首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 7 毫秒
1.
Adiponectin is a hormone secreted from adipose tissue, and serum levels are decreased with obesity and insulin resistance. Because prolactin (PRL) and growth hormone (GH) can affect insulin sensitivity, we investigated the effects of these hormones on the regulation of adiponectin in human adipose tissue in vitro and in rodents in vivo. Adiponectin secretion was significantly suppressed by PRL and GH in in vitro cultured human adipose tissue. Furthermore, PRL increased adiponectin receptor 1 (AdipoR1) mRNA expression and GH decreased AdipoR2 expression in the cultured human adipose tissue. In transgenic mice expressing GH, and female mice expressing PRL, serum levels of adiponectin were decreased. In contrast, GH receptor deficient mice had elevated adiponectin levels, while PRL receptor deficient mice were unaffected. In conclusion, we demonstrate gene expression of AdipoR1 and AdipoR2 in human adipose tissue for the first time, and show that these are differentially regulated by PRL and GH. Both PRL and GH reduced adiponectin secretion in human adipose tissue in vitro and in mice in vivo. Decreased serum adiponectin levels have been associated with insulin resistance, and our data in human tissue and in transgenic mice suggest a role for adiponectin in PRL and GH induced insulin resistance.  相似文献   

2.
Summary Fragments of pituitary tissue obtained from a total of 37 patients with either breast cancer, diabetic retinopathy, galactorrhea, or acromegaly were dissociated into single cell suspensions prior to cell culture. Release of human growth hormone (hGH) and human prolactin (hPRL) into the culture medium was measured by radioimmunoassay. During a 3-week culture period, prolactin cells released 9–13 times the intracellular levels of hPRL at the time of seeding, whereas hGH release from growth hormone cells was only 1–2 times that of their initial intracellular level during this same time. Both growth hormone and prolactin cells retained distinctive ultrastructural features during culture. The prolactin cells responded to TRH stimulation by elevated release of PRL into the medium. No evidence for mitotic division of prolactin cells in vitro was found.This work was supported by NCI Contract NO 1-CB-23863  相似文献   

3.
Summary The technique of ultrastructural immunocytochemistry involving the unlabeled antibody and the soluble peroxidase-antiperoxidase complex was used to identify and describe the prolactin (P) cells, somatotropic (STH) cells and luteinizing hormone (LH) cells in the bovine anterior pituitary gland. This method was used to localize the three hormones at the electron microscopic level. Staining of varying intensity was found on the secretory granules and on the small granules and vesicles within the Golgi complex. No stain was found in nuclei, on mitochondria or in the endoplasmic reticulum.  相似文献   

4.
Summary Effects of medium osmotic pressure on the release of prolactin (PRL) and growth hormone (GH) from the pituitary of the Japanese eel, Anguilla japonica, were examined during long-term organ culture in a defined medium. Prolactin and GH release, as measured by homologous radioimmunoassays, increased gradually for 7 days during incubation in isosmotic medium (295 mOsmolal). On day 7, 3 to 5 times more PRL and GH were released than on day 1. The amount of GH released was about 100 times greater than that of PRL. Electron microscopic observation revealed that both PRL and GH cells were in good condition after 7 days incubation. The reduction of medium osmotic pressure from 295 (isosmotic) to 235 or 260 mOsmolal significantly stimulated PRL release for 4 days. By contrast, an increase in medium osmolality from 295 to 360 mOsmolal was without effect. These treatments produced no significant alterations in GH release. The stimulatory effect of hyposmotic medium (235 mOsmolal) was no longer evident by 12 h after the pituitaries were returned to isosmotic medium. The isosmotic but low-sodium medium, prepared by adding mannitol to the hyposmotic medium, did not stimulate PRL release from the pituitary. These results indicate that plasma osmolality may be an important physiological factor controlling PRL release during freshwater adaptation of the eel.Abbreviations GH growth hormone - OAPBS PBS with 1% ovalbumin - PAGE polyacrylamide gel electrophoresis - PBS phosphatebuffered saline - PRL prolactin - rER rough endoplasmic reticulum  相似文献   

5.
Accumulating evidence implicates the growth hormone receptor (GHR) in carcinogenesis. While multiple studies show evidence for expression of growth hormone (GH) and GHR mRNA in human cancer tissue, there is a lack of quantification and only a few cancer types have been investigated. The National Cancer Institute’s NCI60 panel includes 60 cancer cell lines from nine types of human cancer: breast, CNS, colon, leukemia, melanoma, non-small cell lung, ovarian, prostate and renal. We utilized this panel to quantify expression of GHR, GH, prolactin receptor (PRLR) and prolactin (PRL) mRNA with real-time RT qPCR. Both GHR and PRLR show a broad range of expression within and among most cancer types. Strikingly, GHR expression is nearly 50-fold higher in melanoma than in the panel as a whole. Analysis of human metastatic melanoma biopsies confirmed GHR gene expression in melanoma tissue. In these human biopsies, the level of GHR mRNA is elevated in advanced stage IV tumor samples compared to stage III. Due to the novel finding of high GHR in melanoma, we examined the effect of GH treatment on three NCI60 melanoma lines (MDA-MB-435, UACC-62 and SK-MEL-5). GH increased proliferation in two out of three cell lines tested. Further analysis revealed GH-induced activation of STAT5 and mTOR in a cell line dependent manner. In conclusion, we have identified cell lines and cancer types that are ideal to study the role of GH and PRL in cancer, yet have been largely overlooked. Furthermore, we found that human metastatic melanoma tumors express GHR and cell lines possess active GHRs that can modulate multiple signaling pathways and alter cell proliferation. Based on this data, GH could be a new therapeutic target in melanoma.  相似文献   

6.
Summary Using the peroxidase-antiperoxidase immunocytochemical staining technique, prolactin and growth hormone cells have been identified and described in the ovine pituitary. The image analysing computer, Quantimet 720, was used to assess accurately the size range of the secretory granules in these cell types. The area size distributions of the prolactin and growth hormone granules are similar. An increased proportion of larger granules was observed in the prolactin cells post-partum. Serial sections stained alternately for prolactin or growth hormone confirmed that the cells contain either prolactin or growth hormone but not both.  相似文献   

7.
We have examined the effects of third cerebroventricular (3V) injections of avian and bovine pancreatic polypeptide (APP and BPP) and the C-terminal hexapeptide amide of human PP (CHPP) on the secretion of anterior pituitary hormones in conscious ovariectomized rats. Injection of APP (2.0 micrograms; 472 pmoles) or BPP (5.0 micrograms; 1191 pmoles) decreased plasma levels of luteinizing hormone (LH) when compared to pre-injection levels in these animals or to saline-injected controls. The lower dose of BPP (0.5 micrograms; 119 pmoles) decreased plasma LH versus pre-injection levels and control animals, however, these effects diminished at later times. Plasma growth hormone (GH) also decreased following 3V injections of APP (2.0 micrograms) or BPP (5.0 micrograms). The lower dose of BPP (0.5 microgram) initially inhibited GH release, however, this effect was rapidly reversed and GH levels were significantly greater than those in controls at 60 and 120 min. Injections of BPP or APP did not alter prolactin (PRL) or thyroid stimulating hormone (TSH) secretion. Administration of 2.0 micrograms and 0.2 microgram of CHPP (2488 and 249 pmoles) produced no significant effects on plasma LH, GH, PRL or TSH. APP and BPP had no consistent effects on hormone secretion from dispersed anterior pituitary cells. The results indicate that APP and BPP exert potent central effects which inhibit LH and GH release from the pituitary gland.  相似文献   

8.
从斜带石斑鱼垂体提取总。RNA,再取其50ng合成SMART cDNA。从所构建的垂体SMART cDNA质粒文库中筛选到生长激素/催乳素基因家族的2个成员的全长cDNA片段:生长激素(GH)基因全长为938bp,编码204个氨基酸;催乳素基因(PRI.)全长为1429bp,编码212个氨基酸。采用计算机软件Mega 2和CLUSTAL W1.64b对9种鱼的生长激素/催乳素基因家族的3个成员(GH、PRL和生长催乳素SL)的氨基酸序列进行系统分析,构建NJ分支系统树,对于序列中的插入/缺失位点则采用Pairaise Deletion,1000次自展(Bootstrap)分析计算各节点支持率。根据3个基因的氨基酸序列构建的系统树表明,石斑鱼与金头鲷、金鲈和牙鲆聚成一类,虹鳟与大马哈鱼聚成一类,鲫鱼与鲶鱼聚成一类,鳗鲡成另外一类。根据石斑鱼全长cDNA推断的氨基酸序列比较表明,SL相对GH和PRL有较高的保守性。石斑鱼的GH、PRL和SL的氨基酸同源性在24%~31%,但其C-端的氨基酸同源性较高,尤其是C-端的3个Cys是严格保守的。其中SL与GH的同源性(30.8%)高于与PRL的同源性(25.6%),GH和PRL的同源性最低(24.1%)。  相似文献   

9.
Summary The immunocytochemical peroxidase-antiperoxidase technique was used to identify prolactin- and growth hormone-producing cells in the porcine pituitary at the ultrastructural level. The growth hormone-producing cells contain round secretory granules (300 nm to 500 nm in diameter). The prolactin-producing cells can be identified by their distinct round and ovoid secretory granules which vary in size. Most of these cells contain large granules (450 nm to 750 nm in diameter), but some prolactin-producing cells display smaller secretory granules (250 nm to 500 nm). The two hormones were localized exclusively in the secretory granules. Staining for prolactin was observed in round and ovoid granules, as well as in small and polymorphic granules within the Golgi complex. This study confirmed (i) that the two hormones are located in different cells, and (ii) that under normal physiological conditions no one cell can synthesize and store both hormones simultaneously.  相似文献   

10.
Summary Eel hemi-pituitaries were cultured in vitro on high or low sodium media, previously shown to affect differentially prolactin and growth hormone release. After 6 days culture, there were marked differences in the ultrastructure of both prolactin and growth hormone cells from the two groups. Morphometric data on the prolactin cells from SW-adapted eels showed a greater abundance of RER and paucity of secretory granules in cells from the low sodium medium. The size of the Golgi apparatus and the number of exocytosed secretory granules did not differ markedly between experimental groups, in contrast to previous findings on short-term cultures. Differences in the profile diameters of secretory granules are recorded between the experimental groups and the pattern differs markedly from that previously recorded for short-term cultures. The growth hormone cells from low sodium media were characterised by abundant, vesiculated RER, a prominent Golgi apparatus (in SW-adapted animals) and relatively few secretory granules. The activity of these growth hormone cells is in marked contrast to previous findings relating to short-term cultures. The shape and size of the non-granulated (stellate) cells of the RPD was again affected by the osmotic pressure of the medium.I should like to thank Mr. P.F. Hire for his photographic assistance  相似文献   

11.
Summary Using an antiserum directed against the C-terminus of hGRH(1–44)NH2 and another recognizing the mid portion to C-terminal of hGRH(1–40)OH, we identify two immunocytochemically distinct GRH-immunoreactive systems in the brain of the codfish, Gadus morhua. The antiserum directed against GRF(1–44)NH2 stains cell bodies exclusively in the rostral pars distalis. The other antiserum immunoreactive with GRF(1–40)OH reacts with a population of parvocellular and magnocellular neuronal cell bodies in the hypothalamus and with two major axonal pathways which project toward the median eminence and terminate primarily in the pars nervosa. These results indicate the presence of at least two forms of hGRH-like peptides in the teleost which may have different roles in the regulation of pituitary function.  相似文献   

12.
Summary The cell production in the growth plate of the proximal tibia was calculated in hypophysectomized rats given growth hormone and/or thyroxine from values of longitudinal bone growth determined with oxytetracycline and the size of degenerative cells in the growth plate.The changes in longitudinal bone growth induced by thyroxine and growth hormone in hypophysectomized rats were found to be predominantly caused by changes in the cell production, whereas the changes in the size of the degenerative cells were minor. The stimulation of cell production by growth hormone was dependent on the dose and the administration period. Thyroxine was found to stimulate the cell production up to an optimum dose of thyroxine.  相似文献   

13.
The peptide hormone adropin, encoded by the energy homeostasis-associated (Enho) gene, plays a role in energy homeostasis and the control of vascular function. The aim of this study was to examine the role of adropin in growth hormone (GH) gene expression at the pituitary level in tilapia. As a first step, the antiserum for the tilapia adropin was produced, and its specificity was confirmed by antiserum preabsorption and immunohistochemical staining in the tilapia pituitary. Adropin could be detected immunocytochemically in the proximal pars distalis (PPD) of the tilapia pituitary. In primary cultures of tilapia pituitary cells, tilapia adropin was effective in increasing GH mRNA levels. However, removal of endogenous adropin by immunoneutralization using adropin antiserum inhibited GH gene expression. In parallel experiments, pituitary cells co-treated with ovine pituitary adenylate cyclase activating polypeptide 38 (oPACAP38) and adropin showed a similar increase level compared to those treated with oPACAP38 alone, whereas insulin-like growth factor 1 (IGF1) not only had an inhibitory effect on basal GH mRNA levels, but also could abolish adropin stimulation of GH gene expression. In pituitary cells pretreated with actinomycin D, the half-life of GH mRNA was enhanced by adropin. Taken together, these findings suggest that adropin may serve as a novel local stimulator for GH gene expression in tilapia pituitary.  相似文献   

14.
Summary Growth hormone, prolactin and somatostatinlike immunoreactivities were demonstrated in the brains of larval, young adult (parasitic) and upstream migrant adult sea lampreys, Petromyzon marinus, by means of immunoperoxidase techniques. Growth hormone (GH) and prolactin (PRL) were observed within separate perikarya in the nucleus praeopticus, within fibers in the commissura praeinfundibularis, and in nerve endings within the neurohypophysis of larval and adult-stage lampreys. Cell bodies demonstrating immunoreactive growth hormone were more numerous than those reactive for prolactin. Unlike in the upstream migrant adult lamprey, no GH or PRL was demonstrated in the adenohypophysis of larval or parasitic lamprey.Somatostatin (SRIF)-like immunoreactive neurons were demonstrated in the nucleus commissurae praeinfundibularis, anterior and posterior pars ventralis hypothalami, pars dorsalis thalami, and the tegmentum motorium rhombencephali of larval, parasitic and upstream migrant adult lampreys. Many of the SRIF containing neurons within the hypothalamus were cerebrospinal fluid (CSF)-contacting cells. SRIF fibers were found throughout most of the brain predominating within the nucleus praeopticus, pars ventralis hypothalami, and the nucleus interpeduncularis. No SRIF immunoreactivity was found within the neurophyophysis. The possible functions of these peptides within the brain of the lamprey are discussed.  相似文献   

15.
In ruminant species photoperiod regulates prolactin (PRL) secretion. It is hypothesized that the inhibition of PRL secretion resides in dopaminergic neurons of the medial basal hypothalamus (MBH). To test this hypothesis, anterior (AHD), posterior (PHD) and complete (CHD) hypothalamic deafferentation and sham operation control (SOC) surgeries were carried out during May (long-day photoperiod) in beef heifer calves (6-8 mo old) to measure basal PRL secretion and PRL secretion as affected by intravenous secretagogues. On the day of surgery (day 0), PRL secretion reflected stress of anesthesia and surgery in all groups. Thyrotropin-releasing hormone (TRH), alpha-methyl-rho-tyrosine (alphaMrhoT), and haloperidol (HAL) was iv injected on days 11, 13 and 15, respectively. AHD, PHD, CHD, and SOC calves responded to TRH (100 microg) with an acute increase in PRL that peaked within 20 min. All heifers responded to alphaMrhoT (10 mg/kg BW) with an acute elevation in PRL within 10 min and remaining elevated for 3 h. HAL (0.1 mg/kg BW) induced an acute increase in PRL secretion in all groups, peaking within 15-30 min. Seven months later (December, short-day photoperiod) these heifers were ovariectomized. Basal plasma PRL levels were seasonally low, PRL secretion in AHD, PHD and CHD animals abruptly increased within 15 min to iv injection of 100 microg TRH to a greater amount than seen in SOC heifers. Although a biphasic effect on PRL secretion entrains under long-day and short-day photoperiods, hypothalamic deafferentation in cattle did not affect the pituitary gland's responsiveness to secretagogues.  相似文献   

16.
Summary Growth hormone (GH) secretory cells were identified by immunogold cytochemistry, and were classified on the basis of the size of secretory granules. Type I cells contained large secretory granules (250\2-350 nm in diameter). Type II cells contained the large secretory granules and small secretory granules (100\2-150 nm in diameter). Type III cells contained the small secretory granules. The percentages of each GH cell type changed with aging in male and female rats of the Wistar/Tw strain. Type I cells predominated throughout development; the proportion of type I cell was highest at 6 months of age, and decreased thereafter. The proportion of type II and type III cells decreased from 1 month to 6 months of age, but then increased at 12 and 18 months of age. The pituitary content of GH was highest at 6 months of age, and decreased thereafter. Estrogen and androgen, which are known to affect GH secretion, caused changes in the proportion of each GH cell type. The results suggest that when GH secretion is more active the proportion of type I GH cell increased, and when GH secretion is less active the proportion of type II and type III cells increased. The type III GH cell may therefore be an immature type of GH cell, and the type I cell the mature type of GH cell. Type II cells may be intermediate between type I and III cells.  相似文献   

17.
18.
Summary The peroxidase anti-peroxidase immunocytochemical staining technique has been used to identify prolactin and growth hormone cells in pituitaries from fetal and neonatal sheep. The size of the secretory granules in these cell types has been measured using the image analysing computer Quantimet 720. The area size distributions of the fetal prolactin and growth hormone granules were compared with those in the neonate and the adult. It appears that the gestational age of the fetus may influence the size range of prolactin secretory granules.  相似文献   

19.
The aim of the present study was to evaluate the response of adrenocorticotropin ([ACTH]) and growth hormone ([GH]) concentrations to a typical aerobic swimming set during a training season. Nine top-level male endurance swimmers (age range 17–23 years) were tested during three training sessions occurring 6, 12 and 18 weeks after the beginning of the season. During each session, after a standard warm-up, the swimmers performed a training set of 15 × 200-m freestyle, with 20 s of rest between repetitions, at a predetermined individual speed. Blood samples were collected before warm-up and at the end of the training set. A few days before each session, the individual swimming velocity corresponding to the 4 mmol · l−1 blood lactate concentration (v 4) was assessed as a standard of aerobic performance. Aerobic training affected v 4 levels, which were highest 18 weeks after the beginning of the season; at the same time, while [ACTH] response was attenuated, [GH] response was enhanced. These results could be considered as adaptations to the exercise intensity. In our training programme, these adaptations seemed to have occurred between the 12th and 18th weeks of the training season. Accepted: 21 April 1998  相似文献   

20.
J L Barron  D H Coy  R P Millar 《Peptides》1985,6(3):575-577
Synthetic analogs of growth hormone-releasing hormone, GHRH(1-29)-NH2 and D-Ala2 GHRH(1-29)-NH2 were administered as a bolus intravenous injection to five normal men in a dose range of 0.015 to 0.5 micrograms/kg body weight. Vehicle only was administered in a control study. Peak responses to GHRH analogs occurred at 15 or 30 min. An increase in the integrated plasma growth hormone (GH) response was observed at each dose. The dose-response curve of GHRH(1-29)-NH2 indicated that it has a similar molar potency to GHRH(1-40) and GHRH(1-44). The potency of D-Ala2 GHRH(1-29)-NH2 was approximately twice that of GHRH(1-29)-NH2. Neither analog affected blood levels of PRL, TSH, LH, FSH, ACTH, insulin, glucagon, glucose, cortisol, free thyroxine, and free triiodothyronine. No side effects were noted other than transient flushing with the highest dose administered. The findings demonstrate GHRH(1-29)-NH2 and its D-Ala2 analog are potent stimulators of GH release and have potential application in clinical medicine.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号