首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 515 毫秒
1.
Summary In this article, we propose a family of semiparametric transformation models with time‐varying coefficients for recurrent event data in the presence of a terminal event such as death. The new model offers great flexibility in formulating the effects of covariates on the mean functions of the recurrent events among survivors at a given time. For the inference on the proposed models, a class of estimating equations is developed and asymptotic properties of the resulting estimators are established. In addition, a lack‐of‐fit test is provided for assessing the adequacy of the model, and some tests are presented for investigating whether or not covariate effects vary with time. The finite‐sample behavior of the proposed methods is examined through Monte Carlo simulation studies, and an application to a bladder cancer study is also illustrated.  相似文献   

2.
Recurrent events could be stopped by a terminal event, which commonly occurs in biomedical and clinical studies. In this situation, dependent censoring is encountered because of potential dependence between these two event processes, leading to invalid inference if analyzing recurrent events alone. The joint frailty model is one of the widely used approaches to jointly model these two processes by sharing the same frailty term. One important assumption is that recurrent and terminal event processes are conditionally independent given the subject‐level frailty; however, this could be violated when the dependency may also depend on time‐varying covariates across recurrences. Furthermore, marginal correlation between two event processes based on traditional frailty modeling has no closed form solution for estimation with vague interpretation. In order to fill these gaps, we propose a novel joint frailty‐copula approach to model recurrent events and a terminal event with relaxed assumptions. Metropolis–Hastings within the Gibbs Sampler algorithm is used for parameter estimation. Extensive simulation studies are conducted to evaluate the efficiency, robustness, and predictive performance of our proposal. The simulation results show that compared with the joint frailty model, the bias and mean squared error of the proposal is smaller when the conditional independence assumption is violated. Finally, we apply our method into a real example extracted from the MarketScan database to study the association between recurrent strokes and mortality.  相似文献   

3.
Stare J  Perme MP  Henderson R 《Biometrics》2011,67(3):750-759
Summary There is no shortage of proposed measures of prognostic value of survival models in the statistical literature. They come under different names, including explained variation, correlation, explained randomness, and information gain, but their goal is common: to define something analogous to the coefficient of determination R2 in linear regression. None however have been uniformly accepted, none have been extended to general event history data, including recurrent events, and many cannot incorporate time‐varying effects or covariates. We present here a measure specifically tailored for use with general dynamic event history regression models. The measure is applicable and interpretable in discrete or continuous time; with tied data or otherwise; with time‐varying, time‐fixed, or dynamic covariates; with time‐varying or time‐constant effects; with single or multiple event times; with parametric or semiparametric models; and under general independent censoring/observation. For single‐event survival data with neither censoring nor time dependency it reduces to the concordance index. We give expressions for its population value and the variance of the estimator and explore its use in simulations and applications. A web link to R software is provided.  相似文献   

4.
Recurrent event data arise in longitudinal follow‐up studies, where each subject may experience the same type of events repeatedly. The work in this article is motivated by the data from a study of repeated peritonitis for patients on peritoneal dialysis. Due to the aspects of medicine and cost, the peritonitis cases were classified into two types: Gram‐positive and non‐Gram‐positive peritonitis. Further, since the death and hemodialysis therapy preclude the occurrence of recurrent events, we face multivariate recurrent event data with a dependent terminal event. We propose a flexible marginal model, which has three characteristics: first, we assume marginal proportional hazard and proportional rates models for terminal event time and recurrent event processes, respectively; second, the inter‐recurrences dependence and the correlation between the multivariate recurrent event processes and terminal event time are modeled through three multiplicative frailties corresponding to the specified marginal models; third, the rate model with frailties for recurrent events is specified only on the time before the terminal event. We propose a two‐stage estimation procedure for estimating unknown parameters. We also establish the consistency of the two‐stage estimator. Simulation studies show that the proposed approach is appropriate for practical use. The methodology is applied to the peritonitis cohort data that motivated this study.  相似文献   

5.
Multivariate recurrent event data are usually encountered in many clinical and longitudinal studies in which each study subject may experience multiple recurrent events. For the analysis of such data, most existing approaches have been proposed under the assumption that the censoring times are noninformative, which may not be true especially when the observation of recurrent events is terminated by a failure event. In this article, we consider regression analysis of multivariate recurrent event data with both time‐dependent and time‐independent covariates where the censoring times and the recurrent event process are allowed to be correlated via a frailty. The proposed joint model is flexible where both the distributions of censoring and frailty variables are left unspecified. We propose a pairwise pseudolikelihood approach and an estimating equation‐based approach for estimating coefficients of time‐dependent and time‐independent covariates, respectively. The large sample properties of the proposed estimates are established, while the finite‐sample properties are demonstrated by simulation studies. The proposed methods are applied to the analysis of a set of bivariate recurrent event data from a study of platelet transfusion reactions.  相似文献   

6.
J. E. Soh  Yijian Huang 《Biometrics》2019,75(4):1264-1275
Recurrent events often arise in follow‐up studies where a subject may experience multiple occurrences of the same event. Most regression models with recurrent events tacitly assume constant effects of covariates over time, which may not be realistic in practice. To address time‐varying effects, we develop a dynamic regression model to target the mean frequency of recurrent events. We propose an estimation procedure which fully exploits observed data. Consistency and weak convergence of the proposed estimator are established. Simulation studies demonstrate that the proposed method works well, and two real data analyses are presented for illustration.  相似文献   

7.
In cohort studies the outcome is often time to a particular event, and subjects are followed at regular intervals. Periodic visits may also monitor a secondary irreversible event influencing the event of primary interest, and a significant proportion of subjects develop the secondary event over the period of follow‐up. The status of the secondary event serves as a time‐varying covariate, but is recorded only at the times of the scheduled visits, generating incomplete time‐varying covariates. While information on a typical time‐varying covariate is missing for entire follow‐up period except the visiting times, the status of the secondary event are unavailable only between visits where the status has changed, thus interval‐censored. One may view interval‐censored covariate of the secondary event status as missing time‐varying covariates, yet missingness is partial since partial information is provided throughout the follow‐up period. Current practice of using the latest observed status produces biased estimators, and the existing missing covariate techniques cannot accommodate the special feature of missingness due to interval censoring. To handle interval‐censored covariates in the Cox proportional hazards model, we propose an available‐data estimator, a doubly robust‐type estimator as well as the maximum likelihood estimator via EM algorithm and present their asymptotic properties. We also present practical approaches that are valid. We demonstrate the proposed methods using our motivating example from the Northern Manhattan Study.  相似文献   

8.
Recurrent events data are common in experimental and observational studies. It is often of interest to estimate the effect of an intervention on the incidence rate of the recurrent events. The incidence rate difference is a useful measure of intervention effect. A weighted least squares estimator of the incidence rate difference for recurrent events was recently proposed for an additive rate model in which both the baseline incidence rate and the covariate effects were constant over time. In this article, we relax this model assumption and examine the properties of the estimator under the additive and multiplicative rate models assumption in which the baseline incidence rate and covariate effects may vary over time. We show analytically and numerically that the estimator gives an appropriate summary measure of the time‐varying covariate effects. In particular, when the underlying covariate effects are additive and time‐varying, the estimator consistently estimates the weighted average of the covariate effects over time. When the underlying covariate effects are multiplicative and time‐varying, and if there is only one binary covariate indicating the intervention status, the estimator consistently estimates the weighted average of the underlying incidence rate difference between the intervention and control groups over time. We illustrate the method with data from a randomized vaccine trial.  相似文献   

9.
In cardiovascular disease studies, a large number of risk factors are measured but it often remains unknown whether all of them are relevant variables and whether the impact of these variables is changing with time or remains constant. In addition, more than one kind of cardiovascular disease events can be observed in the same patient and events of different types are possibly correlated. It is expected that different kinds of events are associated with different covariates and the forms of covariate effects also vary between event types. To tackle these problems, we proposed a multistate modeling framework for the joint analysis of multitype recurrent events and terminal event. Model structure selection is performed to identify covariates with time-varying coefficients, time-independent coefficients, and null effects. This helps in understanding the disease process as it can detect relevant covariates and identify the temporal dynamics of the covariate effects. It also provides a more parsimonious model to achieve better risk prediction. The performance of the proposed model and selection method is evaluated in numerical studies and illustrated on a real dataset from the Atherosclerosis Risk in Communities study.  相似文献   

10.
In many clinical trials, the primary endpoint is time to an event of interest, for example, time to cardiac attack or tumor progression, and the statistical power of these trials is primarily driven by the number of events observed during the trials. In such trials, the number of events observed is impacted not only by the number of subjects enrolled but also by other factors including the event rate and the follow‐up duration. Consequently, it is important for investigators to be able to monitor and predict accurately patient accrual and event times so as to predict the times of interim and final analyses and enable efficient allocation of research resources, which have long been recognized as important aspects of trial design and conduct. The existing methods for prediction of event times all assume that patient accrual follows a Poisson process with a constant Poisson rate over time; however, it is fairly common in real‐life clinical trials that the Poisson rate changes over time. In this paper, we propose a Bayesian joint modeling approach for monitoring and prediction of accrual and event times in clinical trials. We employ a nonhomogeneous Poisson process to model patient accrual and a parametric or nonparametric model for the event and loss to follow‐up processes. Compared to existing methods, our proposed methods are more flexible and robust in that we model accrual and event/loss‐to‐follow‐up times jointly and allow the underlying accrual rates to change over time. We evaluate the performance of the proposed methods through simulation studies and illustrate the methods using data from a real oncology trial.  相似文献   

11.
In this article, we propose a class of semiparametric transformation rate models for recurrent event data subject to right censoring and potentially stopped by a terminating event (e.g., death). These transformation models include both additive rates model and proportional rates model as special cases. Respecting the property that no recurrent events can occur after the terminating event, we model the conditional recurrent event rate given survival. Weighted estimating equations are constructed to estimate the regression coefficients and baseline rate function. In particular, the baseline rate function is approximated by wavelet function. Asymptotic properties of the proposed estimators are derived and a data-dependent criterion is proposed for selecting the most suitable transformation. Simulation studies show that the proposed estimators perform well for practical sample sizes. The proposed methods are used in two real-data examples: a randomized trial of rhDNase and a community trial of vitamin A.  相似文献   

12.
Recurrent events data are commonly encountered in medical studies. In many applications, only the number of events during the follow‐up period rather than the recurrent event times is available. Two important challenges arise in such studies: (a) a substantial portion of subjects may not experience the event, and (b) we may not observe the event count for the entire study period due to informative dropout. To address the first challenge, we assume that underlying population consists of two subpopulations: a subpopulation nonsusceptible to the event of interest and a subpopulation susceptible to the event of interest. In the susceptible subpopulation, the event count is assumed to follow a Poisson distribution given the follow‐up time and the subject‐specific characteristics. We then introduce a frailty to account for informative dropout. The proposed semiparametric frailty models consist of three submodels: (a) a logistic regression model for the probability such that a subject belongs to the nonsusceptible subpopulation; (b) a nonhomogeneous Poisson process model with an unspecified baseline rate function; and (c) a Cox model for the informative dropout time. We develop likelihood‐based estimation and inference procedures. The maximum likelihood estimators are shown to be consistent. Additionally, the proposed estimators of the finite‐dimensional parameters are asymptotically normal and the covariance matrix attains the semiparametric efficiency bound. Simulation studies demonstrate that the proposed methodologies perform well in practical situations. We apply the proposed methods to a clinical trial on patients with myelodysplastic syndromes.  相似文献   

13.
In the risk analysis of sequential events, the successive gap times are often correlated, e.g. as a result of an individual heterogeneity. Correlation is usually accounted for by using a shared gamma‐frailty model, where the variance φ of the random individual effect quantifies the correlation between gap times. This method is known to yield satisfactory estimates of covariate effects, but underestimates φ, which could result in a lack of power of the test of independence. We propose a new test of independence between two sequential gap times where the first is the time elapsed from the origin. The test is based on an approximation of the hazard of the second event given the first gap time in a frailty model, with a frailty distribution belonging to the power variance function family. Simulation results show an increased power of the new test compared with the test derived from the gamma‐frailty model. In the realistic case where hazards are event specific, and using event‐specific approaches, the proposed estimation of the variance of the frailty is less biased than the gamma‐frailty based estimation for a wide range of values ( with the set of parameters considered), and similar for higher values. As an illustration, the methods are applied to a previously analysed asthma prevention trial with results showing a significant positive association between the successive times to asthmatic events. We also analyse data from a cohort of HIV‐seropositive patients in order to assess the effect of risk factors on the occurrence of two successive markers of progression of the HIV disease. The results demonstrate the ability of the proposed model to account for negative correlations between gap times.  相似文献   

14.
Summary Many time‐to‐event studies are complicated by the presence of competing risks and by nesting of individuals within a cluster, such as patients in the same center in a multicenter study. Several methods have been proposed for modeling the cumulative incidence function with independent observations. However, when subjects are clustered, one needs to account for the presence of a cluster effect either through frailty modeling of the hazard or subdistribution hazard, or by adjusting for the within‐cluster correlation in a marginal model. We propose a method for modeling the marginal cumulative incidence function directly. We compute leave‐one‐out pseudo‐observations from the cumulative incidence function at several time points. These are used in a generalized estimating equation to model the marginal cumulative incidence curve, and obtain consistent estimates of the model parameters. A sandwich variance estimator is derived to adjust for the within‐cluster correlation. The method is easy to implement using standard software once the pseudovalues are obtained, and is a generalization of several existing models. Simulation studies show that the method works well to adjust the SE for the within‐cluster correlation. We illustrate the method on a dataset looking at outcomes after bone marrow transplantation.  相似文献   

15.
In recent years there have been a series of advances in the field of dynamic prediction. Among those is the development of methods for dynamic prediction of the cumulative incidence function in a competing risk setting. These models enable the predictions to be updated as time progresses and more information becomes available, for example when a patient comes back for a follow‐up visit after completing a year of treatment, the risk of death, and adverse events may have changed since treatment initiation. One approach to model the cumulative incidence function in competing risks is by direct binomial regression, where right censoring of the event times is handled by inverse probability of censoring weights. We extend the approach by combining it with landmarking to enable dynamic prediction of the cumulative incidence function. The proposed models are very flexible, as they allow the covariates to have complex time‐varying effects, and we illustrate how to investigate possible time‐varying structures using Wald tests. The models are fitted using generalized estimating equations. The method is applied to bone marrow transplant data and the performance is investigated in a simulation study.  相似文献   

16.
Individuals may experience more than one type of recurrent event and a terminal event during the life course of a disease. Follow‐up may be interrupted for several reasons, including the end of a study, or patients lost to follow‐up, which are noninformative censoring events. Death could also stop the follow‐up, hence, it is considered as a dependent terminal event. We propose a multivariate frailty model that jointly analyzes two types of recurrent events with a dependent terminal event. Two estimation methods are proposed: a semiparametrical approach using penalized likelihood estimation where baseline hazard functions are approximated by M‐splines, and another one with piecewise constant baseline hazard functions. Finally, we derived martingale residuals to check the goodness‐of‐fit. We illustrate our proposals with a real dataset on breast cancer. The main objective was to model the dependency between the two types of recurrent events (locoregional and metastatic) and the terminal event (death) after a breast cancer.  相似文献   

17.
In longitudinal studies where time to a final event is the ultimate outcome often information is available about intermediate events the individuals may experience during the observation period. Even though many extensions of the Cox proportional hazards model have been proposed to model such multivariate time-to-event data these approaches are still very rarely applied to real datasets. The aim of this paper is to illustrate the application of extended Cox models for multiple time-to-event data and to show their implementation in popular statistical software packages. We demonstrate a systematic way of jointly modelling similar or repeated transitions in follow-up data by analysing an event-history dataset consisting of 270 breast cancer patients, that were followed-up for different clinical events during treatment in metastatic disease. First, we show how this methodology can also be applied to non Markovian stochastic processes by representing these processes as "conditional" Markov processes. Secondly, we compare the application of different Cox-related approaches to the breast cancer data by varying their key model components (i.e. analysis time scale, risk set and baseline hazard function). Our study showed that extended Cox models are a powerful tool for analysing complex event history datasets since the approach can address many dynamic data features such as multiple time scales, dynamic risk sets, time-varying covariates, transition by covariate interactions, autoregressive dependence or intra-subject correlation.  相似文献   

18.
In many clinical trials, multiple time‐to‐event endpoints including the primary endpoint (e.g., time to death) and secondary endpoints (e.g., progression‐related endpoints) are commonly used to determine treatment efficacy. These endpoints are often biologically related. This work is motivated by a study of bone marrow transplant (BMT) for leukemia patients, who may experience the acute graft‐versus‐host disease (GVHD), relapse of leukemia, and death after an allogeneic BMT. The acute GVHD is associated with the relapse free survival, and both the acute GVHD and relapse of leukemia are intermediate nonterminal events subject to dependent censoring by the informative terminal event death, but not vice versa, giving rise to survival data that are subject to two sets of semi‐competing risks. It is important to assess the impacts of prognostic factors on these three time‐to‐event endpoints. We propose a novel statistical approach that jointly models such data via a pair of copulas to account for multiple dependence structures, while the marginal distribution of each endpoint is formulated by a Cox proportional hazards model. We develop an estimation procedure based on pseudo‐likelihood and carry out simulation studies to examine the performance of the proposed method in finite samples. The practical utility of the proposed method is further illustrated with data from the motivating example.  相似文献   

19.
Summary Joint models are used to rigorously explore the relationship between the dynamics of biomarkers and clinical events. In the context of HIV infection, where the multivariate dynamics of HIV‐RNA and CD4 are complex, a mechanistic approach based on a system of nonlinear differential equations naturally takes into account the correlation between the biomarkers. Using data from a randomized clinical trial comparing dual antiretroviral therapy to a single drug regimen, a full maximum likelihood approach is proposed to explore the relationship between the evolution of the biomarkers and the time to a clinical event. The role of each marker as an independent predictor of disease progression is assessed. We show that the joint dynamics of HIV‐RNA and CD4 captures the effect of antiretroviral treatment; the CD4 dynamics alone is found to capture most but not all of the treatment effect.  相似文献   

20.
In clinical trials with time‐to‐event outcomes, it is of interest to predict when a prespecified number of events can be reached. Interim analysis is conducted to estimate the underlying survival function. When another correlated time‐to‐event endpoint is available, both outcome variables can be used to improve estimation efficiency. In this paper, we propose to use the convolution of two time‐to‐event variables to estimate the survival function of interest. Propositions and examples are provided based on exponential models that accommodate possible change points. We further propose a new estimation equation about the expected time that exploits the relationship of two endpoints. Simulations and the analysis of real data show that the proposed methods with bivariate information yield significant improvement in prediction over that of the univariate method.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号