首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
3.
4.
Human HeLa cells and murine L(S) cells are highly sensitive to the cytocidal activity of tumor necrosis factor (TNF) when simultaneously treated with the inhibitor of protein synthesis cycloheximide. This cytocidal activity of TNF was inhibited up to 90% in both cell lines after a 15-60-min pretreatment with 3-10 ng/ml of phorbol 12-myristate 13-acetate (PMA). This inhibition was long lasting for HeLa cells but transient for L(S) cells. The protection afforded by PMA was most effective when the cells were pretreated with this phorbol ester, but it decreased when PMA was added together with TNF or after TNF addition. This finding suggested that PMA interfered with one of the early steps in the mechanism of action of TNF. A pretreatment with the calcium ionophore A23187 also reduced the cytocidal activity of TNF in both HeLa and L(S) cells to about the same extent. Treatment of these cells with either PMA or A23187 significantly decreased the binding of 125I-TNF to cell surface receptors. This decrease paralleled the time course and dose-response of the inhibition of cytocidal activity. In addition, treatment of HeLa cells with 1-oleyl-2-acetyl-glycerol (OAG) also induced a rapid loss of TNF binding capacity. Since OAG, PMA, and A23187 are all activators of protein kinase C (Ca2+/phospholipid-dependent enzyme), these results suggest that this kinase is involved in modulation of TNF sensitivity. Furthermore, depletion or inhibition of protein kinase C antagonized PMA-induced effects on TNF cytotoxicity and binding to receptors. Internalization of bound TNF was not significantly affected by PMA treatment, and Scatchard analysis of binding data indicated that PMA decreased TNF receptor binding affinity rather than the number of TNF-binding sites. These findings suggest that protein kinase C may have a physiological role in mediating TNF sensitivity.  相似文献   

5.
The state of T cell activation and proliferation controls HIV-1 replication and gene expression. Previously, we demonstrated that the administration of PHA and PMA to the human T cell line Jurkat activates the HIV-1 enhancer, which is composed of two nuclear factor kappa B (NF kappa B) binding sites. Here, we show that PMA alone is sufficient for this effect. In addition, activation of T cells through the surface proteins TCR/CD3 and CD28 increased gene expression directed by the HIV-1 long terminal repeat (LTR) to the same extent as PMA. Analysis of 5' deletions in the LTR revealed that the NF kappa B binding sites and sequences in the upstream U3 region are required for this response. Whereas cyclosporin A did not inhibit the effect of PMA, it reduced the effects of agonists to TCR/CD3 and CD28 on the LTR. H7, an inhibitor of protein kinase C (PKC), blocked the effects of all stimuli. Thus, PMA activates the NF kappa B sites through a PKC-dependent pathway while ligands to TCR/CD3 and CD28 activate the LTR through a cyclosporin A-sensitive, PKC-dependent pathway of T cell activation. We conclude that mechanisms involved in the expression of IL-2 and the alpha-chain of the IL-2R alpha genes also play a role in the regulation of HIV-1. Physiologic stimuli can activate HIV-1 gene expression; agents that block T cell activation also inhibit activation of the LTR. These observations might serve as a model for the regulation of HIV-1 gene expression in peripheral blood T cells.  相似文献   

6.
HL60 and EL4 cells incubated with tumor necrosis factor-alpha (TNF-alpha) plus staurosporin, a potent inhibitor of protein kinases, showed at least 2-fold increased levels of nuclear factor-kappa B (NF-kappa B) activity compared with TNF-alpha alone both during rapid NF-kappa B activation from the cytosolic pool and protein synthesis-dependent NF-kappa B activation. NF-kappa B activation by phorbol 12-myristate 13-acetate (PMA) and interleukin-1 was inhibited by staurosporin. Staurosporin treatment hardly affected the TNF-alpha-induced increase in mRNA for the p51 subunit of NF-kappa B but interfered with any phorbol ester (PMA)-induced increase in p51 mRNA. Thus, induction of NF-kappa B and p51 mRNA by TNF-alpha was not mediated by a staurosporin-sensitive factor, but NF-kappa B activation by TNF-alpha was even reduced by action of a staurosporin-sensitive factor. Decreased levels of phosphorylation of TNF-R alpha (TNF receptor type alpha) after staurosporin-treatment correlated with increased induction of NF-kappa B by TNF-alpha. Staurosporin-treatment did not affect TNF-R levels. Although protein kinase C stimulation by PMA inhibited NF-kappa B activation by TNF-alpha, its action mechanism may be different from that of the staurosporin-sensitive factor. PMA induced disappearance of TNF-R alpha by shedding into the surrounding medium, with kinetics similar to those of its inhibition of NF-kappa B activation by TNF-alpha. Phosphorylation may not mediate receptor shedding, since PMA treatment did not detectably affect TNF-R alpha phosphorylation.  相似文献   

7.
The mechanisms whereby phorbol esters antagonize Fas-induced apoptosis in Jurkat T cells are poorly defined. In the present study, we report that protection from Fas-induced apoptosis by 12-O-tetradecanoylphorbol 13-acetate (TPA) is dependent on both ERK and NF kappa B activation. First, we showed that two specific mitogen-activated protein kinase/ERK kinase-inhibitors, PD98059 and U0126, both counteracted TPA-mediated suppression of Fas-induced apoptosis. Moreover, the dose-dependence of U0126-mediated inhibition of ERK phosphorylation correlated with that of reversion of the anti-apoptotic effect of TPA. Second, we observed an excellent correlation between repression of TPA-induced NF kappa B activation by an irreversible inhibitor of I kappa B alpha phosphorylation, BAY11-7082, and its ability to abrogate TPA-induced suppression of Fas-mediated apoptosis. Furthermore, we located the anti-apoptotic effect of both ERK and NF kappa B to lie upstream of the mitochondrial membrane potential depolarization event. Finally, although each inhibitor at optimal, non-toxic concentration by itself only partly reversed TPA-mediated repression of apoptosis, the combination of U0126 and BAY11-7082 completely abolished the anti-apoptotic effect of TPA. Together these findings suggest that TPA-induced activation of ERK and NF kappa B are parallel events that are both required for maximal inhibition of Fas-induced apoptosis in Jurkat T cells.  相似文献   

8.
HIV-tat protein, like TNF, activates a wide variety of cellular responses, including NF-kappa B, AP-1, c-Jun N-terminal kinase (JNK), and apoptosis. Whether HIV-tat transduces these signals through the same mechanism as TNF is not known. In the present study we investigated the role of the T cell-specific tyrosine kinase p56lck in HIV-tat and TNF-mediated cellular responses by comparing the responses of Jurkat T cells with JCaM1 cells, an isogeneic lck-deficient T cell line. Treatment with HIV-tat protein activated NF-kappa B, degraded I kappa B alpha, and induced NF-kappa B-dependent reporter gene expression in a time-dependent manner in Jurkat cells but not in JCaM1 cells, suggesting the critical role of p56lck kinase. These effects were specific to HIV-tat, as activation of NF-kappa B by PMA, LPS, H2O2, and TNF was minimally affected. p56lck was also found to be required for HIV-tat-induced but not TNF-induced AP-1 activation. Similarly, HIV-tat activated the protein kinases JNK and mitogen-activated protein kinase kinase in Jurkat cells but not in JCaM1 cells. HIV-tat also induced cytotoxicity, activated caspases, and reactive oxygen intermediates in Jurkat cells, but not in JCaM1 cells. HIV-tat activated p56lck activity in Jurkat cells. Moreover, the reconstitution of JCaM1 cells with p56lck tyrosine kinase reversed the HIV-tat-induced NF-kappa B activation and cytotoxicity. Overall, our results demonstrate that p56lck plays a critical role in the activation of NF-kappa B, AP-1, JNK, and apoptosis by HIV-tat protein but has minimal or no role in activation of these responses by TNF.  相似文献   

9.
The activation of NF-kappa B-like activities (called NF-kappa B) by tumor necrosis factor alpha (TNF alpha) and the phorbol ester phorbol 12-myristate 13-acetate (PMA) were compared. High levels of NF-kappa B activity were found 2 to 4 min after TNF alpha addition to human HL60 cells and lasted for at least 3 h, although the half-life of active NF-kappa B was less than 30 min. Inactive NF-kappa B, however, was relatively stable. NF-kappa B activation by TNF alpha was initially cycloheximide insensitive, but maintenance of NF-kappa B activity required ongoing protein synthesis and continuous stimulation by TNF alpha. Thus, the cells did not remain in an activated state without stimulation. In HL60 cells, NF-kappa B induction by PMA required 30 to 45 min and was completely dependent on de novo protein synthesis, while PMA (and interleukin-1) induced NF-kappa B activity rapidly in mouse 70Z/3 cells via a protein synthesis-independent mechanism. The NF-kappa B-like activities obtained under each condition behaved identically in methylation interference and native proteolytic fingerprinting assays. The NF-kappa B-like factors induced are thus all very similar or identical. We suggest that cell-specific differences in the protein kinase C-dependent activation of NF-kappa B may exist and that TNF alpha and PMA may induce expression of the gene(s) encoding NF-kappa B.  相似文献   

10.
The phorbol myristate acetate (PMA) stimulation of the human neutrophil NADPH-oxidase has been demonstrated through the activation of protein kinase C (PK-C), using light membrane fractions from nitrogen-cavitated cells. Both arachidonic acid (AA) and sodium dodecyl sulfate (SDS) can also generate an active oxidase in cellfree systems. That the source of O2- with AA and SDS activation is the same NADPH-oxidase as previously studied was confirmed by the similar pH optima and Km values for NADPH as those previously described for the O2- -generating activity harvested from pre-stimulated human neutrophils. In contrast to the stimulation by PMA, however, the stimulation of the NADPH-oxidase by AA and SDS does not appear to require protein kinase C activation: the action of AA and SDS is independent of the addition of PK-C cofactors to the system, and the inhibitor of PK-C activity, H-7, had no effect on the stimulation by AA or SDS. AA and SDS activation are comparable, but the level of NADPH-oxidase expression is sixfold greater with each of these agents than that obtained with a reconstituted PK-C system. The basis of this difference in oxidase expression is unclear, but these findings suggest strongly that although activated PK-C is capable of stimulating a dormant NADPH-oxidase in a cellfree system, this is not the sole pathway for oxidase activation.  相似文献   

11.
12.
The neuropeptide alpha-melanocyte-stimulating hormone (alpha-MSH) inhibits inflammation by down-regulating the expression of proinflammatory cytokines such as tumor necrosis factor-alpha (TNF-alpha) in leukocytes via stimulation of alpha-MSH cell surface receptors. However, the signaling mechanism of alpha-MSH action has not yet been clearly elucidated. Here, we have investigated signaling pathways by which alpha-MSH inhibits lipopolysaccharide (LPS)-induced TNF-alpha production in leukocytes such as THP-1 cells. We focused on the possible roles of protein kinase A (PKA), p38 kinase, and nuclear factor kappa B (NF kappa B) signaling. In THP-1 cells, LPS is known to activate p38 kinase, which in turn activates NF kappa B to induce TNF-alpha production. We found that pretreatment of cells with alpha-MSH blocked LPS-induced p38 kinase and NF kappa B activation as well as TNF-alpha production. This response was proportional to alpha-MSH receptor expression levels, and addition of an alpha-MSH receptor antagonist abolished the inhibitory effects. In addition, alpha-MSH treatment activated PKA, and PKA inhibition abrogated the inhibitory effects of alpha-MSH on p38 kinase activation, NF kappa B activation, and TNF-alpha production. Taken together, our results indicate that stimulation of PKA by alpha-MSH causes inhibition of LPS-induced activation of p38 kinase and NF kappa B to block TNF-alpha production.  相似文献   

13.
14.
15.
The effects of endothelin on intracellular pH (pHi) were examined in cultured rat vascular smooth muscle cells (VSMC) using the fluorescent probe BCECF. Endothelin induced biphasic changes in pHi: initial decrease followed by a subsequent increase above the basal level due to activation of the Na+/H+ exchange. The elevation of pHi was slow and sustained, but depended on the dose of endothelin: IC50 was about 3 x 10(-8) M. Na+/H+ exchange inhibition by EIPA (10(-7) M) or by equimolar replacement of external Na+ by choline abolished the pHi increase by enhancing the first phase of cytoplasm acidification. Effects of endothelin were compared with the action of protein kinase C (PK-C) activator phorbol 12-13 myristate ester (PMA). PMA induced a monophasic slow and sustained increase in pHi. The treatments of VSMC with H-7 and staurosporine (PK-C) inhibitors prevented the pHi response to endothelin and PMA. These results suggest that protein kinase C may play an important role in mediating the effects of endothelin on Na+/H+ exchange in VSMC.  相似文献   

16.
The ability of isolated rat hepatocytes to respond to phorbol-12-myristate-13-acetate (PMA) with acute stimulation of de novo fatty acid synthesis was markedly depressed at 4, 22 and 48 h after partial hepatectomy (PH). This desensitization was not due to surgical stress as shown by comparison with hepatocytes from sham-operated animals. Moreover, the total activity of protein kinase C (PK-C), the principal phorbol ester receptor, was not down-regulated at 22 h after partial hepatectomy. Partial hepatectomy rather caused a small but distinct shift in subcellular PK-C distribution toward the particulate fraction thereby suggesting a modest activation of PK-C. We conclude that the PH-induced desensitization to PMA occurs at a point beyond PK-C activation.  相似文献   

17.
We show that tumor necrosis factor (TNF) and phorbol 12-myristate 13-acetate (PMA) induce TNF-related apoptosis-inducing ligand (TRAIL) in T cells. In cells deficient for NF-kappaB essential modulator (NEMO)/IKKgamma, an essential component of the NF-kappaB-inducing I-kappaB kinase (IKK) complex, induction of TRAIL expression was completely abrogated but was recovered in cells restored for IKKgamma expression. In cells deficient for receptor-interacting protein expression TNF, but not PMA-induced TRAIL expression was blocked. Inhibition of protein synthesis with cycloheximide blocked PMA, but not TNF-induced up-regulation of TRAIL. As both TNF and PMA rapidly induce NF-kappaB activation this suggests that NEMO/IKKgamma-dependent activation of the NF-kappaB pathway is necessary but not sufficient for up-regulation of TRAIL in T cells. The capability of the NF-kappaB pathway to induce the potent death ligand TRAIL may explain the reported proapoptotic features of this typically antiapoptotic pathway.  相似文献   

18.
Exposure of freshly isolated rat hepatocytes to tumor-promoting phorbol esters like phorbol 12-myristate 13-acetate resulted in a time- and concentration-dependent translocation of protein kinase C from the soluble to the particulate fraction of the cells. No such disappearance of soluble protein kinase C activity was observed with either epidermal growth factor or insulin, indicating that activation of protein kinase C is not necessarily involved in the short-term metabolic action of physiological growth factors on rat hepatocytes.  相似文献   

19.
Previous studies have demonstrated that AKT1 and AKT3 are activated by heat shock and oxidative stress via both phosphatidylinositol 3-kinase-dependent and -independent pathways. However, the activation and role of AKT2 in the stress response have not been fully elucidated. In this study, we show that AKT2 in epithelial cells is activated by UV-C irradiation, heat shock, and hyperosmolarity as well as by tumor necrosis factor alpha (TNFalpha) through a phosphatidylinositol 3-kinase-dependent pathway. The activation of AKT2 inhibits UV- and TNF alpha-induced c-Jun N-terminal kinase (JNK) and p38 activities that have been shown to be required for stress- and TNF alpha-induced programmed cell death. Moreover, AKT2 interacts with and phosphorylates I kappa B kinase alpha. The phosphorylation of I kappa B kinase alpha and activation of NF kappa B mediates AKT2 inhibition of JNK but not p38. Furthermore, phosphatidylinositol 3-kinase inhibitor or dominant negative AKT2 significantly enhances UV- and TNF alpha-induced apoptosis, whereas expression of constitutively active AKT2 inhibits programmed cell death in response to UV and TNFalpha -induced apoptosis by inhibition of stress kinases and provide the first evidence that AKT inhibits stress kinase JNK through activation of the NF kappa B pathway.  相似文献   

20.
Stimulation of hepatocytes by the tumor promoter phorbol 12-myristate 13-acetate (PMA) caused translocation of cytosolic Ca2+/phospholipid-dependent protein kinase C (PK-C). The major part of PK-C activity (greater than 80%) was associated with the membrane fraction after 30 min. During the following 6 h protein kinase C activity decreased to less than 10%. Minor amounts of Ca2+/phospholipid-independent PK-C activity were found in the cytosol fraction at all times; they temporarily increased 2.5-fold with PMA and decreased after 1 h. Cyclosporin A did not affect the translocation of PK-C from the cytoplasm to the membrane fraction, but the decrease of PK-C activity following translocation was blocked. No marked increase of Ca2+/phospholipid-independent PK-C activity was observed in the cytosol in the presence of cyclosporin A. Leupeptin, which is known to inhibit Ca2+-requiring non-lysosomal proteinases (e.g. calpain), showed an effect similar to cyclosporin A. Both agents reduced proteolytic degradation of cellular proteins observed in isolated hepatocytes after PMA treatment. Ca2+-ionophore A23187 in high doses (greater than 10(5) M) partly reversed cyclosporin A and leupeptin action.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号