首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 34 毫秒
1.
Bronchopulmonary dysplasia (BPD) is among the most common and serious sequelae of preterm birth. BPD affects at least one‐quarter of infants born with birth weights less than 1500 g. The incidence of BPD increases with decreasing gestational age and birth weight. Additional important risk factors include intrauterine growth restriction, sepsis, and prolonged exposure to mechanical ventilation and supplemental oxygen. The diagnosis of BPD predicts multiple adverse outcomes including chronic respiratory impairment and neurodevelopmental delay. This review summarizes the diagnostic criteria, incidence, risk factors, and long‐term outcomes of BPD. Birth Defects Research (Part A) 100:145–157, 2014. © 2014 Wiley Periodicals, Inc.  相似文献   

2.
Bronchopulmonary dysplasia (BPD) is a chronic lung disease of extreme prematurity and is defined clinically by dependence on supplemental oxygen due to impaired gas exchange. Optimal gas exchange is dependent on the development of a sufficient surface area for diffusion. In the mammalian lung, rapid acquisition of distal lung surface area is accomplished in neonatal and early adult life by means of vascularization and secondary septation of distal lung airspaces. Extreme preterm birth interrupts secondary septation and pulmonary capillary development and ultimately reduces the efficiency of the alveolar‐capillary membrane. Although pulmonary health in BPD infants rapidly improves over the first few years, persistent alveolar‐capillary membrane dysfunction continues into adolescence and adulthood. Preventative therapies have been largely ineffective, and therapies aimed at promoting normal development of the air‐blood barrier in infants with established BPD remain largely unexplored. The purpose of this review will be: (1) to summarize the histological evidence of aberrant alveolar‐capillary membrane development associated with extreme preterm birth and BPD, (2) to review the clinical evidence assessing the long‐term impact of BPD on alveolar‐capillary membrane function, and (3) to discuss the need to develop and incorporate direct measurements of functional gas exchange into clinically relevant animal models of inhibited alveolar development. Birth Defects Research (Part A) 100:168–179, 2014. © 2014 Wiley Periodicals, Inc.  相似文献   

3.
Bronchopulmonary dysplasia (BPD) is the most common adverse outcome in extreme preterm neonates (born before 28 weeks gestation). BPD is characterized by interrupted lung growth and may predispose to early‐onset emphysema and poor lung function in later life. At present, there is no treatment for BPD. Recent advances in stem/progenitor cell biology have enabled the exploration of endogenous lung progenitor populations in health and disease. In parallel, exogenous stem/progenitor cell administration has shown promise in protecting the lung from injury in the experimental setting. This review will provide an outline of the progenitor populations that have currently been identified in all tissue compartments of the distal lung and how they may be affected in BPD. A thorough understanding of the lung's endogenous progenitor populations during normal development, injury and repair may one day allow us to harness their regenerative capacity. Birth Defects Research (Part A) 100:217–226, 2014. © 2014 Wiley Periodicals, Inc.  相似文献   

4.
5.
6.
Recent data suggest that brain‐derived neurotrophic factor (BDNF) plays an essential role in neuronal plasticity and etiology of bipolar disorders (BPD). However, results from different studies have been inconsistent. In present study, 342 patients who met DSM‐IV (Diagnostic and Statistical Manual of Mental Disorders, 4th Edition) criteria for bipolar disorders type I (BPD‐I) or type II (BPD‐II) and 386 matched health controls were enrolled, and TaqMan® SNP Genotyping Assays (Applied Biosystems, Foster City, CA, USA) were applied to detect the functional polymorphism rs6265 (Val66Met) of BDNF gene. Treatment response to lithium and valproate was retrospectively determined. The association between Val66Met polymorphism and BPD, treatment response to mood stabilizers, was estimated. The genotype and allele distribution of Val66Met polymorphism between BPD patients and control subjects showed significant difference (genotype: χ2 = 6.18, df = 2, P = 0.046; allele: χ2 = 5.01, df = 1, P = 0.025) with Met allele as risk factor for disease susceptibility (OR = 0.79, 95%CI as 0.64–0.97). The post hoc analysis interestingly showed that Met allele had opposite effect on the treatment response for BPD‐I and BPD‐II separately. For BPD‐I patients, the response score in Val/Val group was significantly lower than that in Met allele carriers (t = ?2.27, df = 144, P = 0.025); for BPD‐II patients, the response score in Val/Val group was significantly higher than that in Met allele carriers (t = 2.33, df = 26, P = 0.028). Although these results should be interpreted with caution because of the limited sample for Val/Val genotype in BPD‐II patients (N = 5), these findings strengthen the hypothesis that BDNF pathway gets involved in the etiology and pharmacology of BPD and suggest the differences between BPD‐I and BPD‐II.  相似文献   

7.
Bronchopulmonary dysplasia (BPD) is a chronic lung disease of prematurity. Over the years, the BPD phenotype has evolved, but despite various advances in neonatal management approaches, the reduction in the BPD burden is minimal. With the advent of surfactant, glucocorticoids, and new ventilation strategies, BPD has evolved from a disease of structural injury into a new BPD, marked by an arrest in alveolar growth in the lungs of extremely premature infants. This deficient alveolar growth has been associated with a diminution of pulmonary vasculature. Several investigators have described the epithelial / vascular co‐dependency and the significant role of crosstalk between vessel formation, alveologenesis, and lung dysplasia's; hence identification and study of factors that regulate pulmonary vascular emergence and inflammation has become crucial in devising effective therapeutic approaches for this debilitating condition. The potent antiangiogenic and proinflammatory protein Endothelial Monocyte Activating Polypeptide II (EMAP II) has been described as a mediator of pulmonary vascular and alveolar formation and its expression is inversely related to the periods of vascularization and alveolarization in the developing lung. Hence the study of EMAP II could play a vital role in studying and devising appropriate therapeutics for diseases of aberrant lung development, such as BPD. Herein, we review the vascular contribution to lung development and the implications that vascular mediators such as EMAP II have in distal lung formation during the vulnerable stage of alveolar genesis. Birth Defects Research (Part A) 100:180–188, 2014. © 2014 Wiley Periodicals, Inc.  相似文献   

8.
Early life adversity plays a critical role in the emergence of borderline personality disorder (BPD) and this could occur through epigenetic programming. In this perspective, we aimed to determine whether childhood maltreatment could durably modify epigenetic processes by the means of a whole‐genome methylation scan of BPD subjects. Using the Illumina Infinium® HumanMethylation450 BeadChip, global methylation status of DNA extracted from peripheral blood leucocytes was correlated to the severity of childhood maltreatment in 96 BPD subjects suffering from a high level of child adversity and 93 subjects suffering from major depressive disorder (MDD) and reporting a low rate of child maltreatment. Several CpGs within or near the following genes (IL17RA, miR124‐3, KCNQ2, EFNB1, OCA2, MFAP2, RPH3AL, WDR60, CST9L, EP400, A2ML1, NT5DC2, FAM163A and SPSB2) were found to be differently methylated, either in BPD compared with MDD or in relation to the severity of childhood maltreatment. A highly relevant biological result was observed for cg04927004 close to miR124‐3 that was significantly associated with BPD and severity of childhood maltreatment. miR124‐3 codes for a microRNA (miRNA) targeting several genes previously found to be associated with BPD such as NR3C1. Our results highlight the potentially important role played by miRNAs in the etiology of neuropsychiatric disorders such as BPD and the usefulness of using methylome‐wide association studies to uncover such candidate genes. Moreover, they offer new understanding of the impact of maltreatments on biological processes leading to diseases and may ultimately result in the identification of relevant biomarkers.  相似文献   

9.
Objective: Our objective was to test the effect of biliopancreatic diversion (BDP) in adiponectin multimerization. Adiponectin, the major protein secreted by adipose tissue, circulates in plasma in different isoforms. The most clinically relevant oligomers are high‐molecular weight (HMW) multimers and low‐molecular weight (LMW) trimers. Contrasting data on the effect of weight loss on adiponectin isoforms have been reported. Research Methods and Procedures: We measured total plasma adiponectin and HMW and LMW adiponectin oligomers (by Western blot analysis) before and 1 month after BPD, in 18 severely obese subjects. Results: One month after BPD, body weight decreased ~11%. Total adiponectin showed significant increase after BPD. In addition, we found a significant increase in HMW (percentage) adiponectin oligomers. We found a significant inverse correlation between HMW (percentage) and BMI before and after BPD. Homeostasis model of assessment‐insulin resistance decreased significantly after the BPD, without any significant correlation with total serum adiponectin and adiponectin oligomers. Discussion: A moderate weight loss after BPD increases total and HMW adiponectin oligomers. The significant correlation between BMI and HMW (percentage) adiponectin oligomers but not between BMI and total adiponectin might indicate a role of body fat mass in regulation of adiponectin multimerization. These data suggest that HMW oligomers represent a very sensitive parameter to short‐term BMI changes after BPD.  相似文献   

10.
Bronchopulmonary dysplasia (BPD) is a severe lung disease of preterm infants, which is characterized by fewer, enlarged alveoli and increased inflammation. BPD has grave consequences for affected infants, but no effective and safe therapy exists. We previously showed that prophylactic treatment with interleukin‐1 receptor antagonist (IL‐1Ra) prevents murine BPD induced by perinatal inflammation and hyperoxia. Here, we used the same BPD model to assess whether an alternative anti‐inflammatory agent, protein C (PC), is as effective as IL‐1Ra against BPD. We also tested whether delayed administration or a higher dose of IL‐1Ra affects its ability to ameliorate BPD and investigated aspects of drug safety. Pups were reared in room air (21% O2) or hyperoxia (65% or 85% O2) and received daily injections with vehicle, 1200 IU/kg PC, 10 mg/kg IL‐1Ra (early or late onset) or 100 mg/kg IL‐1Ra. After 3 or 28 days, lung and brain histology were assessed and pulmonary cytokines were analysed using ELISA and cytokine arrays. We found that PC only moderately reduced the severe impact of BPD on lung structure (e.g. 18% increased alveolar number by PC versus 34% by IL‐1Ra); however, PC significantly reduced IL‐1β, IL‐1Ra, IL‐6 and macrophage inflammatory protein (MIP)‐2 by up to 89%. IL‐1Ra at 10 mg/kg prevented BPD more effectively than 100 mg/kg IL‐1Ra, but only if treatment commenced at day 1 of life. We conclude that prophylactic low‐dose IL‐1Ra and PC ameliorate BPD and have potential as the first remedy for one of the most devastating diseases preterm babies face.  相似文献   

11.
Exposure to hyperoxia, invasive mechanical ventilation, and systemic/local sepsis are important antecedents of postnatal inflammation in the pathogenesis of bronchopulmonary dysplasia (BPD). This review will summarize information obtained from animal (baboon, lamb/sheep, rat and mouse) models that pertain to the specific inflammatory agents and signaling molecules that predispose a premature infant to BPD. Birth Defects Research (Part A) 100:189–201, 2014. © 2014 Wiley Periodicals, Inc.  相似文献   

12.
Freshwater biodiversity is under ever increasing threat from human activities, and its conservation and management require a sound knowledge of species‐level taxonomy. Cryptic biodiversity is a common feature for aquatic systems, particularly in Australia, where recent genetic assessments suggest that the actual number of freshwater fish species may be considerably higher than currently listed. The freshwater blackfishes (genus Gadopsis) are an iconic group in south‐eastern Australia and, in combination with their broad, naturally divided distribution and biological attributes that might limit dispersal, as well as ongoing taxonomic uncertainty, they comprise an ideal study group for assessing cryptic biodiversity. We used a multigene molecular assessment including both nuclear (51 allozyme loci; two S7 introns) and matrilineal markers (cytb) to assess species boundaries and broad genetic substructure within freshwater blackfishes. Range‐wide examination demonstrates the presence of at least six candidate species across two nominal taxa, Gadopsis marmoratus and Gadopsis bispinosus. Phylogeographical patterns often aligned to purported biogeographical provinces but occasionally reflected more restricted and unexpected relationships. We highlight key issues with taxonomy, conservation, and management for a species group in a highly modified region. © 2014 The Linnean Society of London, Biological Journal of the Linnean Society, 2014, 111 , 521–540.  相似文献   

13.
14.
Objective: The objective was to evaluate ghrelin and growth hormone (GH) interactions and responses to a growth hormone‐releasing hormone (GHRH)/arginine test in severe obesity before and after surgically‐induced weight loss. Research Methods and Procedures: Our study population included 11 severely obese women 39 ± 12 years of age, with a mean BMI of 48.6 ± 2.4 kg/m2, re‐studied in a phase of stabilized body weight, with a BMI of 33.4 ± 1.2 kg/m2, 18 months after having successfully undergone biliopancreatic diversion (BPD). A GHRH/arginine test was performed before and 18 months after BPD to evaluate ghrelin and GH interactions. Active ghrelin, measured by radioimmunoassay (RIA), and GH, measured by chemiluminescence assay, were assayed before and after the GHRH/arginine test. Results: Fasting serum GH levels and GH area under the curve (AUC) significantly increased from 0.2 ± 0.05 ng/mL to 1 ± 0.3 ng/mL (p < 0.05) and from 514.76 ± 98.7 ng/mL for 120 minutes to 1957.3 ± 665.1 ng/mL for 120 minutes after bariatric surgery (p < 0.05), respectively. Although no significant change in fasting ghrelin levels was observed (573 ± 77.9 before BPD vs. 574.1 ± 32.7 after BPD), ghrelin AUC significantly increased from ?3253.9 ± 2180.9 pg/mL for 120 minutes to 1142.3 ± 916.4 pg/mL for 120 minutes after BPD (p < 0.05). Fasting serum insulin‐like growth factor (IGF)‐1 concentration did not change significantly (133.6 ± 9.9 ng/mL before vs. 153.3 ± 25.2 ng/mL after BPD). Discussion: Our study demonstrates that the mechanisms involved in ghrelin and GH secretion after the secretagogue stimulus (GHRH/arginine) are consistent with patterns observed in other populations.  相似文献   

15.
16.
Objective: Biliopancreatic diversion (BPD) restores normal glucose tolerance in a few weeks in morbid obese subjects with type 2 diabetes, improving insulin sensitivity. However, there is less known about the effects of BPD on insulin secretion. We tested the early effects of BPD on insulin secretion in obese subjects with and without type 2 diabetes. Methods and Procedures: Twenty‐one consecutive morbid obese subjects, 9 with type 2 diabetes (T2DM) and 12 with normal fasting glucose (NFG) were evaluated, just before and 1 month after BPD, by measuring body weight (BW), glucose, adipocitokines, homeostasis model assessment of insulin resistance (HOMA‐IR), acute insulin response (AIR) to e.v. glucose and the insulinogenic index adjusted for insulin resistance ([ΔI5/ΔG5]/HOMA‐IR). Results: Preoperatively, those with T2DM differed from those with NFG in showing higher levels of fasting glucose, reduced AIR (57.9 ± 29.5 vs. 644.9 ± 143.1 pmol/l, P < 0.01) and reduced adjusted insulinogenic index (1.0 ± 0.5 vs. 17.6 ± 3.9 1/mmol2, P < 0.001). One month following BPD, in both groups BW was reduced (by ~11%), but all subjects were still severely obese; HOMA‐IR and leptin decreased significanlty, while high‐molecular weight (HMW) adiponectin and adjusted insulinogenic index increased. In the T2DM group, fasting glucose returned to non‐diabetic values. AIR did not change in the NFG group, while in the T2DM group it showed a significant increase (from 58.0 ± 29.5 to 273.8 ± 47.2 pmol/l, P < 0.01). In the T2DM group, the AIR percentage variation from baseline was significantly related to changes in fasting glucose (r = 0.70, P = 0.02), suggesting an important relationship exists between impaired AIR and hyperglycaemia. Discussion: BPD is able to restore AIR in T2DM even just 1 month after surgery. AIR restoration is associated with normalization of fasting glucose concentrations.  相似文献   

17.
Objectives: The objectives were to evaluate QT interval (QTc) and QT‐interval dispersion (QTd) in severely obese individuals and to determine the effects of biliopancreatic diversion (BPD) and weight loss after BPD on ventricular repolarization parameters. Background: People with severe obesity (SO) have a 50% to 100% increased risk of death associated with a 1.6‐fold increased risk of sudden death. BPD surgery induces rapid and considerable weight loss through severe lipid malabsorption, thus achieving long‐term weight control. Research Methods and Procedures: A total of 85 subjects with SO (age, 42 ± 12 years; 66 females; mean body weight, 120 ± 29 kg; BMI, 45 ± 11 kg/m2) of 330 who had a bariatric surgical consultation between January 2001 and July 2002 were enrolled. Inclusion criteria were sinus rhythm, unremarkable 12 leads surface electrocardiogram, no atrioventricular blocks and/or bundle branch blocks, normal serum electrolyte profile, and no medical therapies exerting known effects on QTc. Exclusion criteria were previous diagnosis of coronary artery disease, known cardiovascular disease, atrial fibrillation or any other known cardiac arrhythmias, cancer, or renal dysfunction. Results: A total of 86% of patients had QTc >440 ms and/or QTd >60 ms. Subjects with SO showed a mean maximum QTc of 446 ± 28 ms and a mean QTd of 52 ± 20 ms. A close correlation was found between QTc and QTd (p < 0.0001; R2 = 0.33). One month after BPD, mean QTc was 420 ms and remained stable at follow‐up; QTd was 32 ms at 1 and 6 months and became 35 ms at 1 year. Conclusions: Ventricular repolarization abnormalities are significantly increased in subjects with SO. Reduction of QT abnormalities after BPD is independent of weight loss and is caused by the 100% reduction of glucose plasma shortly after surgery. This effect may be related to surgical interruption of the entero‐insular axis.  相似文献   

18.
Summary: Targeted mutagenesis of genes‐of‐interest, or gene‐knockout, is a powerful method to address the functions of genes. Engineered nucleases have enabled this approach in various organisms because of their ease of use. The ascidian Ciona intestinalis is an excellent organism to analyze gene functions by means of genetic technologies. In our previous study, we reported mutagenesis of Ciona somatic cells with TALE nucleases (TALENs) by electroporating expression constructs. In this study, we report germ cell mutagenesis of Ciona by microinjecting mRNAs encoding TALENs. TALEN mRNAs introduced mutations to target genes in both somatic and germ cells. TALEN‐mediated mutations in the germ cell genome were inherited by the next generation. We conclude that knockout lines of Ciona that have disrupted target genes can be established through TALEN‐mediated germ cell mutagenesis. genesis 52:431–439, 2014. © 2014 Wiley Periodicals, Inc.  相似文献   

19.
The deep ocean supports a highly diverse and mostly endemic fauna, yet little is known about how or where new species form in this remote ecosystem. How speciation occurs is especially intriguing in the deep sea because few obvious barriers exist that would disrupt gene flow. Geographic and bathymetric patterns of genetic variation can provide key insights into how and where new species form. We quantified the population genetic structure of a protobranch bivalve, Neilonella salicensis, along a depth gradient (2200–3800 m) in the western North Atlantic using both nuclear (28S and calmodulin intron) and mitochondrial (cytochrome c oxidase subunit I) loci. A sharp genetic break occurred for each locus between populations above 2800 m and below 3200 m, defining two distinct clades with no nuclear or mitochondrial haplotypes shared between depth regimes. Bayesian phylogenetic analyses provided strong support for two clades, separated by depth, within N. salicensis. Although no morphological divergence was apparent, we suggest that the depth‐related population genetic and phylogenetic divergence is indicative of a cryptic species. The frequent occurrence of various stages of divergence associated with species formation along bathymetric gradients suggests that depth, and the environmental gradients that attend changes in depth, probably play a fundamental role in the diversification of marine organisms, especially in deep water. © 2014 The Linnean Society of London, Biological Journal of the Linnean Society, 2014, 113 , 897–913.  相似文献   

20.
We used plastid sequences (trnL, trnL‐trnF, petNpsbM and trnTtrnL) to infer the phylogenetic relationships and inter‐island connections of the Canarian Juniperus cedrus, and AFLP fingerprints to assess its genetic diversity patterns. Maximum Likelihood, Maximum Parsimony and Bayesian methods suggest independent colonization events for the three Macaronesian junipers and support the monophyly of J. cedrus. Plastid sequences reveal a low genetic diversity (three haplotypes) and do not provide sufficient information to resolve its temporal and geographical origin. AFLPs indicate a greater isolation in J. cedrus than in other Macaronesian trees with similar distributions and dispersal syndromes. Gran Canaria harbours the least genetically diverse population, which justifies immediate conservation actions. This island and Tenerife also show independent genetic structure, meaning that genetic exchange from other islands should be avoided in eventual reinforcements. Populations from La Palma and La Gomera show the highest genetic diversity levels and number of polymorphic AFLPs, probably because a lower incidence of felling has allowed a less dramatic influence of genetic bottlenecks. We suggest that management efforts should prioritize populations from these islands to preserve the evolutionary potential of the species, but we also stress the importance of knowledge of the evolutionary history, genetic structure and ecological interactions in conservation strategies. © 2014 The Linnean Society of London, Botanical Journal of the Linnean Society, 2014, 175 , 376–394.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号