首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
J. Rydstrm  J.B. Hoek  L. Ernster 《BBA》1973,305(3):694-698
The oxidation of NADPH catalyzed by submitochondrial particles from beef heart in the absence and presence of NAD+ has been investigated. The data confirm earlier findings in this laboratory concerning the occurrence of an NADPH dehydrogenase with 2,6-dichlorophenolindophenol as the electron acceptor. This reaction is highly sensitive to palmityl-CoA, a feature further substantiating its possible relationship to nicotinamide nucleotide transhydrogenase. The particles also catalyzed a very low NADPH oxidase activity which probably proceeds via NADH dehydrogenase and is unrelated to transhydrogenase.  相似文献   

2.
A pH-titration 2D NMR study of Escherichia coli transhydrogenase domain III with bound NADP(+) or NADPH has been carried out, in which the pH was varied between 5.4 and 12. In this analysis, individual amide protons served as reporter groups. The apparent pK(a) values of the amide protons, determined from the pH-dependent chemical shift changes, were attributed to actual pK(a) values for several titrating residues in the protein. The essential Asp392 is shown to be protonated at neutral pH in both the NADP(+) and NADPH forms of domain III, but with a marked difference in pK(a) not only attributable to the charge difference between the substrates. Titrating residues found in loop D/alpha5 point to a conformational difference of these structural elements that is redox-dependent, but not pH dependent. The observed apparent pK(a) values of these residues are discussed in relation to the crystal structure of Rhodospirillum rubrum domain III, the solution structure of E. coli domain III and the mechanism of intact proton-translocating transhydrogenase.  相似文献   

3.
Mitochondria isolated from potato (Solanum tuberosum L.) tuber were investigated for the presence of a nicotinamide nucleotide transhydrogenase activity. Submitochondrial particles derived from these mitochondria by sonication catalyzed a reduction of NAD+ or 3-acetylpyridine-NAD+ by NADPH, which showed a maximum of about 50 to 150 nanomoles/minute·milligram protein at pH 5 to 6. The Km values for 3-acetylpyridine-NAD+ and NADPH were about 24 and 55 micromolar, respectively. Intact mitochondria showed a negligible activity in the absence of detergents. However, in the presence of detergents the specific activity approached about 30% of that seen with submitochondrial particles. The potato mitochondria transhydrogenase activity was sensitive to trypsin and phenylarsine oxide, both agents that are known to inhibit the mammalian transhydrogenase. Antibodies raised against rat liver transhydrogenase crossreacted with two peptides in potato tuber mitochondrial membranes with a molecular mass of 100 to 115 kilodaltons. The observed transhydrogenase activities may be due to an unspecific activity of dehydrogenases and/or to a genuine transhydrogenase. The activity contributions by NADH dehydrogenases and transhydrogenase to the total transhydrogenase activity were investigated by determining their relative sensitivities to trypsin. It is concluded that, at high or neutral pH, the observed transhydrogenase activity in potato tuber submitochondrial particles is due to the presence of a genuine and specific high molecular weight transhydrogenase. At low pH an unspecific reaction of an NADH dehydrogenase with NADPH contributes to the total trans-hydrogenase activity.  相似文献   

4.
Adrenal cortex mitochondria prepared by a standard method do not exhibit malic enzyme activity. Addition of physiological concentrations of Ca2+ and Mg2+ enables these mitochondria to reduce added NADP+ by malate to form free NADPH. Half-maximum activation of the mitochondrial malic enzyme requires 0.3 mM Ca2+ and 1 mM Mg2+. Solubilized mitochondrial malic enzymes is independent of Ca2+ and has a K M of 0.2 mM for Mg2+. The Ca2+ effect is dependent on an initial period of active Ca2+ uptake which also causes other changes in respiratory properties similar to those observed with mitochondria from other tissues. After Ca2+ accumulation has taken place, free Ca2+, but not additional accumulation, is still required for malic enzyme activity. The requirement for Mg2+ can be met by Mn2+ (1 mM). This concentration of Mn2+ alone yielded only a slight activation of mitochondrial malic enzyme while higher concentrations of Mn2+ alone gave good activation of the mitochondrial malic enzy.e The NADPH generated by the Ca2+-Mg2+ activated malic enzyme effectively supports the 11beta-hydroxylation of deoxycorticosterone, whereas in the presence of malate, or malate plus Mg2+ but absence of Ca2+, the energy linked transhydrogenase supplies all the required NADPH. The activated malic enzyme appears to be more efficient than transhydrogenase in generating NADPH to support 11beta-hydroxylation. Cyanide and azide have been found to inhibit solubilized mitochondrial malic enzyme.  相似文献   

5.
The interaction between pure transhydrogenase and ATPase (Complex V) from beef heart mitochondria was investigated with transhydrogenase-ATPase vesicles in which the two proteins were co-reconstituted by dialysis or dilution procedures. In addition to phosphatidylcholine and phosphatidylethanolamine, reconstitution required phosphatidylserine and lysophosphatidylcholine. Transhydrogenase-ATPase vesicles catalyzed a 20-30-fold stimulation of the reduction of NADP+ or thio-NADP+ by NADH and a 70-fold shift of the apparent equilibrium expressed as the nicotinamide nucleotide ratio [NADPH][NAD+]/[NADP+][NADH]. In both of these respects, the transhydrogenase-ATPase vesicles were severalfold more efficient than beef heart submitochondrial particles. By measuring the ATP-driven transhydrogenase and the oligomycin-sensitive ATPase activities simultaneously and under the same conditions at low ATP concentrations, i.e. below 15 microM, the ATP-driven transhydrogenase/oligomycin-sensitive ATPase activity ratio was found to be about 3. This value is consistent with the stoichiometries of three protons translocated per ATP hydrolyzed and one proton translocated per NADPH formed and with a mechanism where the two enzymes interact through a delocalized proton-motive force.  相似文献   

6.
The nicotinamide nucleotide transhydrogenase of Escherichia coli has been purified from cytoplasmic membranes by pre-extraction of the membranes with sodium cholate and Triton X-100, solubilization of the enzyme with sodium deoxycholate in the presence of 1 M potassium chloride, and centrifugation through a 1.1 M sucrose solution. The purified enzyme consists of two subunits, alpha and beta, of apparent Mr 50000 and 47000. During transhydrogenation between NADPH and 3-acetylpyridine adenine dinucleotide by both the purified enzyme reconstituted into liposomes and the membrane-bound enzyme, a pH gradient is established across the membrane as indicated by the quenching of the fluorescence of 9-aminoacridine. Treatment of transhydrogenase with N,N'-dicyclohexylcarbodiimide results in an inhibition of proton pump activity and transhydrogenation, suggesting that proton translocation and catalytic activities are obligatory linked. NADH protected the enzyme against inhibition by N,N'-dicyclohexylcarbodiimide, while NADP, and to a lesser extent NADPH, appeared to increase the rate of inhibition. [14C]Dicyclohexylcarbodiimide preferentially labelled the 50000-Mr subunit of the transhydrogenase enzyme. The presence of an allosteric binding site which reacts with NADH, but not with reduced 3-acetylpyridine adenine dinucleotide, has been demonstrated.  相似文献   

7.
J.B. Hoek  L. Ernster  E.J. De Haan  J.M. Tager 《BBA》1974,333(3):546-559
1. The kinetics of oxidation of intramitochondrial reduced nicotinamide nucleotides by -oxoglutarate plus ammonia in intact rat-liver mitochondria have been reinvestigated. It is demonstrated that the preferential oxidation of NADPH observed on addition of ammonia to mitochondria, preincubated under energized conditions in the presence of -oxoglutarate, is due to a transhydrogenation catalysed by glutamate dehydrogenase rather than to an energy-dependent modification of the nicotinamide nucleotide specificity of the enzyme in intact mitochondria.

2. When mitochondria are preincubated at 25 °C under energized conditions in the presence of respiratory inhibitors with the substrates of glutamate dehydrogenase, an oxidation of NADPH, but not of NADH, is brought about by decreasing the reaction temperature. Both the rate of NADPH oxidation and the final steady-state mass-action ratio of nicotinamide nucleotides are dependent on the concentration of ammonia and on the final reaction temperature. A similar effect is observed when rhein is added to the reaction medium at 25 °C in order to inhibit the energy-linked transhydrogenase reaction.

3. In the presence of the substrates of glutamate dehydrogenase, intact ratliver mitochondria catalyse an ATPase reaction due to the simultaneous activity of the energy-linked transhydrogenase and the non-energy-linked transhydrogenation catalysed by glutamate dehydrogenase.

4. These findings are discussed in relation to the nicotinamide nucleotide specificity of glutamate dehydrogenase and to a possible compartmentation of nicotinamide nucleotides in intact rat-liver mitochondria.  相似文献   


8.
Kinetic measurements indicate that the energy-independent transhydrogenation of 3-acetylpyridine-NAD+ by NADPH in membranes of Escherichia coli follows a rapid equilibrium random bireactant mechanism. Each substrate, although reacting preferentially with its own binding site, is able to interact with the binding site of the other substrate to cause inhibition of enzyme activity. 5'-AMP (and ADP) and 2'-AMP interact with the NAD+- and NADP+-binding sites, respectively. Phenylglyoxal and 2,3-butanedione in borate buffer inhibit transhydrogenase activity presumably by reacting with arginyl residues. Protection against inhibition by 2,3-butanedione is afforded by NADP+, NAD+, and high concentrations of NADPH and NADH. Low concentrations of NADPH and NADH increase the rate of inhibition by 2,3-butanedione. Similar effects are observed for the inactivation of the transhydrogenase by tryptic digestion in the presence of these coenzymes. It is concluded that there are at least two conformations of the active site of the transhydrogenase which differ in the extent to which arginyl residues are accessible to exogenous agents such as trypsin and 2,3-butanedione. One conformation is induced by low concentrations of NADH and NADPH. Under these conditions the coenzymes could be reacting at the active site or at an allosteric site. The stimulation of transhydrogenase activity by low concentrations of the NADH is consistent with the latter possibility.  相似文献   

9.
Pyridine dinucleotide transhydrogenase of the Rhodospirillum rubrum chromatophore membrane was readily resolved by a washing procedure into two inactive components, a soluble transhydrogenase factor protein and an insoluble membrane-bound factor. Transhydrogenation was reconstituted on reassociation of these components. The capacity of the membrane factor to reconstitute enzymatic activity was lost after proteolysis of soluble transhydrogenase factor-depleted membranes with trypsin. NADP+ or NADPH, but neither NAD+ nor NADH, stimulated by several fold the rate of trypsin-dependent inactivation of the membrane factor. Substantial protection of the membrane factor from proteolytic inactivation was observed in the presence of Mg2+ ions, an inhibitor of transhydrogenation, or when the soluble transhydrogenase factor was bound to the membrane. Coincident with the loss of enzymatic reconstitutive capacity of the membrane factor was a loss in the ability of the membranes to bind the soluble transhydrogenase factor in a stable complex. The membrane component was inactivated by preincubating soluble transhydrogenase factor-depleted membranes at temperatures above 45 degrees. NADP+, NADPH, or Mg2+ ions, but neither NAD+ nor NADH, protected against inactivation. These studies indicate that (a) the binding of NADP+ or NADPH to the membrane factor promotes a conformational alteration in the protein such that its themostability and susceptibility to proteolysis are increased, and (b) the inhibitory Mg2+ ion-binding site resides in the membrane component.  相似文献   

10.
Treatment of submitochondrial particles (ETP) with trypsin at 0 degrees destroyed NADPH leads to NAD (or 3-acetylpyridine adenine dinucleotide, AcPyAD) transhydrogenase activity. NADH oxidase activity was unaffected; NADPH oxidase and NADH leads to AcPyAD transhydrogenase activities were diminished by less than 10%. When ETP was incubated with trypsin at 30 degrees, NADPH leads to NAD transhydrogenase activity was rapidly lost, NADPH oxidase activity was slowly destroyed, but NADH oxidase activity remained intact. The reduction pattern by NADPH, NADPH + NAD, and NADH of chromophores absorbing at 475 minus 510 nm (flavin and iron-sulfur centers) in complex I (NADH-ubiquinone reductase) or ETP treated with trypsin at 0 degrees also indicated specific destruction of transhydrogenase activity. The sensitivity of the NADPH leads to NAD transhydrogenase reaction to trypsin suggested the involvement of susceptible arginyl residues in the enzyme. Arginyl residues are considered to be positively charged binding sites for anionic substrates and ligands in many enzymes. Treatment of ETP with the specific arginine-binding reagent, butanedione, inhibited transhydrogenation from NADPH leads to NAD (or AcPyAD). It had no effect on NADH oxidation, and inhibited NADPH oxidation and NADH leads to AcPyAD transhydrogenation by only 10 to 15% even after 30 to 60 min incubation of ETP with butanedione. The inhibition of NADPH leads to NAD transhydrogenation was diminished considerably when butanedione was added to ETP in the presence of NAD or NADP. When both NAD and NADP were present, the butanedione effect was completely abolished, thus suggesting the possible presence of arginyl residues at the nucleotide binding site of the NADPH leads to NAD transhydrogenase enzyme. Under conditions that transhydrogenation from NADPH to NAD was completely inhibited by trypsin or butanedione, NADPH oxidation rate was larger than or equal to 220 nmol min-1 mg-1 ETP protein at pH 6.0 and 30 degrees. The above results establish that in the respiratory chain of beef-heart mitochondria NADH oxidation, NADPH oxidation, and NADPH leads to NAD transhydrogenation are independent reactions.  相似文献   

11.
The marine bacterium, Beneckea natriegens, which has previously been reported not to form transhydrogenase, has been shown to synthesize a soluble energy-independent transhydrogenase (NADPH:NADP+ oxidoreductase, EC 1.6.1.1), though no energy-linked activity could be detected. The transhydrogenase is induced maximally in stationary phase cells and its formation is 70-90% repressed by raising the medium phosphate level from 0.33 to 3.3 mM. The enzyme is inhibited by arsenate, inorganic ortho- and pyrophosphate and by a range of organic phosphate-containing compounds, including 2'-AMP, which is an activator of several bacterial transhydrogenases.  相似文献   

12.
ATP and respiration (NADH)-driven NAD(P)+ transhydrogenase (EC 1.6.1.1) activities are low in membranes from Escherichia coli cultured on yeast extract medium (17 and 21 nmol/min × mg) but high on glucose (82 and 142 nmol/min × mg). The ATPase and respiratory activities in both cases appeared comparable. Growth of the bacteria in yeast extract medium followed by washing and replacement into a glucose medium showed that after 3 h the energy-linked and energy-independent NAD(P)+ transhydrogenase (reduction of acetylpyridine NAD+ by NADPH) activities had appeared simultaneously. Incorporation of chloramphenicol or omission of glucose in the induction medium resulted in no increase in these activities indicating that de novo protein synthesis is required for the induction of energy-linked and -independent NAD(P)+ transhydrogenase. It was found that the Km values for acetylpyridine NAD+ and NADPH for the energy-independent reaction in membranes from glucose grown cells (143 and 62 μm) were similar to those in membranes from cells grown on glucose-yeast extract (135 and 45 μm), respectively, but the maximum velocity at infinite acetyl pyridine NAD+ and NADPH increased from 353 to 2175 nmol/min × mg. Furthermore, the membrane-bound NAD(P)+ transhydrogenase in glucose-yeast extract grown cells showed substrate inhibition at high NADPH and low acetyl pyridine NAD+ levels. Further kinetic data demonstrate that the mechanism of the energy-independent NAD(P)+ transhydrogenase in E. coli is similar to that of the mitochondrial enzyme and exhibits similar responses to competitive inhibitors at the NAD+ and NADPH sites.  相似文献   

13.
Purified nicotinamide-nucleotide transhydrogenase from beef heart mitochondria was co-reconstituted with bacteriorhodopsin to from transhydrogenase-bacteriorhodopsin vesicles that catalyze a 20-fold light-dependent and uncoupler-sensitive stimulation of the reduction of NADP+ and NADP+ analogs by NADH and a 50-fold shift of the nicotinamide nucleotide ratio. In the presence of light, the transhydrogenase-bacteriorhodopsin vesicles catalyzed a pronounced light intensity-dependent inward proton pumping as indicated by a pH shift of the medium. As indicated by pH shifts, proton pumping by the bacteriorhodopsin essentially paralleled the light-driven transhydrogenase. Addition of valinomycin increased the pH shift twice with a concomitant 50% inhibition of the light-driven transhydrogenase, whereas nigericin inhibited the pH shift completely and the light-driven transhydrogenase partially. Taken together, these results suggest that transhydrogenase and bacteriorhodopsin interact through a delocalized proton-motive force. Possible partial reactions of transhydrogenase were investigated with transhydrogenase-bacteriorhodopsin vesicles energized by light. Reduction of oxidized 3-acetylpyridine adenine dinucleotide by NADH, previously claimed to represent partial reactions, was found to require NADPH. Similarly, reduction of thio-NADP+ by NADPH required NADH. It is concluded that these reactions do not represent partial reactions.  相似文献   

14.
1. Inhibition of endogenous microsomal NADPH oxidase by CO enables membrane-bound glutathione-insulin transhydrogenase (EC 1.8.4.2) to be assayed conveniently by a linked assay involving NADPH and glutathione reductase (EC 1.6.4.2). 2. The specific activity of the enzyme in rat liver microsomal preparations is of the order of 1 nmol of oxidized glutathione formed/min per mg of membrane protein. 3. The specific activity of the enzyme is comparable in rough and smooth microsomal fractions, and the activity is not affected by treatment with EDTA and the removal of ribosomes from rough microsomal fractions. 4. Membrane-bound glutathione-insulin transhydrogenase is not affected by concentrations of deoxycholate up to 0.5%, whereas protein disulphide-isomerase (EC 5.3.4.1) is drastically inhibited. 5. On these grounds it is concluded that, in rat liver microsomal fractions, glutathione-insulin transhydrogenase and protein disulphide-isomerase activities are not both catalysed by a single enzyme species.  相似文献   

15.
The mitochondrial nicotinamide nucleotide transhydrogenase catalyzes hydride ion transfer between NAD(H) and NADP(H) in a reaction that is coupled to proton translocation across the inner mitochondrial membrane. The enzyme (1043 residues) is composed of an N-terminal hydrophilic segment (approximately 400 residues long) which binds NAD(H), a C-terminal hydrophilic segment (approximately 200 residues long) which binds NADP(H), and a central hydrophobic segment (approximately 400 residues long) which appears to form about 14 membrane-intercalating clusters of approximately 20 residues each. Substrate modulation of transhydrogenase conformation appears to be intimately associated with its mechanism of proton translocation. Using trypsin as a probe of enzyme conformation change, we have shown that NADPH (and to a much lesser extent NADP) binding alters transhydrogenase conformation, resulting in increased susceptibility of several bonds to tryptic hydrolysis. NADH and NAD had little or no effect, and the NADPH concentration for half-maximal enhancement of trypsin sensitivity of transhydrogenase activity (35 microM) was close to the Km of the enzyme for NADPH. The NADPH-promoted trypsin cleavage sites were located 200-400 residues distant from the NADP(H) binding domain near the C-terminus. For example, NADPH binding greatly increased the trypsin sensitivity of the K410-T411 bond, which is separated from the NADP(H) binding domain by the 400-residue-long membrane-intercalating segment. It also enhanced the tryptic cleavage of the R602-L603 bond, which is located within the central hydrophobic segment. These results, which suggest a protein conformation change as a result of NADPH binding, have been discussed in relation to the mechanism of proton translocation by the transhydrogenase.  相似文献   

16.
L-Valine can be formed successfully using C. glutamicum strains missing an active pyruvate dehydrogenase enzyme complex (PDHC). Wild-type C. glutamicum and four PDHC-deficient strains were compared by (13)C metabolic flux analysis, especially focusing on the split ratio between glycolysis and the pentose phosphate pathway (PPP). Compared to the wild type, showing a carbon flux of 69% ± 14% through the PPP, a strong increase in the PPP flux was observed in PDHC-deficient strains with a maximum of 113% ± 22%. The shift in the split ratio can be explained by an increased demand of NADPH for l-valine formation. In accordance, the introduction of the Escherichia coli transhydrogenase PntAB, catalyzing the reversible conversion of NADH to NADPH, into an L-valine-producing C. glutamicum strain caused the PPP flux to decrease to 57% ± 6%, which is below the wild-type split ratio. Hence, transhydrogenase activity offers an alternative perspective for sufficient NADPH supply, which is relevant for most amino acid production systems. Moreover, as demonstrated for L-valine, this bypass leads to a significant increase of product yield due to a concurrent reduction in carbon dioxide formation via the PPP.  相似文献   

17.
The effect of glutathione, glutathione disulfide and the dithiol reagent phenylarsine oxide on purified soluble as well as reconstituted mitochondrial nicotinamide nucleotide transhydrogenase from beef heart was investigated. Glutathione disulfide and phenylarsine oxide caused an inhibition of transhydrogenase, the extent of which was dependent on the presence of either of the transhydrogenase substrates. In the absence of NADPH glutathione protected partially against inactivation by glutathione disulfide and phenylarsine oxide. In the presence of NADPH glutathione also inhibited transhydrogenase. Reconstituted transhydrogenase vesicles behaved differently as compared to the soluble transhydrogenase and was partially uncoupled by GSSG. It is concluded that transhydrogenase contains a dithiol that is essential for catalysis as well as for proton translocation.  相似文献   

18.
We studied the physiological effect of the interconversion between the NAD(H) and NADP(H) coenzyme systems in recombinant Saccharomyces cerevisiae expressing the membrane-bound transhydrogenase from Escherichia coli. Our objective was to determine if the membrane-bound transhydrogenase could work in reoxidation of NADH to NAD+ in S. cerevisiae and thereby reduce glycerol formation during anaerobic fermentation. Membranes isolated from the recombinant strains exhibited reduction of 3-acetylpyridine-NAD+ by NADPH and by NADH in the presence of NADP+, which demonstrated that an active enzyme was present. Unlike the situation in E. coli, however, most of the transhydrogenase activity was not present in the yeast plasma membrane; rather, the enzyme appeared to remain localized in the membrane of the endoplasmic reticulum. During anaerobic glucose fermentation we observed an increase in the formation of 2-oxoglutarate, glycerol, and acetic acid in a strain expressing a high level of transhydrogenase, which indicated that increased NADPH consumption and NADH production occurred. The intracellular concentrations of NADH, NAD+, NADPH, and NADP+ were measured in cells expressing transhydrogenase. The reduction of the NADPH pool indicated that the transhydrogenase transferred reducing equivalents from NADPH to NAD+.  相似文献   

19.
20.
The presence of a glutathione-dependent pathway for formaldehyde oxidation in the facultative phototroph Rhodobacter sphaeroides has allowed the identification of gene products that contribute to formaldehyde metabolism. Mutants lacking the glutathione-dependent formaldehyde dehydrogenase (GSH-FDH) are sensitive to metabolic sources of formaldehyde, like methanol. This growth phenotype is correlated with a defect in formaldehyde oxidation. Additional methanol-sensitive mutants were isolated that contained Tn5 insertions in pntA, which encodes the alpha subunit of the membrane-bound pyridine nucleotide transhydrogenase. Mutants lacking transhydrogenase activity have phenotypic and physiological characteristics that are different from those that lack GSH-FDH activity. For example, cells lacking transhydrogenase activity can utilize methanol as a sole carbon source in the absence of oxygen and do not display a formaldehyde oxidation defect, as determined by whole-cell (13)C-nuclear magnetic resonance. Since transhydrogenase can be a major source of NADPH, loss of this enzyme could result in a requirement for another source for this compound. Evidence supporting this hypothesis includes increased specific activities of other NADPH-producing enzymes and the finding that glucose utilization by the Entner-Doudoroff pathway restores aerobic methanol resistance to cells lacking transhydrogenase activity. Mutants lacking transhydrogenase activity also have higher levels of glutathione disulfide under aerobic conditions, so it is consistent that this strain has increased sensitivity to oxidative stress agents like diamide, which are known to alter the oxidation reduction state of the glutathione pool. A model will be presented to explain the role of transhydrogenase under aerobic conditions when cells need glutathione both for GSH-FDH activity and to repair oxidatively damaged proteins.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号