means of docking studies. Based on an rmsd-tolerance of 1.0 angstroms, the docking of GABA to alpha1/beta2 interface resulted in three multi-member conformational clusters and model 2 was supported by homologous sequence alignment data and experimental evidence. On the other hand, the docking of diazepam to alpha1/gamma2 interface revealed five multi-member conformational clusters in the binding site and model 1 seemed to represent the correct orientation of diazepam in the binding site.  相似文献   

19.
Understanding the composition, structure and dynamics of macromolecules and their assemblies is at the forefront of biological science today. Hydroxyl-radical-mediated protein footprinting using mass spectrometry can define macromolecular structure, macromolecular assembly and conformational changes of macromolecules in solution based on measurements of reactivity of amino acid side-chain groups with covalent-modification reagents. Subsequent to oxidation by reactive oxygen species, proteins are digested by specific proteases to generate peptides for analysis by mass spectrometry. Accurate measurements of side-chain reactivity are achieved using quantitative liquid-chromatography-coupled mass spectrometry, whereas the side-chain sites within the macromolecular probes are identified using tandem mass spectrometry. In addition, the use of footprinting data in conjunction with computational modeling approaches is a powerful new method for testing and refining structural models of macromolecules and their complexes.  相似文献   

20.
Arp2/3 complex plays a central role in the de novo nucleation of filamentous actin as branches on existing filaments. The complex must bind ATP, protein activators [e.g., Wiskott-Aldrich syndrome protein (WASp)], and the side of an actin filament to form a new actin filament. Amide hydrogen/deuterium exchange coupled with mass spectrometry was used to examine the structural and dynamic properties of the mammalian Arp2/3 complex in the presence of both ATP and the activating peptide segment from WASp. Changes in the rate of hydrogen exchange indicate that ATP binding causes conformational rearrangements of Arp2 and Arp3 that are transmitted allosterically to the Arp complex (ARPC)1, ARPC2, ARPC4, and ARPC5 subunits. These data are consistent with the closure of nucleotide-binding cleft of Arp3 upon ATP binding, resulting in structural rearrangements that propagate throughout the complex. Binding of the VCA domain of WASp to ATP-Arp2/3 further modulates the rates of hydrogen exchange in these subunits, indicating that a global conformational reorganization is occurring. These effects may include the direct binding of activators to Arp3, Arp2, and ARPC1; alterations in the relative orientations of Arp2 and Arp3; and the long-range transmission of activator-dependent signals to segments proposed to be involved in binding the F-actin mother filament.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号