首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Abstract: The effects of inhibitors of γ-aminobutyric acid (GABA) metabolism or uptake on GABA output from the cerebral cortex was studied by means of a collecting cup placed on the exposed cortex of rats anaesthetized with urethane. GABA was identified and quantified by a mass-fragmentographic method. Ethanolamine-O-sulphate (10−2 M ) applied directly on the cerebral cortex caused a long-lasting twofold increase in GABA output, whereas dl -2, 4-diaminobutyric acid (5 × 10−3 M ) caused a sevenfold increase and β -alanine was inactive. The results indicate that glial uptake has little effect on GABA inactivation in the cerebral cortex. The inhibition of neuronal uptake seems a more effective tool to increase GABA concentration in the synaptic cleft, and consequently also in GABA output, than the inhibition of GABA metabolism.  相似文献   

2.
The intracerebroventricular injection of pyridoxal phosphate (PLP, 0.125-1.25 μmol/rat) causes epileptic seizures (4 min → 1 min) that are preventable or reversible by GABA (1 μmol/rat), by muscimol (O.025 μmol/rat), or by diazepam (1.75 μmol/rat). At the peak of PLP-induced convulsions, the activities of GAD and GABA-T in 14 regions of rat brain remained unaltered, whereas the concentrations of PLP remained elevated. The PLP-induced convulsion was blocked by DABA (10 μmol/rat) but was not altered by β-alanine (50 μmol/rat). The previous in vitro studies have shown that PLP increases the uptake of [3H]GABA into synaptosomes and inhibits the binding of [3H]GABA to synaptic membranes. These data suggest that PLP-induced convulsion is due to reduced availability of GABA to its recognition sites, rather than to alteration in the activity of GABA metabolizing enzymes, or unavailability of PLP as a coenzyme for GAD and GABA-T. Since the duration of PLP-induced epileptic seizures is short and can be prevented by GABA agonists, PLP may be used as a tool to study the nature of GABA-mediated neuroinhibition and the properties of GABA receptor sites.  相似文献   

3.
The effects of muscimol and/or incubation temperature on the inhibition of [3H]flunitrazepam receptor binding by benzodiazepine receptor ligands were investigated. At 0 degree C muscimol decreased the Ki values for some ligands as displacers of [3H]flunitrazepam binding to brain-specific sites while increasing or having no effect on the Ki values for other ligands. The Ki values for some ligands are higher at 37 degrees C than at 0 degree C but are reduced by muscimol at both 0 degrees and 37 degrees C. In contrast, the ligands whose Ki values are increased by muscimol either decreased or did not alter the Ki values at 37 degrees C as compared to those at 0 degree C. Incubation of membranes at 37 degrees C for 30 min accelerated gamma-aminobutyric acid (GABA) release by 221% over that at 0 degree C. These results indicate that changes in incubation temperature alter benzodiazepine receptor affinity for ligands via GABA.  相似文献   

4.
Presence of γ-Aminobutyric Acid in Rat Ovary   总被引:6,自引:6,他引:0  
Abstract: As γ-aminobutyric acid (GABA) was first discovered as the free acid in the mammalian central nervous system, it has been assumed that GABA is generally to be found in significant amounts only in the brain, in spite of reports of its presence in a number of non-neuronal tissues. In this study, GABA was detected amongst the free amino acids in most rat tissues that were examined. The highest concentration outside the brain was in the ovary (0.59 μmol/g fresh tissue). It is concluded that the synthesis of the GABA is intragonadal and probably of metabolic importance.  相似文献   

5.
Neuronal growth cones isolated in bulk from neonatal rat forebrain have uptake and K(+)-stimulated release mechanisms for gamma-aminobutyric acid (GABA). Up to and including postnatal day 5, the K(+)-stimulated release of [3H]GABA and endogenous GABA is Ca2+ independent. At these ages, isolated growth cones neither contain synaptic vesicles nor stain for synaptic vesicle antigens. Here we examined the possibility that the release mechanism underlying Ca2(+)-independent GABA release from isolated growth cones is by reversal of the plasma membrane GABA transporter. The effects of two GABA transporter inhibitors, nipecotic acid and an analogue of nipecotic acid, SKF 89976-A, on K(+)-stimulated release of [3H]GABA from superfused growth cones were examined. Nipecotic acid both stimulated basal [3H]GABA release and enhanced K(+)-stimulated release of [3H]GABA, which indicates that this agent can stimulate GABA release and is, therefore, not a useful inhibitor with which to test the role of the GABA transporter in K(+)-stimulated GABA release from growth cones. In contrast, SKF 89976-A profoundly depressed both basal and K(+)-stimulated [3H]GABA release. This occurred at similar concentrations at which uptake was blocked. These observations provide evidence for a major role of the GABA transporter in GABA release from neuronal growth cones.  相似文献   

6.
Freeze-dried sections (14 microns thick) of retinal layers were prepared from mice with retinal degeneration (C3H strain) and control mice (C57BL strain). The weighed sections (2-30 ng dry weight) were analyzed using our microassay methods. In the control retina, gamma-aminobutyric acid (GABA) concentration and glutamate decarboxylase (GAD) activity, on a dry weight basis, increased from birth to 9 weeks of age and decreased slightly at 20 weeks. In the degenerated retina, the levels of GABA and GAD activity were higher at birth than in the control retina, and continued to increase until 20 weeks of age, at which time the GAD activity reached a markedly high level. This increase was found when the total GABA and GAD levels per retina were determined. In the normal retinal layers, GABA and GAD were confined primarily to the inner plexiform layer. In the degenerated retina, GAD activity gradually increased in the inner layers during postnatal development, but by 20 weeks the increase was most prominent in the inner part of inner nuclear layer and in the outer part of inner plexiform layer. GABA transaminase activity and its distribution were not much different in both normal and degenerated retinas during development.  相似文献   

7.
Abstract: It had previously been shown that dissociated cell cultures from chick embryo spinal cord have a high affinity uptake system for the neurotransmitter γ-aminobutyric acid (GABA) and make functional inhibitory synaptic contacts as determined by electrophysiology (Farb et al., 1979). It is shown here that these cultures can synthesize GABA from added glutamate in a glutamate decarboxylase-dependent reaction. Furthermore, these cultures have a functional GABA transaminase that degrades the neurotransmitter. This enzyme can be specifically and irreversibly blocked with gabaculine. A 15 min incubation with 10−6 M-gabaculine completely inactivates the enzyme. The inactivation of the enzyme leads to an increase in GABA levels. Long-term incubation (16 days) of gabaculine in the medium does not appear to alter high affinity GABA transport, suggesting that the drug is not toxic to cells capable of accumulating GABA.  相似文献   

8.
γ-Aminobutyric Acid Concentration in Cerebrospinal Fluid in Schizophrenia   总被引:3,自引:3,他引:0  
Abstract: γ-Aminobutyric acid (GABA) concentration was determined in cerebrospinal fluid (CSF) of acute and chronic schizophrenic patients, in persons with psycho-organic or personality disorders, and in nonpsychiatric controls. The mean CSF GABA level in the chronic schizophrenic patients was found to be significantly higher than in any of the other groups. No other statistically significant differences were found. Statistical analysis revealed that the elevated CSF GABA concentration in the chronic schizophrenic patients was unlikely to be caused by medication. These results are interpreted as evidence for possible primary or secondary GABAergic overactivity in the brain in chronic schizophrenia.  相似文献   

9.
Triethyllead (TEL), the active metabolite of tetraethyllead, was shown previously to inhibit selectively high-affinity Na+-dependent uptake of gamma-aminobutyric acid (GABA) into cerebrocortical synaptosomes. Such inhibition was not related to the Na+ gradient, Na+,K+-ATPase activity, [Cl-], or energy charge. We report here that TEL inhibits GABA binding to the presynaptic transporter involved in Na+-dependent uptake. Scatchard plot analysis of Na+-dependent [3H]GABA binding to a highly purified synaptic plasma membrane preparation revealed that 25 microM TEL reduced the Bmax by 44%, leaving the KD unchanged. This binding was reversible and predominantly involved membrane uptake sites, as characterized by pharmacological specificity to GABA ligands. Approximately 85% of specific GABA binding was considered membrane uptake site binding, as indicated by sensitivity to nipecotic acid and diaminobutyric acid, with relative insensitivity to muscimol, bicuculline methiodide, baclofen, and beta-alanine. With respect to previous data, these finding suggest that TEL inhibits Na+-sensitive high-affinity GABA uptake by interfering with GABA binding to its presynaptic transporter.  相似文献   

10.
Abstract Using a radioreceptor assay, the concentration of γ -aminobutyric acid (GABA) in human cerebrospinal fluid (CSF) was found to be elevated significantly following a single deep-freeze to –70°C and thaw. Mean CSF GABA (± SD) in unfrozen CSF was 173 ± 73 pmol/ml ( n = 24). After a single deep-freeze, the mean level was 243 ± 106 pmol/ml ( p < 0.02). Subsequent freeze-thaw cycles resulted in further irregular and unpredictable elevations in CSF GABA. Mean level after two freezes was 379 ± 125 pmol/ml and after three freezes 654 ± 411 pmol/ml. These changes could result in the incorrect interpretation of results in patients suffering from neurological diseases.  相似文献   

11.
The presence of gamma-hydroxybutyric acid (GHB) in synaptosome-enriched fractions of rat brain was ascertained using a GLC technique. The stability of GHB in synaptosomes was evaluated by addition of various gamma-aminobutyric acid (GABA) transaminase (GABA-T) inhibitors, GHB, or ethosuximide to the homogenizing medium. Furthermore, changes in whole brain GHB levels were compared with those in the synaptosomal fraction in animals treated with GABA-T inhibitors, GABA, or ethosuximide. GHB was present in synaptosome-enriched fractions in concentrations ranging from 40 to 70 pmol/mg of protein. There was no evidence for redistribution, leakage, or metabolism of GHB during the preparation of synaptosomes. The elevations of whole brain GHB level associated with GABA-T or ethosuximide treatment were reflected by a parallel increase in synaptosomal GHB content. These data add to the growing evidence that GHB may have neurotransmitter or neuromodulator function.  相似文献   

12.
The technique of estimating gamma-aminobutyric acid (GABA) turnover by inhibiting its major degrading enzyme GABA-T (4-aminobutyrate:2-oxoglutarate aminotransferase; EC 2.6.1.19) and measuring GABA accumulation has been used repeatedly, but, at least in rats, its usefulness has been limited by several difficulties, including marked differences in the degree of GABA-T inhibition in different brain regions after systemic injection of GABA-T inhibitors. In an attempt to improve this type of approach for measuring GABA turnover, the time course of GABA-T inhibition and accumulation of GABA in 12 regions of rat brain has been studied after systemic administration of aminooxyacetic acid (AOAA), injected at various doses and with different routes of administration. A total and rapidly occurring inhibition of GABA-T in all regions was obtained with intraperitoneal injection of 100 mg/kg AOAA, whereas after lower doses, marked regional differences in the degree of GABA-T inhibition were found, thus leading to underestimation of GABA synthesis rates, e.g., in substantia nigra. The activity of the GABA-synthesizing enzyme GAD (L-glutamate-1-decarboxylase; EC 4.1.1.15) was not reduced significantly at any time after intraperitoneal injection of AOAA, except for a small decrease in olfactory bulbs. Even the highest dose of AOAA tested (100 mg/kg) was not associated with toxicity in rats, but induced motor impairment, which was obviously related to the marked GABA accumulation found with this dose. The increase in GABA concentrations induced with intraperitoneal injection of 100 mg/kg AOAA was rapid in onset, allowing one to estimate GABA turnover rates from the initial rate of GABA accumulation, i.e., during the first 30 min after AOAA injection. GABA turnover rates thus determined were correlated in a highly significant fashion with the GAD activities determined in brain regions, with highest turnover rates measured in substantia nigra, hypothalamus, olfactory bulb, and tectum. Pretreatment of rats with diazepam, 5 mg/kg i.p., 5-30 min prior to AOAA, reduced the AOAA-induced GABA accumulation in all 12 regions examined, most probably as a result of potentiation of postsynaptic GABA function. The data indicate that AOAA is a valuable tool for regional GABA turnover studies in rats, provided the GABA-T inhibitor is administered in sufficiently high doses to obtain complete inhibition of GABA degradation.  相似文献   

13.
Abstract: The distributions of glutamate decarboxylase (EC 4.1.1.15), γ-aminobutyric acid transaminase (EC 2.6.1.19), and succinate semialdehyde dehydrogenase (EC 1.2.1.24) were determined in monkey retina. The decarboxylase was almost restricted to the inner plexiform layer. The transaminase was also highest in this layer, but activities were 40% as high in the adjacent third of the inner nuclear layer and in the ganglion cell and fiber layers. Succinate semialdehyde dehydrogenase was distributed very differently. Although it also showed a peak of activity in the inner plexiform layer, there was a second equal peak in the photoreceptor inner segment layer and a smaller peak in the outer plexiform layer, regions where both γ-aminobutyric acid transaminase and glutamate decarboxylase were essentially absent.  相似文献   

14.
gamma-Aminobutyric acid (GABA) concentrations in human CSF are known to increase significantly after hydrolysis; however, the source of this increase has been unknown. Using either ion-exchange or reverse-phase chromatography coupled with on-line alkaline hydrolysis, we have shown 2-pyrrolidinone, the lactam of GABA, to be present in insufficient quantity to account for this increase. Subsequent experiments involving fraction collection of column eluents followed by acid hydrolysis and rechromatography demonstrated the presence of several previously undetected GABA-containing compounds.  相似文献   

15.
Diazepam Increases γ-Aminobutyric Acid in Human Cerebrospinal Fluid   总被引:1,自引:0,他引:1  
In 11 neurological patients, levels of the inhibitory neurotransmitter gamma-aminobutyric acid (GABA) were determined in cerebrospinal fluid (CSF) before and 1, 3, 5, and 8 min after intravenous injection of diazepam (2 or 5 mg). GABA levels increased progressively after intravenous injection of 5 but not 2 mg of the benzodiazepine, the differences from preinjection values being significant at 3, 5, and 8 min. Furthermore, when relative CSF GABA alterations determined after injection of diazepam were compared to those determined in sequential CSF aliquots of 10 patients without diazepam injection, mean GABA increases after diazepam were significantly different from controls in all CSF fractions. The data suggest that, in addition to its well-known effects on postsynaptic GABA function, diazepam may exert effects on endogenous GABA concentrations and/or on GABA release in the human CNS as reflected by elevation of GABA levels in human CSF.  相似文献   

16.
Abstract: γ-Aminobutyric acid (GABA) is synthesized in brain in at least two compartments, commonly called the transmitter and metabolic compartments, and because reglatory processes must serve the physiologic function of each compartment, the regulation of GABA synthesis presents a complex problem. Brain contains at least two molecular forms of glutamate decarboxylase (GAD), the principal synthetic enzyme for GABA. Two forms, termed GAD65 and GAD67, are the products of two genes and differ in sequence, molecular weight, interaction with the cofactor, pyridoxal 5′-phosphate (pyridoxal-P), and level of expression among brain regions. GAD65 appears to be localized in nerve terminals to a greater degree than GAD67, which appears to be more uniformly distributed throughout the cell. The interaction of GAD with pyridoxal-P is a major factor in the short-term regulation of GAD activity. At least 50% of GAD is present in brain as apoenzyme (GAD without bound cofactor; apoGAD), which serves as a reservoir of inactive GAD that can be drawn on when additional GABA synthesis is needed. A substantial majority of apoGAD in brain is accounted for by GAD65, but GAD67 also contributes to the pool of apoGAD. The apparent localization of GAD65 in nerve terminals and the large reserve of apo-GAD65 suggest that GAD65 is specialized to respond to short-term changes in demand for transmitter GABA. The levels of apoGAD and the holoenzyme of GAD (holoGAD) are controlled by a cycle of reactions that is regulated by physiologically relevant concentrations of ATP and other polyanions and by inorganic phosphate, and it appears possible that GAD activity is linked to neuronal activity through energy metabolism. GAD is not saturated by glutamate in synaptosomes or cortical slices, but there is no evidence that GABA synthesis in vivo is regulated physiologically by the availability of glutamate. GABA competitively inhibits GAD and converts holo- to apoGAD, but it is not clear if intracellular GABA levels are high enough to regulate GAD. There is no evidence of short-term regulation by second messengers. The syntheses of GAD65 and GAD67 proteins are regulated separately. GAD67 regulation is complex; it not only is present as apoGAD67, but the expression of GAD67 protein is regulated by two mechanisms: (a) by control of mRNA levels and (b) at the level of translation or protein stability. The latter mechanism appears to be mediated by intracellular GABA levels.  相似文献   

17.
Uptake of γ-Aminobutyric Acid by Brain Tissue Preparations: A Reevaluation   总被引:1,自引:3,他引:1  
The kinetic constants Km and Vmax for the uptake of gamma-aminobutyric acid (GABA) by various preparations from rat cerebral cortex were determined by means of Eadie-Hofstee plots and computer analysis. The Km values were much greater in 0.1-mm slices than in synaptosomal preparations, and the Km value increased further with the thickness of the slices. The apparent high Km values in slices were probably due to depletion of the GABA concentration in the extracellular fluid as the exogenous GABA ran the gauntlet of competing uptake sites on its way to sites deep within the slice, thereby bringing about a requirement for higher GABA concentrations in the incubation medium in order to maintain the internal GABA levels at the "Km level." Evidence was obtained for three GABA uptake systems with Km values (in synaptosomes) of 1.1 microM, 43 microM, and 3.9 mM, respectively. In contrast, only two uptake systems for D-aspartate were detected, with Km values of 1.8 microM and 1.8 mM, respectively. The implications of the findings in the study with respect to previous data in the literature are discussed.  相似文献   

18.
A mass fragmentographic method for the simultaneous quantification of gamma-aminobutyric acid (GABA) and glutamic acid is described. In a convenient one-step reaction, the two amino acids were derivatized with pentafluoropropionic anhydride and pentafluoropropanol. The derivatization products were stable for several days. The technique has been applied to the assay of GABA and Glu in five amygdaloid nuclei of the rat brain. The GABA level was high in the central and medial nuclei, whereas the Glu level was high in the lateral and basal nuclei. The regional distribution of GABA was different from that of Glu within the amygdaloid nuclei.  相似文献   

19.
Early iron deficiency in rat does not affect the weight or the protein, DNA, and RNA content but results in a slight reduction in gamma-aminobutyric acid (GABA) (13%, p less than 0.01) and glutamic acid (20%, p less than 0.001) content of the brain. The activities of the two GABA shunt enzymes, glutamate dehydrogenase and GABA-transaminase, and of the NAD+-linked isocitrate dehydrogenase (ICDH) were inhibited whereas the glutamic acid decarboxylase, mitochondrial NADP+-linked ICDH, and succinic dehydrogenase activities remained unaltered in brain. On rehabilitation with the iron-supplemented diet for 1 week, these decreased enzyme activities in brain attained the corresponding control values. However, the hepatic nonheme iron content increased to about 80% of the control, after rehabilitation for 2 weeks. A prolonged iron deficiency resulting in decreased levels of glutamate and GABA may lead to endocrinological, neurological, and behavioral alterations.  相似文献   

20.
The effects of gamma-aminobutyric acid (GABA) on the release of [3H]acetylcholine ([3H]ACh) were studied in synaptosomes prepared from rat hippocampus, cerebral cortex, hypothalamus, and striatum and prelabelled with [3H]choline. When synaptosomes were exposed in superfusion to exogenous GABA (0.01-0.3 mM) the basal release of newly synthesized [3H]ACh was increased in a concentration-dependent way in hippocampus, cortex, and hypothalamus nerve endings. In contrast, the release of [3H]ACh was not significantly affected by GABA in striatal synaptosomes. The effect of GABA was not antagonized significantly by bicuculline or picrotoxin. Muscimol caused only a slight not significant increase of [3H]ACh release when tested at 0.3 mM whereas, at this concentration, (-)-baclofen was totally inactive. The GABA-induced release of [3H]ACh was counteracted by SKF 89976A, SKF 100561, and SKF 100330A, three strong and selective GABA uptake inhibitors. The data suggest that, in selective areas of the rat brain, GABA causes release of [3H]ACh following penetration into cholinergic nerve terminals through a GABA transport system.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号