首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
The radio frequency (RF) electromagnetic field of magnetic resonance (MR) scanners can result in significant tissue heating due to the RF coupling with the conducting parts of medical implants. The objective of this article is to evaluate the advantages and shortcomings of a new four‐tier approach based on a combined numerical and experimental procedure, designed to demonstrate safety of implants during MR scans. To the authors' best knowledge, this is the first study analyzing this technique. The evaluation is performed for 1.5 T MR scanners using a generic model of a deep brain stimulator (DBS) with a straight lead and a helical lead. The results show that the approach is technically feasible and provides sound and conservative information about the potential heating of implants. We demonstrate that (1) applying optimized tools results in reasonable uncertainties for the overall evaluation; (2) each tier reduces the overestimation by several dB at the cost of more demanding evaluation steps; (3) the implant with the straight lead would cause local temperature increases larger than 18 °C at the RF exposure limit for the normal operating mode; (4) Tier 3 is not sufficient for the helical implant; and (5) Tier 4 might be too demanding to be performed for complex implants. We conclude with a suggestion for a procedure that follows the same concept but is between Tier 3 and 4. In addition, the evaluation of Tier 3 has shown consistency with current scan practice, namely, the resulting heat at the lead tip is less than 3.5 °C for the straight lead and 0.7 °C for the helix lead for scans at the current applied MR scan restrictions for deep brain stimulation at a head average SAR of 0.1 W/kg. Bioelectromagnetics 34:104–113, 2013. © 2012 Wiley Periodicals, Inc.  相似文献   

3.
Exposure to external extremely low-frequency (ELF) electric and magnetic fields induces the development of electric fields inside the human body, with their nature depending on multiple factors including the human body characteristics and frequency, amplitude, and wave shape of the field. The objective of this study was to determine whether active implanted cardiac devices may be perturbed by a 50 or 60 Hz electric field and at which level. A numerical method was used to design the experimental setup. Several configurations including disadvantageous scenarios, 11 implantable cardioverter-defibrillators, and 43 cardiac pacemakers were tested in vitro by an experimental bench test up to 100 kV/m at 50 Hz and 83 kV/m at 60 Hz. No failure was observed for ICNIRP public exposure levels for most configurations (in more than 99% of the clinical cases), except for six pacemakers tested in unipolar mode with maximum sensitivity and atrial sensing. The implants configured with a nominal sensitivity in the bipolar mode were found to be resistant to electric fields exceeding the low action levels, even for the highest action levels, as defined by the Directive 2013/35/EU. Bioelectromagnetics. 2020;41:136–147. © 2020 Bioelectromagnetics Society.  相似文献   

4.
We numerically assess the effects of head properties (anatomy and dielectric parameters) on the performance of a scalp‐implantable antenna for telemetry in the Medical Implant Communications Service band (402.0–405.0 MHz). Safety issues and performance (resonance, radiation) are analyzed for an experimentally validated implantable antenna (volume of 203.6 mm3), considering five head models (3‐ and 5‐layer spherical, 6‐, 10‐, and 13‐tissue anatomical) and seven scenarios (variations ± 20% in the reference permittivity and conductivity values). Simulations are carried out at 403.5 MHz using the finite‐difference time‐domain method. Anatomy of the head model around the implantation site is found to mainly affect antenna performance, whereas overall tissue anatomy and dielectric parameters are less significant. Compared to the reference dielectric parameter scenario within the 3‐layer spherical head, maximum variations of ?19.9%, +3.7%, ?55.1%, and ?39.2% are computed in the maximum allowable net input power imposed by the IEEE Std C95.1‐1999 and Std C95.1‐2005 safety guidelines, return loss, and maximum far‐field gain, respectively. Compliance with the recent IEEE Std C95.1‐2005 is found to be almost insensitive to head properties, in contrast with IEEE Std C95.1‐1999. Taking tissue property uncertainties into account is highlighted as crucial for implantable antenna design and performance assessment. Bioelectromagnetics 34:167–179, 2013. © 2012 Wiley Periodicals, Inc.  相似文献   

5.
Functioning ingestible capsules offer tremendous promise for a plethora of diagnostic and therapeutic applications. However, the absence of realistic and practical power solutions has greatly hindered the development of ingestible electronics. Microbial fuel cells (MFCs) hold great potential as power sources for such devices as the small intestinal environment maintains a steady internal temperature and a neutral pH. Those conditions and the constant supply of nutrient-rich organics are a perfect environment to generate long-lasting power. Although previous small-scale MFCs have demonstrated many promising applications, little is known about the potential for generating power in the human gut environment. Here, this work reports the design and operation of a microbial biobattery capsule for ingestible applications. Dormant Bacillus subtilis endospores are a storable anodic biocatalyst that will provide on-demand power when revived by nutrient-rich intestinal fluids. A conductive, porous, poly(3,4-ethylenedioxythiophene) polystyrene sulfonate hydrogel anode enables superior electrical performance in what is the world's smallest MFC. Moreover, an oxygen-rich cathode maintains its effective cathodic capability even in the oxygen-deficit intestinal environment. As a proof-of-concept demonstration in stimulated intestinal fluid, the biobattery capsule produces a current density of 470 µA cm−2 and a power density of 98 µW cm−2, ensuring its practical efficacy as a novel and sole power source for ingestible applications in the small intestine.  相似文献   

6.
Implantable medical devices (IMDs) have experienced a rapid progress in recent years to the advancement of state‐of‐the‐art medical practices. However, the majority of this equipment requires external power sources like batteries to operate, which may restrict their application for in vivo situations. Furthermore, these external batteries of the IMDs need to be changed at times by surgical processes once expired, causing bodily and psychological annoyance to patients and rising healthcare financial burdens. Currently, harvesting biomechanical energy in vivo is considered as one of the most crucial energy‐based technologies to ensure sustainable operation of implanted medical devices. This review aims to highlight recent improvements in implantable triboelectric nanogenerators (iTENG) and implantable piezoelectric nanogenerators (iPENG) to drive self‐powered, wireless healthcare systems. Furthermore, their potential applications in cardiac monitoring, pacemaker energizing, nerve‐cell stimulating, orthodontic treatment and real‐time biomedical monitoring by scavenging the biomechanical power within the human body, such as heart beating, blood flowing, breathing, muscle stretching and continuous vibration of the lung are summarized and presented. Finally, a few crucial problems which significantly affect the output performance of iTENGs and iPENGs under in vivo environments are addressed.  相似文献   

7.
Magnetic resonance imaging (MRI) has evolved into an essential diagnostic modality for the evaluation of all patient categories. This gain in popularity coincided with an increase in the number of implanted cardiac implantable electronic devices (CIEDs). Therefore, questions arose with regard to the MRI compatibility of these devices. Various investigators have reported the harmless performance of MRI in patients with conventional (non-MRI conditional) devices. The recently published European Society of Cardiology (ESC) guidelines on cardiac pacing and cardiac resynchronisation therapy (CRT) indicate that MRI can be safely performed in patients with an implanted pacemaker or ICD (MRI conditional or not), as long as strict safety conditions are met. This is a major modification of the former general opinion that patients with a pacemaker or ICD were not eligible to undergo MRI. This review paper attempts to elucidate the current situation for practising cardiologists by providing a clear overview of the potential life-threatening interactions and discuss safety measures to be taken prior to and during scanning. An overview of all available MRI conditional devices and their individual restrictions is given. In addition, an up-to-date safety protocol is provided that can be used to ensure patient safety before, during and after the scan.Key pointsHistorically, MRI examination of patients with a CIED has been considered hazardous.Ongoing advances in technology and increasing usage of MRI in clinical practice have led to the introduction of MRI conditional CIEDs and to more lenient regulations on the examination of patients with non-conditional CIEDs.MRI investigations can be performed safely in selected patients when adhering to a standardised up-to-date safety protocol.  相似文献   

8.
目的探讨植入式输液港的护理方法和体会。方法对我科11例患者进行植入输液港,对植入方法、护理技术、常见问题进行研究、总结。结果植入式输液港解决了患者频繁输液的痛苦,减轻了护士的工作量。结论植入式输液港提高了护理安全性,应广泛推广并规范这一新技术。  相似文献   

9.
New developments and expanding indications have resulted in a significant increase in the number of patients with pacemakers and internal cardioverterdefibrillators (ICDs). Because of its unique capabilities, magnetic resonance imaging (MRI) has become one of the most important imaging modalities for evaluation of the central nervous system, tumours, musculoskeletal disorders and some cardiovascular diseases. As a consequence of these developments, an increasing number of patients with implanted devices meet the standard indications for MRI examination. Due to the presence of potential life-threatening risks and interactions, however, pacemakers and ICDs are currently not approved by the Food and Drug Administration (FDA) for use in an MRI scanner. Despite these limitations and restrictions, a limited but still growing number of studies reporting on the effects and safety issues of MRI and implanted devices have been published. Because physicians will be increasingly confronted with the issue of MRI in patients with implanted devices, this overview is given. The effects of MRI on an implanted pacemaker and/or ICDs and vice versa are described and, based on the current literature, a strategy for safe performance of MRI in these patients is proposed. (Neth Heart J 2010;18:31-7.)  相似文献   

10.
Syncope is a symptom of many underlying disease states, which range from the relatively benign to the life threatening. There are numerous investigations done for patients with recurrent unexplained syncope which may have very low yield when it comes to making a definitive diagnosis. Recently, the implantable loop recorder (ILR) for continuous monitoring of the cardiac rhythm has been launched in India. This review will briefly discuss these current availabel strategies and focus on the usefulness of an ILR in the definitive diagnosis and treatment of patients with a recurrent unexplained syncope.  相似文献   

11.
Pacemakers and other cardiac implantable electronic devices (CIEDs) have long been considered an absolute contraindication to magnetic resonance imaging (MRI), a crucial and growing imaging modality. In the last 20 years, protocols have been developed to allow MR scanning of CIED patients with a low complication rate. However, this practice has remained limited to a relatively small number of centers, and many pacemaker patients continue to be denied access to clinically indicated imaging. The introduction of MRI conditional pacemakers has provided a widely applicable and satisfactory solution to this problem. Here, the interactions of pacemakers with the MR environment, the results of MR scanning in patients with conventional CIEDs, the development and clinical experience with MRI conditional devices, and future directions are reviewed.  相似文献   

12.
Defibrillation threshold (DFT) testing has traditionally been an integral part of implantable cardioverter defibrillator (ICD) implantation. With the increasing number of patients receiving ICDs, physicians are encountering high DFT more often than before. Tackling the problem of high DFT, warrants an in-depth understanding of the science of defibrillation including the key electrophysiological concepts and the underlying molecular mechanisms. Numerous factors have been implicated in the causation of high DFT. Due consideration to the past medical history, pharmacotherapy, laboratory data and cardiac imaging, help in assessing the pre-procedural risk for occurrence of high DFT. Drugs, procedural changes, type and location of ICD lead system are some of the key players in predicting DFT during implantation. In the event of encountering an unacceptably high DFT, we recommend to follow a step-wise algorithm. Ruling out procedural complications like pneumothorax and tamponade is imperative before embarking on a search for potentially reversible clinical or metabolic derangements. Finally, if these attempts fail, the electrophysiologist must choose from a wide range of options for device adjustment and system modification. Although this review article is meant to be a treatise on the science, signs and solutions for high DFT, it is bound by limitations of space and scope of the article.  相似文献   

13.
目的 了解影响医保患者医疗费用的主要因素,为控制医疗费用的不合理增长和医疗保险支付方式的改革提供参考依据。方法 收集2006—2009年三级基本医疗保险定点医疗机构住院费用,对可能的影响因素进行相关分析。结果 人均住院费用呈逐年上涨趋势。次均费用与药品比例、材料呈正相关(决定系数分别为0.914和0.909,P=0.044和0.046),P<0.05。结论 合理降低药费比例和耗材比例是控制医疗费用过快增长的关键。应加快医疗保险支付方式的改革,制定科学的诊疗规范、临床路径。  相似文献   

14.
The phenomenological model developed in our recent publications [9,10] is used to investigate the kinetics of proton diffusion from a source to a detector on the membrane surface. In most cases the observed kinetics shows a single diffusional maximum with the exponential ascending front and the power-law descending tail. The kinetics depends on the distance between the source and the detector. If the detector is located inside the proton collecting antenna, the kinetics corresponds to the surface diffusion at the times near the maximum and shortly thereafter, and it turns into the bulk diffusion kinetics at longer times, after the equilibrium is established between the membrane surface and the bulk solution. If the detector is located outside the antenna, the kinetics corresponds to the bulk diffusion at all times where the signal is nonvanishing. What is seen at locations near the antenna radius depends on the exchange regime. In the regime of fast exchange between the surface and the bulk as compared to the bulk diffusion, the kinetics shows a single peak whose location is intermediate between the peaks for the surface and bulk diffusion. In the regime of slow exchange there are two maxima corresponding to the surface and bulk diffusion. In buffered solutions the antenna radius decreases with increasing buffer concentration, which changes the kinetics from the surface to bulk diffusion. The theory is applied to interprete recent experiments on a phospholipid membrane [25]. It is found that (i) the fast exchange regime is operating since only a single maximum is observed; (ii) the shift of the maximum toward longer times with increasing buffer concentration is a manifestation of the transition from the surface to bulk diffusion kinetics. The authors are grateful to Yu. N. Antonenko and A. I. Kotelnikov for helpful discussions. This work was supported by the Russian Foundation for Basic Research (05-03-32104), U.S. Civilian Research and Development Foundation (RUC2-2658-MO-05), U. S. National Science Foundation, and U. S. National Institutes of Health.  相似文献   

15.
T-wave oversensing can cause inappropriate implantable cardioverter-defibrillator (ICD) therapies that are difficult to correct. Remote monitoring allows follow-up of ICD patients without visiting the hospital and can help in early detection of any malfunctions. We describe the case of a patient who experienced inappropriate antitachycardia pacing therapy due to T-wave oversensing; the problem was promptly detected by remote monitoring and corrected by device reprogramming.  相似文献   

16.
ABSTRACT

Cancer therapy is one of the several new applications which use nanosecond and subnanosecond high voltage pulses. New treatment based on electromagnetic (EM) fields have been developed as non-surgical and minimally invasive treatments of tumors. In particular, subnanosecond pulses can introduce important non-thermal changes in cell biology, especially the permeabilization of the cell membrane. The motivation behind this work is to launch intense subnanosecond pulses to the target (tumors) non-invasively. This works focuses on the design of a compact intense pulsed EM radiating antenna. In tense EM waves radiated at the first focal point of the Prolate Spheroidal Reflector (PSR) are focused at the second focal point where the target (tumor) is present. Two antennas with PSR but fed with different compact wave radiator are designed to focus pulsed field at the second focal point. The PSR with modified bicone antenna feed and PSR with elliptically tapered horn antenna feed are designed. The design parameters and radiation performance are discussed.  相似文献   

17.
Wireless wearable and implantable devices are continuing to grow in popularity, and as this growth occurs, so too does the need to consider the safety of such devices. Wearable and implantable devices require the transmitting and receiving of electromagnetic waves near and through the body, which at high enough exposure levels may damage proximate tissues. The specific absorption rate (SAR) is the quantity commonly used to enumerate exposure levels, and various national and international organizations have defined regulations limiting exposure to ensure safe operation. In this paper, we comprehensively review dosimetric studies reported in the literature up to the year 2019 for wearables and implants. We discuss antenna designs for wearables and implants as they relate to SAR values and field and thermal distributions in tissue, present designs that have made steps to reduce SAR, and then review SAR considerations as they relate to applied devices. As compared with previous review papers, this paper is the first review to focus on dosimetry aspects relative to wearable and implantable devices. Bioelectromagnetics. 2020;41:3–20 © 2019 The Authors. Bioelectromagnetics published by Wiley Periodicals, Inc.  相似文献   

18.
目的 了解安徽省医务人员对医联体建设及认知情况。方法 以安徽省某医联体医务人员为研究对象,随机抽取3家医疗机构的医务人员共216名进行问卷调查,应用SPSS19.0软件进行统计分析。结果 在与各医联体成员单位开展的活动中,开展频次前三位的活动是专家坐诊(65.74%)、双向转诊(62.04%)和进修学习(56.94%)。37.04%的医务人员对医改方案和医联体指导意见表示不了解。63.43%的医务人员对目前工作状态不满意,不满意原因前三位分别是薪资待遇(40.73%)、职业发展前途(25.45%)和受尊重程度(21.09%)。90.27%的医务人员认为医联体建设需要政府扶持。结论 安徽省某医联体活动开展较好,医务人员工作积极性较高,但是在政策解读、活动内涵、人才培养等方面仍需进一步提高。  相似文献   

19.
Several clinical and laboratory studies have demonstrated electromagnetic interaction between implantable medical devices like pacemakers and cell phones being operated in close proximity. Those devices are largely now immune to phone interaction or procedures have been established to limit their interaction. The use of cell phones near people with implanted neural stimulators has not been studied. This research was initiated to investigate electromagnetic interaction between current cell phone technology and specific models of Cyberonics neural stimulators. Out of 1080 test runs conducted for this study, no interactions were observed, and it was concluded that the phone technologies examined in this study did not adversely affect the Cyberonics NeuroStar (Model 102) NeuroCybernetic Prosthesis (NCP) System. This article provides details on the experimental procedure that was used, which can also be used to test other neural stimulators and test technologies, and the results obtained.  相似文献   

20.
The photosynthetic unit includes the reaction centers (RC 1 and RC 2) and the light-harvesting complexes which contribute to evolution of one O2 molecule. The light-harvesting complexes, that greatly expand the absorptance capacity of the reactions, have evolved along three principal lines. First, in green plants distinct chlorophyll (Chl) a/b-binding intrinsic membrane complexes are associated with RC 1 and RC 2. The Chl a/b-binding complexes may add about 200 additional chromophores to RC 2. Second, cyanobacteria and red algae have a significant type of antenna (with RC 2) in the form of phycobilisomes. A phycobilisome, depending on the size and phycobiliprotein composition adds from 700 to 2300 light-absorbing chromophores. Red algae also have a sizable Chl a-binding complex associated with RC 1, contributing an additional 70 chromophores. Third, in chromophytes a variety of carotenoid-Chl-complexes are found. Some are found associated with RC 1 where they may greatly enhance the absorptance capacity. Association of complexes with RC 2 has been more difficult to ascertain, but is also expected in chromophytes. The apoprotein framework of the complexes provides specific chromophore attachment sites, which assures a directional energy transfer whithin complexes and between complexes and reaction centers. The major Chl-binding antenna proteins generally have a size of 16–28 kDa, whether of chlorophytes, chromophytes, or rhodophytes. High sequence homology observed in two of three transmembrane regions, and in putative chlorophyll-binding residues, suggests that the complexes are related and probably did not evolve from widely divergent polyphyletic lines.Abbreviations APC allophycocyanin - B phycoerythrin-large bangiophycean phycoerythrin - Chl chlorophyll - LCM linker polypeptide in phycobilisome to thylakoid - FCP fucoxanthin Chl a/c complex - LHC(s) Chl-binding light harvesting complex(s) - LHC I Chl-binding complex of Photosystem I - LHC II Chl-binding complex of Photosystem II - PC phycocyanin - PCP peridinin Chl-binding complex - P700 photochemically active Chl a of Photosystem I - PS I Photosystem I - PS II Photosystem II - RC 1 reaction center core of PS I - RC 2 reaction center core of PS II - R phycoerythrin-large rhodophycean phycoerythrin - sPCP soluble peridinin Chl-binding complex  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号