首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
A variety of proteins have been studied for their ability to interact and alter the thermotropic properties of phospholipid bilayer membranes as detected by differential scanning calorimeter. The proteins studied included: basic myelin protein (A1 protein), cytochrome c, major apoprotein of myelin proteolipid (N-2 apoprotein), gramicidin A, polylysine, ribonuclease and hemoglobin. The lipids used for the interactions were dipalmitoylphosphatidylcholine and dipalmitoylphosphatidylglycerol. The interactions were grouped in three categories each having very different effects on the phospholipid phase transition from solid to liquid crystalline. The calorimetric studies were also correlated with data from vesicle permeability and monolayer expansion.Ribonuclease and polylysine which exemplify group 1 interactions, show strong dependence on electrostatic binding. Their effects on lipid bilayers include an increase in the enthalpy of transition (ΔH) accompanied by either an increase or no change in the temperature of transition (Tc). In addition, they show minimal effects on vesicle permeability and monolayer expansion. It was concluded that these interactions represent simple surface binding of the protein on the lipid bilayer without penetration into the hydrocarbon region.Cytochrome c and Al protein, which exemplify group 2 interactions, also show a strong dependence on the presence of net negative charges on the lipid bilayers for their binding. In contrast to the first group, however, they induce a drastic decrease in both Tc and ΔH of the lipid phase transition. Furthermore, they induce a large increase in the permeability of vesicles and a substantial expansion in area of closely packed monolayers at the air-water interface. It was concluded that group 2 interactions represent surface binding followed by partial penetration and/or deformation of the bilayer.Group 3 interactions, shown by proteolipid apoprotein and gramicidin A, were primarily non-polar in character, not requiring electrostatic charges and not inhibited by salt and pH changes. They had no appreciable effect on the Tc but did induce a linear decrease in the magnitude of the ΔH, proportional to the percentage of protein by weight. Membranes containing 50% proteolipid protein still exhibited a thermotropic transition with a ΔH one half that of the pure lipid, and only a small diminution of the size of the cooperative unit. It was concluded that in this case the protein was embedded within the bilayer, associating with a limited number of molecules via non-polar interactions, while the rest of the bilayer was largely unperturbed.  相似文献   

2.
The thermotropic phase transitions were determined for a variety of phospholipids including dimyristoyl (DMPC) and distearoyl phosphatidylcholine (DSPC); dimyristoyl (DMPE), dioleoyl (DOPE) and egg phospatidylethanolamine (PE); egg and bovine brain sphingomyelin (SM) and bovine brain phosphatidylserine (PS) in the presence and absence of calcium or magnesium. The gel to liquid crystal phase transition is accompanied by a 2–4% increase in volume for a variety of phospholipids. This transition can be readily detected by scanning densitometry with multilamellar suspensions of phospholipids. In contrast, the liquid crystal to hexagonal phase transition does not involve any detectable change in volume. In addition, the volume coefficient of expansion for the hexagonal phase is similar to that found for several other bilayer systems. PS in the presence of Ca2+, SMs and DMPC at 50°C all have lower values of the volume coefficient of expansion. This property may be correlated with the resistance of these systems to the formation of additional gauche isomers in the hydrocarbon chains with increasing temperatures resulting in lowered permeability.  相似文献   

3.
Liposomes are commonly used as models for chilling and freezing damage, with leakage of water-soluble contents from the aqueous interior as the most frequently used measurement of damage. In order to achieve an understanding of the mechanism of the leakage, we have conducted a study of the factors that influence the leakage from liposomes during phase transitions. While such investigations have appeared sporadically in the literature, a detailed study has not been undertaken previously, despite the fact that liposomes are widely used as models for stress injury. Thus, we suggest that these findings will be of general interest in the cryobiology community. We now report that the following variables affected leakage from liposomes during chilling: (i) increasing the rate of cooling and warming resulted in decreased leakage; (ii) maximal leakage occurred at the measured phase transition temperature; (iii) addition of defect-forming additives such as a second phospholipid or a surfactant increased leakage from the liposomes during the phase transition but not above or below that temperature; (iv) small unilamellar vesicles leaked much more rapidly than large unilamellar vesicles; and (v) increasing the pH of the external buffer decreased leakage of carboxyfluorescein, an effect that is probably particular to ionizable solutes.  相似文献   

4.
Effects of small organic molecules on phospholipid phase transitions   总被引:3,自引:0,他引:3  
Small organic molecules are known to exhibit a wide spectrum of physiological or pharmacological effects and many of them are thought to be membrane associated. Therefore a great number of studies is devoted to the interaction between these molecules and phospholipid model membranes. Results obtained for molecular species of varying hydrophobic/hydrophilic balances will be described. It will be shown that, in general, these different molecules induce similar effects on phospholipid phase transitions, although they are located differently in the membrane. Detailed studies of these interactions will help to understand these processes on a molecular level.  相似文献   

5.
The influence of cholesterol on divalent cation-induced fusion and isothermal phase transitions of large unilamellar vesicles composed of phosphatidylserine (PS) was investigated. Vesicle fusion was monitored by the terbium/dipicolinic acid assay for the intermixing of internal aqueous contents, in the temperature range 10–40°C. The fusogenic activity of the cations decreases in the sequence Ca2+ > Ba2+ > Sr2+ Mg2+ for cholesterol concentrations in the range 20–40 mol%, and at all temperatures. Increasing the cholesterol concentration decreases the initial rate of fusion in the presence of Ca2+ and Ba2+ at 25°C, reaching about 50% of the rate for pure PS at a mole fraction of 0.4. From 10 to 25°C, Mg2+ is ineffective in causing fusion at all cholesterol concentrations. However, at 30°C, Mg2+-induced fusion is observed with vesicles containing cholesterol. At 40°C, Mg2+ induces slow fusion of pure PS vesicles, which is enhanced by the presence of cholesterol. Increasing the temperature also causes a monotonic increase in the rate of fusion induced by Ca2+, Ba2+ and Sr2+. The enhancement of the effect of cholesterol at high temperatures suggests that changes in hydrogen bonding and interbilayer hydration forces may be involved in the modulation of fusion by cholesterol. The phase behavior of PS/cholesterol membranes in the presence of Na+ and divalent cations was studied by differential scanning calorimetry. The temperature of the gel-liquid crystalline transition (Tm) in Na+ is lowered as the cholesterol content is increased, and the endotherm is broadened. Addition of divalent cations shifts the Tm upward, with a sequence of effectiveness Ba2+ > Sr2+ > Mg2+. The Tm of these complexes decreases as the cholesterol content is increased. Although the transition is not detectable for cholesterol concentrations of 40 and 50 mol% in the presence of Na+, Sr2+ or Mg2+, the addition of Ba2+ reveals endotherms with Tm progressively lower than that observed at 30 mol%. Although the presence of cholesterol appears to induce an isothermal gel-liquid crystalline transition by decreasing the Tm, this change in membrane fluidity does not enhance the rate of fusion, but rather decreases it. The effect of cholesterol on the fusion of PS/phosphatidylethanolamine (PE) vesicles was investigated by utilizing a resonance energy transfer assay for lipid mixing. The initial rate of fusion of PS/PE and PS/PE/cholesterol vesicles is saturated at high Mg2+ concentrations. With Ca2+, saturation is not observed for cholesterol-containing vesicles. The highest rate of fusion for both Ca2+- and Mg2+-induced fusion is observed with vesicles containing 30 mol% cholesterol.  相似文献   

6.
The influence of cholesterol on divalent cation-induced fusion and isothermal phase transitions of large unilamellar vesicles composed of phosphatidylserine (PS) was investigated. Vesicle fusion was monitored by the terbium/dipicolinic acid assay for the intermixing of internal aqueous contents, in the temperature range 10-40 degrees C. The fusogenic activity of the cations decreases in the sequence Ca2+ greater than Ba2+ greater than Sr2+ much greater than Mg2+ for cholesterol concentrations in the range 20-40 mol%, and at all temperatures. Increasing the cholesterol concentration decreases the initial rate of fusion in the presence of Ca2+ and Ba2+ at 25 degrees C, reaching about 50% of the rate for pure PS at a mole fraction of 0.4. From 10 to 25 degrees C, Mg2+ is ineffective in causing fusion at all cholesterol concentrations. However, at 30 degrees C, Mg2+-induced fusion is observed with vesicles containing cholesterol. At 40 degrees C, Mg2+ induces slow fusion of pure PS vesicles, which is enhanced by the presence of cholesterol. Increasing the temperature also causes a monotonic increase in the rate of fusion induced by Ca2+, Ba2+ and Sr2+. The enhancement of the effect of cholesterol at high temperatures suggests that changes in hydrogen bonding and interbilayer hydration forces may be involved in the modulation of fusion by cholesterol. The phase behavior of PS/cholesterol membranes in the presence of Na+ and divalent cations was studied by differential scanning calorimetry. The temperature of the gel-liquid crystalline transition (Tm) in Na+ is lowered as the cholesterol content is increased, and the endotherm is broadened. Addition of divalent cations shifts the Tm upward, with a sequence of effectiveness Ba2+ greater than Sr2+ greater than Mg2+. The Tm of these complexes decreases as the cholesterol content is increased. Although the transition is not detectable for cholesterol concentrations of 40 and 50 mol% in the presence of Na+, Sr2+ or Mg2+, the addition of Ba2+ reveals endotherms with Tm progressively lower than that observed at 30 mol%. Although the presence of cholesterol appears to induce an isothermal gel-liquid crystalline transition by decreasing the Tm, this change in membrane fluidity does not enhance the rate of fusion, but rather decreases it. The effect of cholesterol on the fusion of PS/phosphatidylethanolamine (PE) vesicles was investigated by utilizing a resonance energy transfer assay for lipid mixing. The initial rate of fusion of PS/PE and PS/PE/cholesterol vesicles is saturated at high Mg2+ concentrations. With Ca2+, saturation is not observed for cholesterol-containing vesicles.(ABSTRACT TRUNCATED AT 400 WORDS)  相似文献   

7.
General features of phospholipid phase transitions   总被引:1,自引:0,他引:1  
The phase transitions that take place in hydrated phospholipid dispersions are reviewed in terms of the lyotropic and thermotropic mesomorphism. The thermodynamics of the phase transitions are discussed, including the various contributions to the shifts in phase transition temperatures. Particular attention is given to the phase transitions involving the lamellar or lipid bilayer phase, in view of the relevance to the lipid component of biological membranes. These transitions include especially the chain-melting transition and the transformation to non-lamellar phases.  相似文献   

8.
Thermotropic and inotropic phase transitions have been analysed with a dynamic theory on a self-organization. An equation of motion of a molecular assembly with strong interactions may be approximately described as: dQ/dt' congruent to -K1Q-K3Q3, where Q is a displacement from the equilibrium point Q0(identical to 0) in a vibrational state, K1 is a transition parameter. When the parameter K1 concerned with an internal driving force (partial system) changes from positive to negative through the potential bifurcation, the system transfers to a new stable state breaking down the symmetry. Such a sign change of K1 serves as a trigger to a phase transition. Using Weiss' approximation, we have evaluated the change of K1 by a function of temperature, kappa (T-TC), and have obtained the critical temperature TC of thermotropic phase transition. We have furthermore treated inotropic phase transition caused by the binding of divalent cations like Ca2+ using the function kappa (T-beta TC), where beta is a shift parameter of the critical temperature.  相似文献   

9.
We have previously shown that antifreeze protein (AFP) type I from winter flounder interacts with the acyl chains of lipids in model membranes containing a mixture of dimyristoylphosphatidylcholine (DMPC) and the plant thylakoid lipid digalactosyldiacylglycerol (DGDG), most likely through hydrophobic interactions. By contrast, in studies with pure phospholipid membranes, no such interaction was seen. DGDG is a highly unsaturated lipid, which renders these studies quite different from the previous studies of AFP-membrane interaction where the lipids were saturated or trans-unsaturated. Therefore, it seemed possible that either the digalactose headgroups or the unsaturated DGDG acyl chains, or both, may be important for interactions of membranes with AFP type I. To distinguish between these possibilities, we catalytically hydrogenated the DGDG to obtain a galactolipid with completely saturated fatty acyl chains. The results with the hydrogenated DGDG were strikingly different from those obtained previously with the unsaturated DGDG; the clear binding of AFPs to the bilayer appeared to be lost. Nevertheless, the temperature-dependent folding of AFP type I was inhibited in the presence of liposomes containing either the unsaturated or the hydrogenated DGDG. The results indicate that the liposomes and protein still interact, even following hydrogenation of the acyl chains, perhaps at the membrane-solution interface.  相似文献   

10.
Summary In unfixed cryostat sections enzymes attached to various cellular membranes differ in their sensitivity to the inhibitory effects of Ca and CNS ions. Similar differences between enzymes related to various membranes were also noted in the possibility of reversing the inhibition of NaCl treatment and in the effects of oxygen in rendering the inhibition irreversible.Evidence was adduced to show that some of the previous data on reversibility of ionic inhibition of membrane bound enzymes were due to an inadvertently introduced step of drying. The effect of drying was not apparent in NaCl-treated sections. In CaCl2- and KCNS-treated sections the effect of drying was due to a high concentration of the salts prevailing during evaporation and to atmospheric oxygen. A possible effect of denaturation not associated with oxidation could not be excluded.A summary of this report has been presented at the International Congress of Histochemistry and Cytochemistry in New York in August 1968.  相似文献   

11.
Differential scanning calorimetry (DSC) was used to analyze the thermotropic phase behavior of dipalmitoylphosphatidylcholine (DPPC) bilayers in the presence of pentanol isomers. The concentration of each pentanol isomer needed to induce the interdigitated phase was determined by the appearance of a biphasic effect in the main transition temperatures, the onset of a hysteresis associated with the main transition from the gel-to-liquid crystalline phase, and the disappearance of the pretransition. Lower threshold concentrations were found to correlate with isomers of greater alkyl chain length while branching of the alkyl chain was found to increase biphasic behavior. The addition of a methyl group to butanol systems drastically decreased threshold concentrations. However, as demonstrated in the DPPC/neopentanol system, branching of the alkyl chain away from the -OH group lowers the threshold concentration while maintaining a biphasic effect.  相似文献   

12.
The alignment of the sn-1 and sn-2 acyl chains at the terminal methyl ends generally produces significant influence on the thermodynamic properties of the bilayer phase transitions. We investigated the bilayer phase behavior of asymmetric phospholipids, myristoylpalmitoylphosphatidylcholine and palmitoylmyristoylphosphatidylcholine, by high-pressure light-transmittance and Prodan-fluorescence techniques and differential scanning calorimetry. Constructed temperature-pressure phase diagrams revealed that no stable phase can exist in the whole pressure range because of the formation of the most stable Lc phase. Nevertheless, the pretransition, the detection of which is severely hampered by the exceptionally prompt formation of the Lc phase, was successfully observed. Moreover, the effect of the total and difference of the sn-1 and sn-2 acyl chain lengths on minimal interdigitation pressure (MIP) was summarized in a MIP vs. chain-length inequivalence parameter plot, where the effect was proved to be classified in three zones depending on the alignment of both terminal methyl ends.  相似文献   

13.
The phase diagram of monolayers of l--dimyristoyl phosphatidic acid has been studied by fluorescence microscopy. For pressures corresponding to the nearly horizontal slope in the pressure area diagram the growth of crystalline platelets can be observed. They are of dendritic nature; their sizes can be controlled via pressure, compression speed, temperature and pH, and increased up to 100 m. Due to repulsive interaction a hexagonal arrangement of crystalline platelets can be established.It is shown that the textures do not depend on the dye probe for concentrations below 3 mol%. On the other hand via incorporation of impurities in concentrations of about 1 mol% the coexistence of lipid and solid phases can be controlled. Since, for a constant surface pressure, this coexistence can be maintained, these monolayers are suitable model systems to study the interactions of proteins and vesicles with coexisting fluid and solid membrane areas.Abbreviations DMPA l--dimyristoyl phosphatidic acid - DPPC l--dipalmitoylphosphatidylchline - DP-NBD-PE l--dipalmitoyl-nitrobenzoxadiazol-phosphatidylethanolamin - diO-C18 (3) 3,3-dioctadecyl-oxocarbocyanin  相似文献   

14.
Fluorescence microscopy of phospholipid monolayer phase transitions   总被引:3,自引:0,他引:3  
Over many years, a detailed picture of the phase transitions in phospholipid monolayers at the air-water interface has been constructed from extensive studies of the force-area, viscoelastic and surface potential properties of phospholipid monolayers, yet the microscopic nature of the transitions has remained obscure. Recent investigations have focused specifically on these aspects. Through the use of fluorescence microscopy, electron diffraction and X-ray scattering experiments, in combination with data obtained by classical methods, a wealth of new information regarding the properties of monolayers undergoing phase transitions has been generated. Direct observation of fluid-solid phase coexistence at the air-water interface has been achieved with fluorescence microscopy and on solid supports with electron microscopy. The fluid-solid coexistence region has been studied most thoroughly to date, but regions of gas-fluid and fluid-fluid phase coexistence have also been detected. Numerous factors govern the properties of the coexistence region: however, the prominent features can be explained in terms of a competition between forces: long-range electrostatic forces and short-range attractive forces. In this review these recent experimental findings and theoretical interpretations are summarized.  相似文献   

15.
M Z Lai  N Düzgüne?  F C Szoka 《Biochemistry》1985,24(7):1646-1653
The role of the hydroxyl groups of cholesterol and tocopherol in mediating their interaction with phospholipid bilayers has been a subject of considerable interest. We have examined this question by using derivatives of cholesterol and tocopherol in which the hydroxyl group is esterified to succinate. The hemisuccinate esters of cholesterol and alpha-tocopherol can be readily incorporated into phospholipid membranes and in fact can by themselves form closed membrane vesicles as demonstrated by the encapsulation of [3H]sucrose. The thermotropic behavior of mixtures containing each succinate ester and phospholipid was studied by differential scanning calorimetry. The effect of cholesteryl hemisuccinate on the thermotropic properties of dipalmitoylphosphatidylcholine and dimyristoylphosphatidylethanolamine is very similar to that of cholesterol. This indicates that the 3 beta-OH is not required for the formation of a cholesterol-phospholipid complex. In mixtures of tocopherol acid succinate and phospholipids the peak transition temperature is progressively shifted to lower temperatures as the mole fraction of alpha-tocopherol succinate is increased, while the enthalpy of the transition is only slightly affected. At a tocopherol succinate/phospholipid molar ratio of 9/1 a phase transition is still detectable. A comparison between tocopherol succinate and tocopherol indicates that the substitution of the hydroxyl group reduces the interaction of tocopherol with phospholipids to a small but measurable extent. Thus, the hydroxyl group of tocopherol is more important than the hydroxyl group of cholesterol in influencing their interactions with phospholipids.  相似文献   

16.
17.
Lateral phase separation in phospholipid membranes   总被引:64,自引:0,他引:64  
  相似文献   

18.
19.
A purified protein fraction from the proteolipids of human brain myelin was recombined with different lipids either in aqueous buffer or in a chloroform-methanol-water (10:5:1, v/v/v) mixture. It was found that under both conditions it binds strongly to phospholipids irrespective of surface charge, the presence of cholesterol or double bonds on the fatty acyl chains. The buoyant density of the resulting lipoprotein membranes is intermediate to that of pure lipids, and proteins. The lipoproteins formed by either of these methods were observed by either freeze-fracture or negative stain electron-microscopy. The overall morphology was similar to that of pure phospholipids, showing large closed multilamellar vesicles. The presence of the protein was detected by the appearance of intramembrane particles in freeze-fracture. The addition of the N-2 protein generally increases the permeability vesicles to 22-Na-+ by 2-3 orders of magnitude depending on the concentration. The presence of calcium in the aqueous medium further increases the Na-+ efflux through negatively charged vesicles. Changes in lipid composition, surface charge, cholesterol, etc., have no appreciable influence on the effect of the protein. Differential scanning calorimetry indicates that the presence of small amounts of N-2 have no effect on the lipid phase transition from solid to liquid crystalline. As the amount of protein bound to the phospholipid increases, the enthalpy of the transition decreases, the main endothermic peak broadens, but there is no change on the midpoint temperature. Membranes containing 50% by weight of protein still show a transition with an enthalpy approximately one half that of the original lipid.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号