首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 8 毫秒
1.
The details of how high density lipoprotein (HDL) microstructure affects the conformation and net charge of apolipoprotein (apo) A-I in various classes of HDL particles have been investigated in homogeneous recombinant HDL (rHDL) particles containing apoA-I, palmitoyl-oleoyl phosphatidylcholine (POPC) and cholesteryl oleate. Isothermal denaturation with guanidine HCl was used to monitor alpha-helix structural stability, whereas electrokinetic analyses and circular dichroism were used to determine particle charge and apoA-I secondary structure, respectively. Electrokinetic analyses show that at pH 8.6 apoA-I has a net negative charge on discoidal (POPC.apoA-I) particles (-5.2 electronic units/mol of apoA-I) which is significantly greater than that of apoA-I either free in solution or on spherical (POPC.cholesteryl oleate.apoA-I) rHDL (approximately -3.5 electronic units). Raising the POPC content (32-128 mol/ml of apoA-I) of discoidal particles 1) increases the particle major diameter from 9.3 to 12.1 nm, 2) increases the alpha-helix content from 62 to 77%, and 3) stabilizes the helical segments by increasing the free energy of unfolding (delta GD degree) from 1.4 to 3.0 kcal/mol of apoA-I. Raising the POPC content (28-58 mol/mol of apoA-I) of spherical particles 1) increases the particle diameter from 7.4 to 12.6 nm, 2) increases the percent alpha-helix from 62 to 69%, and 3) has no significant effect on delta GD degree (2.2 kcal/mol of apoA-I). This study shows that different HDL subspecies maintain particular apoA-I conformations that confer unique charge and structural characteristics on the particles. It is likely that the charge and conformation of apoA-I are critical molecular properties that modulate the metabolism of HDL particles and influence their role in cholesterol transport.  相似文献   

2.
Klon AE  Segrest JP  Harvey SC 《Biochemistry》2002,41(36):10895-10905
We have constructed a series of models for apolipoprotein A-I (apo A-I) bound to discoidal high-density lipoprotein (HDL) particles, based upon the molecular belt model [Segrest, J. P., et al. (1999) J. Biol. Chem. 274, 31755-31758] and helical hairpin models [Rogers, D. P., et al. (1998) Biochemistry 37, 11714-11725], and compared these with picket fence models [Phillips, J. C., et al. (1997) Biophys. J. 73, 2337-2346]. Molecular belt models for discoidal HDL particles with differing diameters are presented, illustrating that the belt model can explain the discrete changes in HDL particle size observed experimentally. Hairpin models are discussed for the binding of apo A-I to discoidal HDL particles with diameters identical to those for the molecular belt model. Two models are presented for the binding of three monomers of apo A-I to a 150 A diameter discoidal HDL particle. In one model, two monomers of apo A-I bind to the exterior of the HDL particle in an antiparallel belt, with a third monomer of apo A-I bound to the disk in a hairpin conformation. In the second model, all three monomers of apo A-I are bound to the discoidal HDL particle in a hairpin conformation. Previously published experimental data for each model are reviewed, with FRET favoring either the belt or hairpin models over the picket fence models for HDL particles with diameters of 105 A. Naturally occurring mutations appear to favor the belt model for the 105 A particles, while the 150 A HDL particles favor the presence of at least one hairpin.  相似文献   

3.
Structure and function of apolipoprotein A-I and high-density lipoprotein   总被引:6,自引:0,他引:6  
Structural biology and molecular modeling have provided intriguing insights into the atomic details of the lipid-associated structure of the major protein component of HDL, apo A-I. For the first time, an atomic resolution map is available for future studies of the molecular interactions of HDL in such biological processes as ABC1-regulated HDL assembly, LCAT activation, receptor binding, reverse lipid transport and HDL heterogeneity. Within the context of this paradigm, the current review summarizes the state of HDL research.  相似文献   

4.
The interaction of HDL2b, a major subclass (d = 1.063 - 1.100 g/ml) of human plasma high-density lipoproteins, with discoidal complexes composed of dimyristoylphosphatidylcholine (DMPC) and apolipoprotein A-I (weight ratio, DMPC/apolipoprotein A-I (2.1 - 2.5:1); dimensions, 10.0 x 4.4 nm) was investigated. Incubation at 37 degrees C for 4.5 h of HDL2b with discoidal complexes resulted in a transfer of DMPC from the discoidal complexes to the HDL2b, a release of lipid-free apolipoprotein A-I from the discoidal complexes during such transfer, and a dissociation of some apolipoprotein A-I from the HDL2b surface. The number of discoidal complexes degraded during interaction with HDL2b depended on the initial molar ratio of HDL2b to discoidal complexes. Approximately one molecule of HDL2b was required for the degradation of one discoidal complex particle, and the degradation process appeared limited by the capacity of the HDL2b for uptake of DMPC. Degradation of discoidal complexes was also observed when human plasma LDL (d = 1.006-1.063 g/ml) was substituted for HDL2b in the interaction mixture.  相似文献   

5.
Apolipoprotein J (apoJ) defines a heterogeneous subclass of human plasma high-density lipoproteins (HDL) having a bimodal distribution of molecular mass of 70-90 kDa (approximately 50%) and 200 kDa or larger (approximately 50%). ApoJ-HDL are unstable in stored plasma, and must be evaluated within 24 h. All apoJ-HDL in freshly obtained plasma have alpha 2 electrophoretic mobility and are distinct from a minor subpopulation of apoAI-HDL which electrophorese in the pre beta region. Although apoAI is not associated with the majority of plasma apoJ-HDL, a small fraction of these particles also containing apoAI. There is little variation in the apoJ/apoAI mole ratio of apoJ-HDL immunoaffinity purified from the same individual on different days. In addition, there is a constant ratio among individuals, assessed for five volunteers, of 4.9 +/- 0.6. Purified apoJ added directly to apoJ-depleted plasma can interact with apoAI or with apoAI-containing lipoproteins, as evidenced by the association of apoAI with apoJ that is reisolated by immunoaffinity chromatography. The amount of apoAI associated with apoJ increases linearly with increasing amount of apoJ added, over the range of apoJ concentrations tested. No other known apolipoprotein is associated with apoJ. By two-dimensional electrophoretic analysis, the lipoproteins containing both apoJ and apoAI have approximate molecular masses of 350-400 kDa. Taken together, the results suggest that the interaction between apoJ and apoAI is physiologically important and that lipoproteins which contain both apoJ and apoAI can be produced in the plasma. ApoJ-HDL and apoJ/apoAI-HDL may have different functions and metabolic fates or may represent different stages of apoJ catabolism.  相似文献   

6.
The distribution of apolipoprotein (apo) A-I between human high-density lipoproteins (HDL) and water is an important component of reverse cholesterol transport and the atheroprotective effects of HDL. Chaotropic perturbation (CP) with guanidinium chloride (Gdm-Cl) reveals HDL instability by inducing the unfolding and transfer of apo A-I but not apo A-II into the aqueous phase while forming larger apo A-I deficient HDL-like particles and small amounts of cholesteryl ester-rich microemulsions (CERMs). Our kinetic and hydrodynamic studies of the CP of HDL species separated according to size and density show that (1) CP mediated an increase in HDL size, which involves quasi-fusion of surface and core lipids, and release of lipid-free apo A-I (these processes correlate linearly), (2) >94% of the HDL lipids remain with an apo A-I deficient particle, (3) apo A-II remains associated with a very stable HDL-like particle even at high levels of Gdm-Cl, and (4) apo A-I unfolding and transfer from HDL to water vary among HDL subfractions with the larger and more buoyant species exhibiting greater stability. Our data indicate that apo A-I's on small HDL (HDL-S) are highly dynamic and, relative to apo A-I on the larger more mature HDL, partition more readily into the aqueous phase, where they initiate the formation of new HDL species. Our data suggest that the greater instability of HDL-S generates free apo A-I and an apo A-I deficient HDL-S that readily fuses with the more stable HDL-L. Thus, the presence of HDL-L drives the CP remodeling of HDL to an equilibrium with even larger HDL-L and more lipid-free apo A-I than with either HDL-L or HDL-S alone. Moreover, according to dilution studies of HDL in 3 M Gdm-Cl, CP of HDL fits a model of apo A-I partitioning between HDL phospholipids and water that is controlled by the principal of opposing forces. These findings suggest that the size and relative amount of HDL lipid determine the HDL stability and the fraction of apo A-I that partitions into the aqueous phase where it is destined for interaction with ABCA1 transporters, thereby initiating reverse cholesterol transport or, alternatively, renal clearance.  相似文献   

7.
Apolipoprotein (apo) A-I is the major protein constituent of human high-density lipoprotein (HDL) and is likely responsible for many of its anti-atherogenic properties. Since distinct HDL size subspecies may play different roles in interactions critical for these properties, a key question concerns how apoA-I can adjust its conformation in response to changes in HDL particle size. A prominent hypothesis states that apoA-I contains a flexible "hinge domain" that can associate/dissociate from the lipoprotein as its diameter fluctuates. Although flexible domains clearly exist within HDL-bound apoA-I, this hypothesis has not been directly tested by assessing the ability of such domains to modulate their contacts with the lipid surface. In this work, discoidal HDL particles of different size were reconstituted with a series of human apoA-I mutants containing a single reporter tryptophan residue within each of its 22 amino acid amphipathic helical repeats. The particles also contained nitroxide spin labels, potent quenchers of tryptophan fluorescence, attached to the phospholipid acyl chains. We then measured the relative exposure of each tryptophan probe with increasing quencher concentrations. We found that, although there were modest structural changes across much of apoA-I, only helices 5, 6, and 7 exhibited significant differences in terms of exposure to lipid between large (96 A) and small (78 A) HDL particles. From these results, we present a model for a putative hinge domain in the context of recent "belt" and "hairpin" models of apoA-I structure in discoidal HDL particles.  相似文献   

8.
Human apolipoprotein E (apoE) mediates high affinity binding to the low density lipoprotein receptor when present on a lipidated complex. In the absence of lipid, however, apoE does not bind the receptor. Whereas the x-ray structure of lipid-free apoE3 N-terminal (NT) domain is known, the structural organization of its lipid-associated, receptor-active conformation is poorly understood. To study the organization of apoE amphipathic alpha-helices in a lipid-associated state, single tryptophan-containing apoE3 variants were employed in fluorescence quenching studies. The relative positions of the Trp residues with respect to the phospholipid component of apoE/lipid particles were established from the degree of quenching by phospholipids bearing nitroxide groups at various positions along their fatty acyl chains. Four apoE3-NT variants bearing Trp reporter groups at positions 141, 148, 155, or 162 within helix 4 and two apoE3 variants containing single Trp at positions 257 or 264 in the C-terminal (CT) domain, were reconstituted into phospholipid-containing discoidal complexes. Parallax analysis revealed that each engineered Trp residue in helix 4 of apoE3-NT, as well as those in the CT domain of apoE, localized approximately 5 A from the center of the bilayer. Circular dichroism studies revealed that lipid association induces additional helix formation in apoE. Protease protection assays suggest the flexible loop segment between the NT and CT domains may transition from unstructured to helix upon lipid association. Taken together, these data support a model wherein the alpha-helices in the receptor-binding region and the CT domain of apoE align perpendicular to the fatty acyl chains of the phospholipid bilayer. In this alignment, the residues of helix 4 are arrayed in a positively charged, curved helical segment for optimal receptor interaction.  相似文献   

9.
HDL (high-density lipoproteins) remove cell cholesterol and protect from atherosclerosis. The major HDL protein is apoA-I (apolipoprotein A-I). Most plasma apoA-I circulates in lipoproteins, yet ~5% forms monomeric lipid-poor/free species. This metabolically active species is a primary cholesterol acceptor and is central to HDL biogenesis. Structural properties of lipid-poor apoA-I are unclear due to difficulties in isolating this transient species. We used thermal denaturation of human HDL to produce lipid-poor apoA-I. Analysis of the isolated lipid-poor fraction showed a protein/lipid weight ratio of 3:1, with apoA-I, PC (phosphatidylcholine) and CE (cholesterol ester) at approximate molar ratios of 1:8:1. Compared with lipid-free apoA-I, lipid-poor apoA-I showed slightly altered secondary structure and aromatic packing, reduced thermodynamic stability, lower self-associating propensity, increased adsorption to phospholipid surface and comparable ability to remodel phospholipids and form reconstituted HDL. Lipid-poor apoA-I can be formed by heating of either plasma or reconstituted HDL. We propose the first structural model of lipid-poor apoA-I which corroborates its distinct biophysical properties and postulates the lipid-induced ordering of the labile C-terminal region. In summary, HDL heating produces folded functional monomolecular lipid-poor apoA-I that is distinct from lipid-free apoA-I. Increased adsorption to phospholipid surface and reduced C-terminal disorder may help direct lipid-poor apoA-I towards HDL biogenesis.  相似文献   

10.
Jayaraman S  Gantz DL  Gursky O 《Biochemistry》2008,47(12):3875-3882
High-density lipoproteins (HDLs) prevent atherosclerosis by removing cholesterol from macrophages and by providing antioxidants for low-density lipoproteins. Oxidation of HDLs affects their functions via the complex mechanisms that involve multiple protein and lipid modifications. To differentiate between the roles of oxidative modifications in HDL proteins and lipids, we analyzed the effects of selective protein oxidation by hypochlorite (HOCl) on the structure, stability, and remodeling of discoidal HDLs reconstituted from human apolipoproteins (A-I, A-II, or C-I) and phosphatidylcholines. Gel electrophoresis and electron microscopy revealed that, at ambient temperatures, protein oxidation in discoidal complexes promotes their remodeling into larger and smaller particles. Thermal denaturation monitored by far-UV circular dichroism and light scattering in melting and kinetic experiments shows that protein oxidation destabilizes discoidal lipoproteins and accelerates protein unfolding, dissociation, and lipoprotein fusion. This is likely due to the reduced affinity of the protein for lipid resulting from oxidation of Met and aromatic residues in the lipid-binding faces of amphipathic alpha-helices and to apolipoprotein cross-linking into dimers and trimers on the particle surface. We conclude that protein oxidation destabilizes HDL disk assembly and accelerates its remodeling and fusion. This result, which is not limited to model discoidal but also extends to plasma spherical HDL, helps explain the complex effects of oxidation on plasma lipoproteins.  相似文献   

11.
Adipocyte plasma membranes purified from omental fat tissue biopsies of massively obese subjects possess specific binding sites for high-density lipoprotein (HDL3). This binding was independent of apolipoprotein E as HDL3 isolated from plasma of an apolipoprotein E-deficient individual was bound to a level comparable to that of normal HDL3. To examine the importance of apolipoprotein A-I, the major HDL3 apolipoprotein, in the specific binding of HDL3 to human adipocytes, HDL3 modified to contain varying proportions of apolipoproteins A-I and A-II was prepared by incubating normal HDL3 particles with different amounts of purified apolipoprotein A-II. As the apolipoproteins A-I-to-A-II ratio in HDL3 decreased, the binding of these particles to adipocyte plasma membranes was reduced. Compared to control HDL3, a 92 +/- 3.1% reduction (mean +/- S.E., n = 3) in maximum binding capacity was observed along with an increased binding affinity for HDL3 particles in which almost all of the apolipoprotein A-I had been replaced by A-II. The uptake of HDL cholesteryl ester by intact adipocytes as monitored by [3H]cholesteryl ether labeled HDL3, was also significantly reduced (about 35% reduction, P less than 0.005) by substituting apolipoprotein A-II for A-I in HDL3. These data suggest that HDL binding to human adipocyte membranes is mediated primarily by apolipoprotein A-I and that optimal delivery of cholesteryl ester from HDL to human adipocytes is also dependent on apolipoprotein A-I.  相似文献   

12.
13.
14.
In reconstituted high-density lipoproteins, apolipoprotein A-I and phosphatidylcholines combine to form disks in which the amphipathic alpha-helices of apolipoprotein A-1 bind to the edge of a lipid bilayer core, shielding the hydrophic lipid tails from the aqueous environment. We have employed experimental data, sequence analysis, and molecular modeling to construct an atomic model of such a reconstituted high-density lipoprotein disk consisting of two apolipoprotein A-I proteins and 160 palmitoyloleoylphosphatidylcholine lipids. The initial globular domain (1-47) of apolipoprotein A-I was excluded from the model, which was hydrated with an 8-A shell of water molecules. Molecular dynamics and simulated annealing were used to test the stability of the model. Both head-to-tail and head-to-head forms of a reconstituted high-density lipoprotein were simulated. In our simulations the protein contained and adhered to the lipid bilayer while providing good coverage of the lipid tails.  相似文献   

15.
High-density lipoprotein (HDL) was fractionated by preparative isoelectric focussing into six distinct subpopulations. The major difference between the subfractions was in the molar ratio of apolipoprotein A-I to apolipoprotein A-II, ranging from 2.1 to 0.5. The least acidic particles had little apolipoprotein A-II, were larger and contained the most lipid. The efflux capacity of the HDL subfractions was tested with mouse peritoneal macrophages and a mouse macrophage cell line (P388D1), either fed with acetylated low-density lipoprotein or free cholesterol. All the HDL subfractions were equally able to efflux cholesterol. The efflux was concentration dependant and linear for the first 6 h. The HDL subfractions bound with high affinity (Kd = 6.7-7.9 micrograms/ml) at 4 degrees C to the cell surface of P388D1 cells (211,000-359,000 sites/cell). Ligand blotting showed that all the HDL subfractions bound to membrane polypeptides at 60, 100, and 210 kDa. These HDL binding proteins may represent HDL receptors. In summary HDL particles, which differed principally in ratio of apolipoprotein A-I to apolipoprotein A-II behaved in a similar manner for both cholesterol efflux and cell surface binding.  相似文献   

16.
Mehta R  Gantz DL  Gursky O 《Biochemistry》2003,42(16):4751-4758
To probe the role of protein conformation in the formation and kinetic stability of discoidal lipoproteins, thermal unfolding and refolding studies were carried out using model lipoproteins reconstituted from dimyristoylphosphatidylcholine (DMPC) and selected mutants of human apolipoprotein C-1 (apoC-1). Circular dichroism (CD) spectroscopy and electron microscopy show that the Q31P mutant, which has alpha-helical content in solution (33%) and on DMPC disks (67%) similar to that of the wild type (WT), forms disks of smaller diameter, = 13 nm, compared to 17 nm of the WT-DMPC disks. The L34P mutant, which is largely unfolded in solution, forms disks with alpha-helix content and diameter similar to those of the WT. The R23P mutant, which is fully unfolded in solution, forms disks that have similar diameter but reduced alpha-helix content (40%) compared to the WT-DMPC disks (65%). Remarkably, despite large variations in the alpha-helix content or the disk diameter among different mutant-DMPC complexes, the mutations have no significant effect on the unfolding rates or the Arrhenius activation energy of the disk denaturation, E(a) = 25-29 kcal/mol. This suggests that the kinetic stability of the discoidal complexes is dominated by the lipid-lipid rather than the protein-lipid interactions. In contrast to the heat denaturation, the lipoprotein reconstitution upon cooling monitored by CD and light scattering is significantly affected by mutations, with Q31P forming disks in the broadest and R23P in the narrowest temperature range. Our results suggest that the apolipoprotein helical structure in solution facilitates reconstitution of discoidal lipoproteins but has no significant effect on their kinetic stability.  相似文献   

17.
Fenofibrate, a PPAR-α agonist, lowers triglycerides (TG) and raises high-density lipoproteins (HDL-C) in humans. While fenofibrate is very effective in lowering TG, it does not raise HDL-C in humans to the same extent as seen in human apoAI transgenic (hAI-Tg) mice. We studied the mechanism of this discordance using the following compounds as tools: cholic acid that down-regulates human apoAI, and fenofibrate, that elevates hapoAI and HDL-C in hAI-Tg mice. We hypothesized that additional sequences, including apoCIII and AIV genes on chromosome 11, not present in the hapoAI transgene may be responsible for the dampened effect of fibrates on HDL-C seen in humans. For this, hAI-Tg mice with 11kb DNA segment and hapoAI-CIII-AIV-Tg mice with 33kb DNA segment harboring apoCIII and AIV genes were employed. These mice were treated with fenofibrate and cholic acid. Fenofibrate increased apoAI and HDL-C levels, and HDL size in the apoAI-Tg mice via up-regulation of the hapoAI mRNA and increased activity and mRNA of PLTP, respectively. Consistent with earlier findings, cholic acid showed similar effects of lowering HDL-C, and elevating LDL-C in hAI-Tg mice as well as in the hAI-CIII-AIV-Tg mice. Fenofibrate decreased TG and increased HDL size in hAI-CIII-AIV-Tg mice as well, but surprisingly, did not elevate serum levels of hapoAI or hepatic AI mRNA, suggesting that additional sequences not present in the hapoAI transgene (11kb) may be partly responsible for the dampened effect on HDL-C seen in hAI-CIII-AIV-Tg mice. Since hAI-CIII-AIV-Tg mouse mimics fenofibrate effects seen in humans, this transgenic mouse could serve as a better predictive model for screening HDL-C raising compounds.  相似文献   

18.
To probe the secondary structure of the C-terminus (residues 165-243) of lipid-free human apolipoprotein A-I (apoA-I) and its role in protein stability, recombinant wild-type and seven site-specific mutants have been produced in C127 cells, purified, and studied by circular dichroism and fluorescence spectroscopy. A double substitution (G185P, G186P) increases the protein stability without altering the secondary structure, suggesting that G185 and G186 are located in a loop/disordered region. A triple substitution (L222K, F225K, F229K) leads to a small increase in the alpha-helical content and stability, indicating that L222, F225, and F229 are not involved in stabilizing hydrophobic core contacts. The C-terminal truncation Delta(209-243) does not change the alpha-helical content but reduces the protein stability. Truncation of a larger segment, Delta(185-243), does not affect the secondary structure or stability. In contrast, an intermediate truncation, Delta(198-243), leads to a significant reduction in the alpha-helical content, stability, and unfolding cooperativity. The internal 11-mer deletion Delta(187-197) has no significant effect on the conformation or stability, whereas another internal 11-mer deletion, Delta(165-175), dramatically disrupts and destabilizes the protein conformation, suggesting that the presence of residues 165-175 is crucial for proper apoA-I folding. Overall, the findings suggest the presence of stable helical structure in the C-terminal region 165-243 of lipid-free apoA-I and the involvement of segment 209-243 in stabilizing interactions in the molecule. The effect of the substitution (G185P, G186P) on the exposure of tryptophans located in the N-terminal half suggests an apoA-I tertiary conformation with the C-terminus located close to the N-terminus.  相似文献   

19.
The effects of altered serum 3,3',5-triiodothyronine levels on rat lipoprotein metabolism were examined. Daily injections of the hormone (50 micrograms/100 g body mass) over a period of six days led to an increase of 6.4-fold in the hepatic mRNA level for apolipoprotein(apo)A-I, and a 21% increase in serum apoA-I levels. 12h after a single injection of 3,3',5-triiodothyronine the rate of [14C]leucine incorporation into apoA-I increased 2.1 fold. Conversely, in hypothyroid rats there was a decrease in hepatic mRNA levels for apoA-I and a decreased rate of [14C]leucine incorporation into apoA-I. The increase in hepatic apoA-I mRNA levels following 3,3',5-triiodothyronine treatment occurred prior to significant changes in serum triacylglycerol levels. High-density lipoprotein (HDL) particles isolated from the serum of hyperthyroid rats were smaller and enriched in apoA-I compared to apoA-IV and apoE. Similar changes in HDL composition were observed following in vitro incubations of normal rat serum with purified rat apoA-I. The results suggest that during altered thyroid status, changes in serum HDL size and composition occur in association with significant changes in apoA-I gene expression.  相似文献   

20.
The surface pressure (pi)-molecular area (A) isotherms for monolayers of human high-density lipoprotein (HDL3) and low-density lipoprotein (LDL) phospholipids and of mixed monolayers of these phospholipids with cholesterol spread at the air-water interface were used to deduce the likely molecular packing at the surfaces of HDL3 and LDL particles. LDL phospholipids form more condensed monolayers than HDL3 phospholipids; for example, the molecular areas of LDL and HDL3 phospholipids at pi = 10 dyn/cm are 88 and 75 A2/molecule, respectively. The closer packing in the LDL phospholipids monolayer can be attributed to the higher contents of saturated phosphatidylcholines and sphingomyelin relative to HDL3. Cholesterol condenses both HDL3 and LDL phospholipid monolayers but has a greater condensing effect on the LDL phospholipid monolayer. The pi-A isotherms for mixed monolayer of HDL3 phospholipid/cholesterol and LDL phospholipid/cholesterol at stoichiometries similar to those at the surfaces of lipoprotein particles suggest that the monolayer at the surface of the LDL particle is significantly more condensed than that at the surface of the HDL3 particle. The closer lateral packing in LDL is due to at least three factors: (1) the difference in phospholipid composition; (2) the higher unesterified cholesterol content in LDL; and (3) a stronger interaction between cholesterol and LDL phospholipids relative to HDL3 phospholipids. The influence of lipid molecular packing on the affinity of human apolipoprotein A-I (apo A-I) for HDL3 and LDL surface lipids was evaluated by monitoring the adsorption of 14C-methylated apo A-I to monolayers of these lipids spread at various initial surface pressures (pi i).(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号