首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
Pregabalin was evaluated for potential developmental toxicity in mice and rabbits. Pregabalin was administered once daily by oral gavage to female albino mice (500, 1250, or 2500 mg/kg) and New Zealand White rabbits (250, 500, or 1250 mg/kg) during organogenesis (gestation day 6 through 15 [mice] or 6 through 20 [rabbits]). Fetuses were evaluated for viability, growth, and morphological development. Pregabalin administration to mice did not induce maternal or developmental toxicity at doses up to 2500 mg/kg, which was associated with a maternal plasma exposure (AUC0–24) of 3790 μg?hr/ml, ≥30 times the expected human exposure at the maximum recommended daily dose (MRD; 600 mg/day). In rabbits, treatment‐related clinical signs occurred at all doses (AUC0–24 of 1397, 2023, and 4803 μg?hr/ml at 250, 500, and 1250 mg/kg, respectively). Maternal toxicity was evident at all doses and included ataxia, hypoactivity, and cool to touch. In addition, abortion and females euthanized moribund with total resorption occurred at 1250 mg/kg. There were no treatment‐related malformations at any dose. At 1250 mg/kg, compared with study and historical controls, the percentage of fetuses with retarded ossification was significantly increased and the mean number of ossification sites was decreased, which correlated with decreased fetal and placental weights, consistent with in utero growth retardation. Therefore, the no‐effect dose for developmental toxicity in rabbits was 500 mg/kg, which produced systemic exposure approximately 16‐times human exposure at the MRD. These findings indicate that pregabalin, at the highest dose tested, was not teratogenic in mice or rabbits  相似文献   

2.
Pregabalin was administered to pregnant Wistar rats during organogenesis to evaluate potential developmental toxicity. In an embryo‐fetal development study, compared with controls, fetuses from pregabalin‐treated rats exhibited increased incidence of jugal fused to maxilla (pregabalin 1250 and 2500 mg/kg) and fusion of the nasal sutures (pregabalin 2500 mg/kg). The alterations in skull development occurred in the presence of maternal toxicity (reduced body weight gain) and developmental toxicity (reduced fetal body weight and increased skeletal variations), and were initially classified as malformations. Subsequent investigative studies in pregnant rats treated with pregabalin during organogenesis confirmed the advanced jugal fused to maxilla, and fusion of the nasal sutures at cesarean section (gestation day/postmating day [PMD] 21) in pregabalin‐treated groups. In a study designed to evaluate progression of skull development, advanced jugal fused to maxilla and fusion of the nasal sutures was observed on PMD 20–25 and PMD 21–23, respectively (birth occurs approximately on PMD 22). On postnatal day (PND) 21, complete jugal fused to maxilla was observed in the majority of control and 2500 mg/kg offspring. No treatment‐related differences in the incidence of skull bone fusions occurred on PND 21, indicating no permanent adverse outcome. Based on the results of the investigative studies, and a review of historical data and scientific literature, the advanced skull bone fusions were reclassified as anatomic variations. Pregabalin was not teratogenic in rats under the conditions of these studies  相似文献   

3.
4.
Maternal mammalian toxicity impacts prenatal development, with general systemic maternal toxicity, from reduced weight gain to morbidity, causative for reduced fetal weights/litter and increased fetal variations (especially skeletal)/litter, but not, in the author's opinion, for increased fetal malformations, reduced litter sizes or full litter losses. Increased fetal malformations are likely due to exposure to specific chemicals which alter specific maternal functions at critical point(s) in pregnancy, typically exaggerated effects from higher doses by drugs under development with known, desired pharmacological effects. Malformations can also be from genetic/epigenetic alterations, specific altered proteins, molecular pathways, etc. Full litter losses are triggered by the mother and are rare in rats. Information to inform maternal (and developmental) toxicity includes ovarian corpora lutea counts, uterine implantation profile, degree of litter reduction (if present), timing and extent of maternal toxicity relative to those of adverse embryofetal effects, etc. The view of maternal toxicity as confounding results in in vivo developmental toxicity studies, worldwide concerns about increased research animal usage, increasing time, labor, costs, and new software and hardware sophistication all drive the interest in development, validation, and performance of in vitro/in silico assays. These assays are fast, inexpensive, responsive to animal use concerns and amenable to mechanistic questions. The strength of these in vitro/in silico assays is considered by many to be the absence of the maternal organism/placenta. These assays inform mechanism and hazard, but NOT risk. The Environmental Protection Agency currently estimates that these new assays are approximately 70% accurate versus the whole animal tests.  相似文献   

5.
6.
Extensive use of the agricultural herbicide atrazine has led to contamination of numerous ground and surface water bodies. Research has shown that it can have a variety of negative impacts on numerous non-target organisms in the environment. Phytoremediation is one strategy that has been studied to remove atrazine contamination. This paper investigates the hypothesis that switchgrass (Panicum virgatum) can exude metabolites of atrazine after uptake and degradation, which has been suggested by prior research. Pots planted with switchgrass were treated with a 4 ppm solution of atrazine spiked with [14C]atrazine. After 4 days, switchgrass plants were transplanted to new pots with fresh sand. Four days later, the pots were sacrificed, and sand and plant samples were extracted. Plant and sand samples were analyzed for the presence of atrazine and its major metabolites. The percentage of radiotracer remaining as the parent atrazine was observed to decrease over the course of the study while the percentages of the metabolites were observed to increase. The presence of the metabolite cyanuric acid in a switchgrass phytoremediation system is reported for the first time.  相似文献   

7.
8.
9.
A developing organism exposed to a toxicant will have a response that ranges from none to severe (i.e., death or malformation). The response at a given dosage may be termed teratogenic (or developmental toxic) severity and is dependent on exposure conditions. Prenatal/embryo–fetal developmental (EFD) toxicity studies in rodents and rabbits are the most consistent and definitive assessments of teratogenic severity, and teratogenesis screening assays are best validated against their results. A formula is presented that estimates teratogenic severity for each group, including control, within an EFD study. The developmental components include embryonic/fetal death, malformations, variations, and mean fetal weight. The contribution of maternal toxicity is included with multiplication factors to adjust for the extent of mortality, maternal body weight change, and other parameters deemed important. The derivation of the formula to calculate teratogenic severity is described. Various EFD data sets from the literature are presented to highlight considerations to the calculation of the various components of the formula. Each score is compared to the concurrent control group to obtain a relative teratogenic severity. The limited studies presented suggest relative scores of two‐ to <fivefold higher than control have detectable but a low level of teratogenic severity, and scores ≥fivefold higher than control have increasingly more severe teratogenicity. Such scores may help refine the concept of an exposure‐based validation list for use by proponents of screening assays (Daston et al., 2014) by estimating the severity of “positive” exposures, or in other situations by defining the severity of a LOAEL (lowest observed adverse effect level)  相似文献   

10.
11.
The pharmacotoxicology impacts of dietary supplements taken at the time of pregnancy have remained alarming since women are the frequent herbal medicine users in many countries as a complement to the conventional pregnancy management. The use of herbal medicines and diet supplements in expectant mothers linked closely to the health of the childbearing mothers and the fetuses where the lack of developmental safety data imposes a challenge to make the right choices. Here, we describe the potential adverse effects of UP446, a standardized bioflavonoid composition from the roots of Scutellaria baicalensis and the heartwoods of Acacia catechu, on embryo‐fetal development following maternal exposure during the critical period of major organogenesis in rabbits and rats. Pregnant dams were treated orally with UP446 at doses of 250, 500, and 1000 mg/kg/day during gestation. The number of resorptions, implantations, litter size, body weights, and skeletal development was evaluated. Maternal food intake and body, tissue, and placenta weight were also assessed. There were no statistically significant differences in implantation, congenital malformation, embryo‐fetal mortalities, and fetuses sex ratios in all dosing groups of both species. Therefore, the no observed adverse effect level of UP446 was considered to be greater than 1000 mg/kg in both the maternal and fetus in both species  相似文献   

12.
Epoxiconazole, a triazole‐based fungicide, was tested in toxicokinetic, prenatal and pre‐postnatal toxicity studies in guinea pigs, following oral (gavage) administration at several dose levels (high dose: 90 mg/kg body weight per day). Maternal toxicity was evidenced by slightly increased abortion rates and by histopathological changes in adrenal glands, suggesting maternal stress. No compound‐related increase in the incidence of malformations or variations was observed in the prenatal study. In the pre‐postnatal study, epoxiconazole did not adversely affect gestation length, parturition, or postnatal growth and development. Administration of epoxiconazole did not alter circulating estradiol levels. Histopathological examination of the placentas did not reveal compound‐related effects. The results in guinea pigs are strikingly different to those observed in pregnant rats, in which maternal estrogen depletion, pathological alteration of placentas, increased gestation length, late fetal death, and dystocia were observed after administration of epoxiconazole. In the studies reported here, analysis of maternal plasma concentrations and metabolism after administration of radiolabeled epoxiconazole demonstrated that the different results in rats and guinea pigs were not due to different exposures of the animals. A comprehensive comparison of hormonal regulation of pregnancy and birth in murid rodents and primates indicates that the effects on pregnancy and parturition observed in rats are not applicable to humans. In contrast, the pregnant guinea pig shares many similarities to pregnant humans regarding hormonal regulation and is therefore considered to be a suitable species for extrapolation of related effects to humans. Birth Defects Res (Part B) 98:230–246, 2013. © 2013 Wiley Periodicals, Inc.  相似文献   

13.
Tabalumab is a human immunoglobulin G subclass 4 monoclonal antibody that has been under development for autoimmune disorders. Tabalumab has full neutralizing activity against both soluble and membrane B‐cell activating factor, a B‐cell survival factor. The objectives of these studies were to assess the effects of tabalumab on embryo–fetal development and on male (M) and female (F) fertility in rabbits, a pharmacologically relevant species. Doses were administered at 0 (vehicle control), 0.3 (embryo–fetal study only), 1.0, and 30 mg/kg. In the embryo–fetal study, pregnant rabbits does were given a single dose by intravenous injection on gestation day (GD) 7. In the fertility studies, tabalumab was administered by intravenous injection every 7 days starting 2 (F) or 4 (M) weeks before mating, during cohabitation, and until necropsy (M) or through GD 18 (F). Treated animals were mated with untreated partners. Parental clinical signs, body weight, food consumption, blood lymphocyte phenotyping, organ weights, morphologic pathology, ovarian and uterine observations, sperm parameters, and fertility indices were evaluated along with conceptus viability, weight, and morphology. Exposure assessments were made in all main study animals and satellite animals. No adverse parental, reproductive, or developmental effects were observed in any study at any dose. A pharmacodynamic response consisting of dose‐dependent decreases in the percent and number of total B lymphocytes and increases in the percent and/or number of total T lymphocytes was observed in parental rabbits at 1.0 and 30 mg/kg. In conclusion, no adverse reproductive or developmental effects were observed in rabbits following exposure to tabalumab at doses as high as 30 mg/kg and exposures at least 14‐fold greater than human exposure levels.  相似文献   

14.
Epoxiconazole (EPX; CAS‐No. 133855‐98‐8) is a triazole class–active substance of plant protection products. At a dose level of 50 mg/kg bw/day, it causes a significantly increased incidence of late fetal mortality when administered to pregnant rats throughout gestation (gestation day [GD] 7–18 or 21), as reported previously (Taxvig et al., 2007, 2008) and confirmed in these studies. Late fetal resorptions occurred in the presence of significant maternal toxicity such as clear reduction of corrected body weight gain, signs of anemia, and, critically, a marked reduction of maternal estradiol plasma levels. Furthermore, estradiol supplementation at dose levels of 0.5 or 1.0 μg/animal/day of estradiol cyclopentylpropionate abolished the EPX‐mediated late fetal resorptions. No increased incidences of external malformations were found in rats cotreated with 50 mg/kg bw/day EPX and estradiol cyclopentylpropionate, indicating that the occurrence of malformations was not masked by fetal mortality under the study conditions. Overall, the study data indicate that fetal mortality observed in rat studies with EPX is not the result of direct fetal toxicity but occurs indirectly via depletion of maternal estradiol levels. The clarification of the human relevance of the estrogen‐related mechanism behind EPX‐mediated late fetal resorptions in rats warrants further studies. In particular, this should involve investigation of the placenta (Rey Moreno et al., 2013), since it is the materno‐fetal interface and crucial for fetal maintenance. The human relevance is best addressed in a species which is closer to humans with reference to placentation and hormonal regulation of pregnancy, such as the guinea pig (Schneider et al., 2013). Birth Defects Res (Part B) 98:247–259, 2013. © 2013 Wiley Periodicals, Inc.  相似文献   

15.
Groups of mated female Sprague-Dawley rats were simultaneously exposed to 0 (sham exposed), 7, 70, or 350 microT (rms) circularly polarized 50 Hz magnetic fields (MF) for 22 h/day on gestational day 8-15, the period of rat fetal organogenesis (organogenesis study) or from day 0 to day 7 of gestation, the rat preimplantation period (preimplantation study). Developmental toxicity was assessed on gestational day 20. Identical experiments were repeated to confirm reproducibility of both studies. In both studies, statistically significant differences between exposed and sham exposed animals were observed in several measured parameters; however, these differences only appeared in one, but not both replicate experiments and generally at only an isolated exposure level. Because these differences were not reproducible and did not show a dose response relationship, they were not considered related to MF exposure. In the organogenesis study, lower kidney weights of dams were seen at 70 and 350 microT in Experiment 1. Lower dam liver weights and lower mean body weights of viable female and male fetuses were seen at 70 microT in Experiment 2. Otherwise, there were no differences in these parameters or in group means for fetal loss after implantation, number of viable fetuses, fetal body weight and sex ratio, incidences of external, visceral, and skeletal abnormalities or variations, or tissue abnormalities after histopathological examination. In the preimplantation study, dam health and indices for reproduction and embryo-fetal development, including pre or postimplantation loss, number and body weight of live fetuses, and sex ratio, external, skeletal abnormalities and variations, and skeletal ossification did not differ. Dam inorganic phosphorous concentration at 350 microT was elevated in one experiment and depressed in another. In one experiment, visceral abnormalities, primarily thymic remnant in neck and accessory liver lobe, were increased in the 7 microT group. Based on these results from two studies, we conclude that circularly polarized 50 Hz MF exposure of up to 350 microT during the fetal organogenesis or during the preimplantation period does not affect reproduction and embryo-fetal development in Sprague-Dawley rats.  相似文献   

16.
Herbicides play an important role in agricultural practices but the introduction of these compounds into the aquatic environment can have severe consequences for non-target organisms such as microalgae. The ubiquitous green freshwater microalga Chlamydomonas reinhardtii, a model species in all aspects of microalgal physiology, was used to assess the toxicity of atrazine, one of the most widely used herbicides throughout the world. Atrazine acts on photosynthesis and therefore can affect non-target primary producers, such as microalgae.

Growth, dry weight, elemental composition, photosynthetic pigments and protein contents and nitrate reductase activity were studied. After 96 h of exposure to different atrazine concentrations all the parameters studied were affected, but different sensitivities to the herbicide were shown. Nitrate reductase (NR) activity was strongly affected even at an atrazine concentration that did not affect growth (0.1 µM); the lowest concentrations of atrazine assayed (0.1 and 0.25 µM) provoked a > 40% decrease in NR activity and NR decreased > 80% with atrazine concentrations of 0.5 µM. C/N ratio was also affected by all the atrazine concentrations assayed. Nitrate reductase activity and C/N ratio were better indicators of the cellular stress state than data on other biochemical components or growth rate. Among cell parameters assayed, the NR activity stood out as a sensitive cytotoxicity endpoint and the activity of this enzyme can be suggested as a sensitive biomarker of stress induced by atrazine in C. reinhardtii.  相似文献   


17.
Bitopertin is a glycine type 1 (GlyT1) inhibitor intended for the treatment of psychiatric disorders. The principle adverse effect in the regulatory reproductive toxicity studies was peri‐natal pup death when rat dams were treated during parturition at a dose resulting in five‐times the human therapeutic exposure (AUC). Cessation of dosing two days before parturition prevented the pup deaths. Investigatory experiments and pharmacokinetic modelling suggested that the neonatal mortality was related to transplacental passage of bitopertin leading to high systemic levels in the newborn pups. Brain levels of bitopertin in the rat fetus and neonate were two‐fold higher than in the mother. As illustrated by knock‐out mice models, GlyT1 function is essential for neonatal pup survival in rodents, but is not necessary for normal prenatal morphological development. The glycine transport systems are immature at birth in the rat, but are functionally well‐developed in the human newborn. While the relevance to humans of the neonatal mortality seen in rats following late gestational exposure is unknown, bitopertin would not be recommended for use during late pregnancy unless the anticipated benefit for the mother outweighs the potential risk to the newborn.  相似文献   

18.
19.
Almost all herbal remedies could be therapeutic at one dose and toxic at another. These facts become more troubling and a double threat when uncharacterized medicinal herbs are blended together and used by expectant mothers as a supplement to conventional pregnancy management with an inherent belief of considering herbal remedies as harmless. Here we describe the potential adverse effects of UP446, a standardized bioflavonoid composition from the roots of Scutellaria baicalensis and the heartwoods of Acacia catechu, on the maternal and their first filial generation (F1) developmental and functional toxicity following exposure at doses of 250, 500, and 1000 mg/kg/day. Maternal gestation, viability index, sex ratio, body weight, and food consumption were evaluated. F1 growth and development, sexual function including mating index, fertility, implantation, and embryo mortality were also assessed. Test substance impacts on the maternal (F0) or F1 reproductive parameters were very minimal. There were no statistically significant differences in implantation, parturition, viability, and neonates’ sex ratios. There were no significant changes in maturation, behavioral, or functional developments between groups. No treatment‐related prenatal or postnatal in‐life or necropsy abnormalities were observed. Therefore, the no observed adverse effect level in the prenatal and postnatal developments, including maternal function study was considered to be greater than 1000 mg/kg  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号