首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Integrins are cell surface receptors that connect extracellular matrix (ECM) components to the actin cytoskeleton and transmit chemical and mechanical signals into the cells through adhesion complexes. Integrin‐activated downstream pathways have been implicated in the regulation of various cellular functions, including proliferation, survival, migration, and differentiation. Integrin‐based attachment to the matrix plays a central role in development, tissue morphogenesis, adult tissue homeostasis, remodeling and repair, and disturbance of the ECM‐integrin‐cytoskeleton signaling axis often results in diseases and tissue dysfunction. Increasing amount of in vitro and in vivo evidences suggest that integrins are pivotal for proper development, function, and regeneration of skeletal tissues. In this paper, we will summarize and discuss the role of integrins in skeletogenesis and their influence on the physiology and pathophysiology of cartilage, bone, and tendon. Birth Defects Research (Part C) 102:13–36, 2014. © 2014 Wiley Periodicals, Inc.  相似文献   

2.
Tendon–bone healing after anterior cruciate ligament (ACL) reconstruction is a complex process, impacting significantly on patients' prognosis. Natural tendon–bone healing usually results in fibrous scar tissue, which is of inferior quality compared to native attachment. In addition, the early formed fibrous attachment after surgery is often not reliable to support functional rehabilitation, which may lead to graft failure or unsatisfied function of the knee joint. Thus, strategies to promote tendon–bone healing are crucial for prompt and satisfactory functional recovery. Recently, a variety of biological approaches, including active substances, gene transfer, tissue engineering and stem cells, have been proposed and applied to enhance tendon–bone healing. Among these, stem cell therapy has been shown to have promising prospects and draws increasing attention. From commonly investigated bone marrow‐derived mesenchymal stem cells (bMSCs) to emerging ACL‐derived CD34+ stem cells, multiple stem cell types have been proven to be effective in accelerating tendon–bone healing. This review describes the current understanding of tendon–bone healing and summarizes the current status of related stem cell therapy. Future limitations and perspectives are also discussed.  相似文献   

3.
4.
5.
6.
Osteolytic bone diseases such as osteoporosis have a common pathological feature in which osteoclastic bone resorption outstrips bone synthesis. Osteoclast formation and activation are regulated by receptor activator of nuclear factor κB ligand (RANKL). The induction of RANKL‐signaling pathways occurs following the interaction of RANKL to its cognate receptor, RANK. This specific binding drives the activation of downstream signaling pathways; which ultimately induce the formation and activation of osteoclasts. In this study, we showed that a natural immunomodulator, mangiferin, inhibits osteoclast formation and bone resorption by attenuating RANKL‐induced signaling. Mangiferin diminished the expression of osteoclast marker genes, including cathepsin K, calcitonin receptor, DC‐STAMP, and V‐ATPase d2. Mechanistic studies revealed that mangiferin inhibits RANKL‐induced activation of NF‐κB, concomitant with the inhibition of IκB‐α degradation, and p65 nuclear translocation. In addition, mangiferin also exhibited an inhibitory effect on RANKL‐induced ERK phosphorylation. Collectively, our data demonstrates that mangiferin exhibits anti‐resorptive properties, suggesting the potential application of mangiferin for the treatment and prevention of bone diseases involving excessive osteoclastic bone resorption. J. Cell. Biochem. 112: 89–97, 2011. © 2010 Wiley‐Liss, Inc.  相似文献   

7.
8.
The scaffolds for stem cell‐based bone tissue engineering should hold the ability to guide stem cells osteo‐differentiating. Otherwise, stem cells will differentiate into unwanted cell types or will form tumors in vivo. Alginate, a natural polysaccharide with great biocompatibility, was widely used in biomedical applications. However, the limited bioactivity and poor osteogenesis capability of pristine alginate hampered its further application in tissue engineering. In this work, a bone forming peptide‐1 (BFP‐1), derived from bone morphogenetic protein‐7, was grafted to alginate polymer chains to prepare peptide‐decorated alginate porous scaffolds (pep‐APS) for promoting osteo‐differentiation of human mesenchymal stem cells (hMSCs). SEM images of pep‐APS exhibited porous structure with about 90% porosity (pore size 100–300 μm), which was appropriate for hMSCs ingrowth. The adhesion, proliferation and aggregation of hMSCs grown on pep‐APS were enhanced in vitro. Moreover, pep‐APS promoted the alkaline phosphatase (ALP) activity of hMSCs, and the osteo‐related genes expression was obviously up‐regulated. The immunochemical staining and western blot analysis results showed high expression level of OCN and Col1a1 in the hMSCs grown on pep‐APS. This work provided a facile and valid strategy to endow the alginate polymers themselves with specific bioactivity and prepare osteopromoting scaffold with enhanced osteogenesis ability, possessing potential applications in stem cell therapy and regenerative medicine.  相似文献   

9.
10.
Osteosarcoma is a bone tumor that frequently develops during adolescence. 2‐Methoxyestradiol (2‐ME), a naturally occurring metabolite of 17β‐estradiol, induces cell cycle arrest and cell death in human osteosarcoma cells. To investigate whether the osteoprotegrin (OPG) protein plays a role in 2‐ME actions, we studied the effect of 2‐ME treatment on OPG gene expression in human osteosarcoma cells. 2‐ME treatment induced OPG gene promoter activity and mRNA levels. Also, Western blot analysis showed that 2‐ME treatment increased OPG protein levels in MG63, KHOS, 143B and LM7 osteosarcoma cells by 3‐, 1.9‐, 2.8‐, and 2.5‐fold, respectively, but did not affect OPG expression in normal bone cells. In addition, increases in OPG protein levels were observed in osteosarcoma cell culture media after 3 days of 2‐ME treatment. The effect of 2‐ME on osteosarcoma cells was ligand‐specific as parent estrogen, 17β‐estradiol and a tumorigenic estrogen metabolite, 16α‐hydroxyestradiol, which do not affect osteosarcoma cell cycle and cell death, had no effect on OPG protein expression. Furthermore, co‐treating osteosarcoma cells with OPG protein did not further enhance 2‐ME‐mediated anti‐tumor effects. OPG‐released in 2‐ME‐treated cultures led to an increase in osteoblastic activity and a decrease in osteoclast number, respectively. These findings suggest that OPG is not directly involved in 2‐ME‐mediated anti‐proliferative effects in osteosarcoma cells, but rather participates in anti‐resorptive functions of 2‐ME in bone tumor environment. J. Cell. Biochem. 109: 950–956, 2010. © 2010 Wiley‐Liss, Inc.  相似文献   

11.
Osteopontin (OPN) is a secreted protein present in bodily fluids and tissues. It is subject to multiple post‐translational modifications, including phosphorylation, glycosylation, proteolytic cleavage and crosslinking by transglutamination. Binding of OPN to integrin and CD44 receptors regulates signalling cascades that affect processes such as adhesion, migration, invasion, chemotaxis and cell survival. A variety of cells and tissues express OPN, including bone, vasculature, kidney, inflammatory cells and numerous secretory epithelia. Normal physiological roles include regulation of immune functions, vascular remodelling, wound repair and developmental processes. OPN also is expressed in many cancers, and elevated levels in patients’ tumour tissue and blood are associated with poor prognosis. Tumour growth is regulated by interactions between tumour cells and their tissue microenvironment. Within a tumour mass, OPN can be expressed by both tumour cells and cellular components of the tumour microenvironment, and both tumour and normal cells may have receptors able to bind to OPN. OPN can also be found as a component of the extracellular matrix. The functional roles of OPN in a tumour are thus complex, with OPN secreted by both tumour cells and cells in the tumour microenvironment, both of which can in turn respond to OPN. Much remains to be learned about the cross‐talk between normal and tumour cells within a tumour, and the role of multiple forms of OPN in these interactions. Understanding OPN‐mediated interactions within a tumour will be important for the development of therapeutic strategies to target OPN.  相似文献   

12.
Computer simulations can potentially be used to design, predict, and inform properties for tissue engineering perfusion bioreactors. In this work, we investigate the flow properties that result from a particular poly‐L ‐lactide porous scaffold and a particular choice of perfusion bioreactor vessel design used in bone tissue engineering. We also propose a model to investigate the dynamic seeding properties such as the homogeneity (or lack of) of the cellular distribution within the scaffold of the perfusion bioreactor: a pre‐requisite for the subsequent successful uniform growth of a viable bone tissue engineered construct. Flows inside geometrically complex scaffolds have been investigated previously and results shown at these pore scales. Here, it is our aim to show accurately that through the use of modern high performance computers that the bioreactor device scale that encloses a scaffold can affect the flows and stresses within the pores throughout the scaffold which has implications for bioreactor design, control, and use. Central to this work is that the boundary conditions are derived from micro computed tomography scans of both a device chamber and scaffold in order to avoid generalizations and uncertainties. Dynamic seeding methods have also been shown to provide certain advantages over static seeding methods. We propose here a novel coupled model for dynamic seeding accounting for flow, species mass transport and cell advection‐diffusion‐attachment tuned for bone tissue engineering. The model highlights the timescale differences between different species suggesting that traditional homogeneous porous flow models of transport must be applied with caution to perfusion bioreactors. Our in silico data illustrate the extent to which these experiments have the potential to contribute to future design and development of large‐scale bioreactors. Biotechnol. Bioeng. 2013; 110: 1221–1230. © 2012 Wiley Periodicals, Inc.  相似文献   

13.
The treatment of large segmental bone defects remains a challenge as infection, delayed union, and nonunion are common postoperative complications. A three‐dimensional printed bioresorbable and physiologically load‐sustaining graft substitute was developed to mimic native bone tissue for segmental bone repair. Fabricated from polylactic acid, this graft substitute is novel as it is readily customizable to accommodate the particular size and location of the segmental bone of the patient to be replaced. Inspired by the structure of the native bone tissue, the graft substitute exhibits a gradient in porosity and pore size in the radial direction and exhibit mechanical properties similar to those of the native bone tissue. The graft substitute can serve as a template for tissue constructs via seeding with stem cells. The biocompatibility of such templates was tested under in vitro conditions using a dynamic culture of human mesenchymal stem cells. The effects of the mechanical loading of cell‐seeded templates under in vitro conditions were assessed via subjecting the tissue constructs to 28 days of daily mechanical stimulation. The frequency of loading was found to have a significant effect on the rate of mineralization, as the alkaline phosphatase activity and calcium deposition were determined to be particularly high at the typical walking frequency of 2 Hz, suggesting that mechanical stimulation plays a significant role in facilitating the healing process of bone defects. Utilization of such patient‐specific and biocompatible graft substitutes, coupled with patient’s bone marrow cells seeded and exposed to mechanical stimulation of 2 Hz have the potential of reducing significant volumes of cadaveric tissue required, improving long‐term graft stability and incorporation, and alleviating financial burdens associated with delayed or failed fusions of long bone defects.  相似文献   

14.
15.
Cortical bone allografts suffer from high rates of failure due to poor integration with host tissue, leading to non‐union, fracture, and infection following secondary procedures. Here, we report a method for modifying the surfaces of cortical bone with coatings that have biological functions that may help overcome these challenges. These chitosan‐heparin coatings promote mesenchymal stem cell attachment and have significant antibacterial activity against both S. aureus and E. coli. Furthermore, their chemistry is similar to coatings we have reported on previously, which effectively stabilize and deliver heparin‐binding growth factors. These coatings have potential as synthetic periosteum for improving bone allograft outcomes. Biotechnol. Bioeng. 2013; 110: 609–618. © 2012 Wiley Periodicals, Inc.  相似文献   

16.
The activation of MAPK pathways in spinal cord and subsequent production of proinflammatory cytokines in glial cells contribute to the development of spinal central sensitization, the basic mechanism underlying bone cancer pain (BCP). Our previous study showed that spinal CXCL12 from astrocytes mediates BCP generation by binding to CXCR4 in both astrocyters and microglia. Here, we verified that CXCL12/CXCR4 signaling contributed to BCP through a MAPK‐mediated mechanism. In naïve rats, a single intrathecal administration of CXCL12 considerably induced pain hyperalgesia and phosphorylation expression of spinal MAPK members (including extracellular signal‐regulated kinase, p38, and c‐Jun N‐terminal kinase), which could be partially prevented by pre‐treatment with CXCR4 inhibitor AMD3100. This CXCL12‐induced hyperalgesia was also reduced by MAPK inhibitors. In bone cancer rats, tumor cell inoculation into the tibial cavity caused prominent and persistent pain hyperalgesia, and associated with up‐regulation of CXCL12 and CXCR4, activation of glial cells, phosphorylation of MAPKs, and production of proinflammatory cytokines in the spinal cord. These tumor cell inoculation‐induced behavioral and neurochemical alterations were all suppressed by blocking CXCL12/CXCR4 signaling or MAPK pathways. Taken together, these results demonstrate that spinal MAPK pathways mediated CXCL12/CXCR4‐induced pain hypersensitivity in bone cancer rats, which could be druggable targets for alleviating BCP and glia‐derived neuroinflammation.

  相似文献   


17.
Regenerative medicine has emerged as an important discipline that aims to repair injury or replace damaged tissues or organs by introducing living cells or functioning tissues. Successful regenerative medicine strategies will likely depend upon a simultaneous optimization strategy for the design of biomaterials, cell‐seeding methods, cell‐biomaterial interactions, and molecular signaling within the engineered tissues. It remains a challenge to image three‐dimensional (3‐D) structures and functions of the cell‐seeded scaffold in mesoscopic scale (>2 ~ 3 mm). In this study, we utilized angled fluorescence laminar optical tomography (aFLOT), which allows depth‐resolved molecular characterization of engineered tissues in 3‐D to investigate cell viability, migration, and bone mineralization within bone tissue engineering scaffolds in situ.  相似文献   

18.
The loss of bone tissue represents a critical clinical condition that is frequently faced by surgeons. Substantial progress has been made in the area of bone research, providing insight into the biology of bone under physiological and pathological conditions, as well as tools for the stimulation of bone regeneration. The present review discusses recent advances in the field of gene‐enhanced bone tissue engineering. Gene transfer strategies have emerged as highly effective tissue engineering approaches for supporting the repair of the musculoskeletal system. By contrast to treatment with recombinant proteins, genetically engineered cells can release growth factors at the site of injury over extended periods of time. Of particular interest are the expedited technologies that can be applied during a single surgical procedure in a cost‐effective manner, allowing translation from bench to bedside. Several promising methods based on the intra‐operative genetic manipulation of autologous cells or tissue fragments have been developed in preclinical studies. Moreover, gene therapy for bone regeneration has entered the clinical stage with clinical trials for the repair of alveolar bone. Current trends in gene‐enhanced bone engineering are also discussed with respect to the movement of the field towards expedited, translational approaches. It is possible that gene‐enhanced bone tissue engineering will become a clinical reality within the next few years.  相似文献   

19.
The inbred mouse strain C57BL/6 is commonly used for the generation of transgenic mouse and is a well established strain in bone research. Different vendors supply different substrains of C57BL/6J as wild‐type animals when genetic drift did not incur any noticeable phenotype. However, we sporadically observed drastic differences in the bone phenotype of “WT” C57BL/6J mice originating from different labs and speculated that these variations are attributable, at least in part, to the variation between C57BL/6J substrains, which is often overlooked. C57BL/6J‐OlaHsd is a commonly used substrain that despite a well defined deletion in the alpha‐synuclein (Snca) and multimerin‐1 (Mmrn1) genes, was reported to display no obvious phenotype and is used as WT control. Here, we compared the bone phenotype of C57BL/6J‐OlaHsd (6J‐OLA) to C57BL/6J‐RccHsd (6J‐RCC) and to the original C57BL/6J (6J‐JAX). Using μCT analysis, we found that 6J‐OLA mice display a significantly lower trabecular bone mass compared to 6J‐RCC and 6J‐JAX. PCR analysis revealed that both the Snca and Mmrn1 genes are expressed in bone tissue of 6J‐RCC animals but not of 6J‐OLA mutants, suggesting either one or both genes play a role in bone metabolism. In vitro analysis demonstrated increase in osteoclasts number and decreased osteoblast mineralization in cells derived from 6J‐OLA compared with 6J‐RCC. Our data may shed light on unexplained differences in basal bone measurements between different research centers and reiterate the importance of specifying the exact substrain type. In addition, our findings describe the physiological role for Mmrn1 and/or Snca in bone remodeling.  相似文献   

20.
Few recent studies have examined the histological basis for tooth attachment in squamates. In the past few years, a surge of interest in this topic has led to the intriguing suggestion that the major tissues derived from the tooth germ (enamel, dentine, cementum and alveolar bone), are conservative and are present in all amniotes. In this study, we describe the histology and development of the tooth attachment complex in Varanus rudicollis, the rough‐neck monitor. We provide the first published evidence for the role of cementum and alveolar bone in tooth attachment in varanoid lizards. In Varanus, cementum is deposited on the external surface of the tooth root as well as at the base of the tooth, where it plays a role in the attachment of the tooth to the jawbone. Alveolar bone is also involved in tooth ankylosis. Our results support the hypothesis that the major tooth germ tissues are found in all amniotes. We provide insights into the structure and development of plicidentine, defined as infolding of the dentine around the tooth base. This feature is unique to varanoids among extant tetrapods and is the third tissue implicated in tooth attachment in Varanus. Plicidentine develops asymmetrically along the labial‐lingual axis of a tooth. Varanus is characterized by the presence of both primary and higher‐order lamellae, which anastomose to form a honeycomb‐like surface that then interacts with the more basal attachment tissues. J. Morphol. 2011. © 2011 Wiley‐Liss, Inc.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号