共查询到20条相似文献,搜索用时 15 毫秒
1.
Calcium binding to cardiac troponin C 总被引:1,自引:0,他引:1
The binding of Ca2+ to cardiac troponin C was studied by determining changes in the fluorescence and circular dichroism of the protein and by following changes in the free Ca2+ concentration by means of a Ca2+-specific electrode. Cardiac troponin C contains three Ca2+-binding sites which fall into two classes —two sites with a higher affinity and one with a lower affinity. The higher-affinity sites also bind Mg2+ which competes with the Ca2+. 相似文献
2.
Li MX Saude EJ Wang X Pearlstone JR Smillie LB Sykes BD 《European biophysics journal : EBJ》2002,31(4):245-256
Ca2+ and human cardiac troponin I (cTnI) peptide binding to human cardiac troponin C (cTnC) have been investigated with the use of 2D [1H,15N] HSQC NMR spectroscopy. The spectral intensity, chemical shift, and line-shape changes were analyzed to obtain the dissociation ( K(D)) and off-rate ( k(off)) constants at 30 degrees C. The results show that sites III and IV exhibit 100-fold higher Ca2+ affinity than site II ( K(D(III,IV)) approximately 0.2 microM, K(D(II)) approximately 20 microM), but site II is partially occupied before sites III and IV are saturated. The addition of the first two equivalents of Ca2+ saturates 90% of sites III and IV and 20% of site II. This suggests that the Ca2+ occupancy of all three sites may contribute to the Ca2+-dependent regulation in muscle contraction. We have determined a k(off) of 5000 s(-1) for site II Ca2+ dissociation at 30 degrees C. Such a rapid off-rate had not been previously measured. Three cTnI peptides, cTnI(34-71), cTnI(128-147), and cTnI(147-163), were titrated to Ca2+-saturated cTnC. In each case, the binding occurs with a 1:1 stoichiometry. The determined K(D) and k(off) values are 1 microM and 5 s(-1) for cTnI(34-71), 78+/-10 microM and 5000 s(-1) for cTnI(128-147), and 150+/-10 microM and 5000 s(-1) for cTnI(147-163), respectively. Thus, the dissociation of Ca2+ from site II and cTnI(128-147) and cTnI(147-163) from cTnC are rapid enough to be involved in the contraction/relaxation cycle of cardiac muscle, while that of cTnI(34-71) from cTnC may be too slow for this process. 相似文献
3.
Compounds that sensitize cardiac muscle to Ca(2+) by intervening at the level of regulatory thin filament proteins would have potential therapeutic benefit in the treatment of myocardial infarctions. Two putative Ca(2+) sensitizers, EMD 57033 and levosimendan, are reported to bind to cardiac troponin C (cTnC). In this study, we use heteronuclear NMR techniques to study drug binding to [methyl-(13)C]methionine-labeled cTnC when free or when complexed with cardiac troponin I (cTnI). In the absence of Ca(2+), neither drug interacted with cTnC. In the presence of Ca(2+), one molecule of EMD 57033 bound specifically to the C-terminal domain of free cTnC. NMR and equilibrium dialysis failed to demonstrate binding of levosimendan to free cTnC, and the presence of levosimendan had no apparent effect on the Ca(2+) binding affinity of cTnC. Changes in the N-terminal methionine methyl chemical shifts in cTnC upon association with cTnI suggest that cTnI associates with the A-B helical interface and the N terminus of the central helix in cTnC. NMR experiments failed to show evidence of binding of levosimendan to the cTnC.cTnI complex. However, levosimendan covalently bound to a small percentage of free cTnC after prolonged incubation with the protein. These findings suggest that levosimendan exerts its positive inotropic effect by mechanisms that do not involve binding to cTnC. 相似文献
4.
5.
T Iio 《Journal of biochemistry》1985,98(1):261-263
The skeletal muscle troponin complex, the troponin T subunit of which was labeled with 2-((4'-iodoacetamido)anilino)naphthalene-6-sulfonic acid, showed a fluorescence titration curve with a midpoint of around pCa 6.75. Addition of 2 mM MgCl2 had no effect on the fluorescence titration curve. Therefore, we conclude that Ca2+ binding to the low affinity Ca2+-binding sites of troponin C induces a conformational change of troponin T, but Ca2+ binding to the high affinity Ca2+-binding sites does not. 相似文献
6.
Influence of association and of positive inotropic drugs on calcium binding to cardiac troponin C 总被引:2,自引:0,他引:2
Isolated bovine cardiac troponin C forms dimers in presence of Mg2+ dependent on the protein concentration which has been determined by sedimentation velocity and sedimentation equilibrium. Dimer formation is correlated with a decrease in Ca2+ affinity. Positive inotropic drugs (benzimidazol derivatives) influence Ca2+ sensitivity either by changing the association state or by affecting the Ca2+ binding properties directly. 相似文献
7.
Proton NMR is used to compare the structural changes induced in bovine cardiac troponin C on binding of cadmium and calcium ions. The same spectral changes are observed for both ion species. The rate of the conformational changes associated with cadmium binding to the two high-affinity sites is slow, that associated with cadmium ions binding to the low-affinity site is high. 113Cd-NMR spectra of cardiac troponin C feature two signals interpreted as due to cadmium ions bound to the strong sites. Strong arguments are given in favour of cooperativity in binding of the first two cadmium or calcium ions to cardiac and skeletal muscle troponin C. 相似文献
8.
Sorsa T Heikkinen S Abbott MB Abusamhadneh E Laakso T Tilgmann C Serimaa R Annila A Rosevear PR Drakenberg T Pollesello P Kilpelainen I 《The Journal of biological chemistry》2001,276(12):9337-9343
Levosimendan is an inodilatory drug that mediates its cardiac effect by the calcium sensitization of contractile proteins. The target protein of levosimendan is cardiac troponin C (cTnC). In the current work, we have studied the interaction of levosimendan with Ca(2+)-saturated cTnC by heteronuclear NMR and small angle x-ray scattering. A specific interaction between levosimendan and the Ca(2+)-loaded regulatory domain of recombinant cTnC(C35S) was observed. The changes in the NMR spectra of the N-domain of full-length cTnC(C35S), due to the binding of levosimendan to the primary site, were indicative of a slow conformational exchange. In contrast, no binding of levosimendan to the regulatory domain of cTnC(A-Cys), where all the cysteine residues are mutated to serine, was detected. Moreover, it was shown that levosimendan was in fast exchange on the NMR time scale with a secondary binding site in the C-domain of both cTnC(C35S) and cTnC(A-Cys). The small angle x-ray scattering experiments confirm the binding of levosimendan to Ca(2+)-saturated cTnC but show no domain-domain closure. The experiments were run in the absence of the reducing agent dithiothreitol and the preservative sodium azide (NaN(3)), since we found that levosimendan reacts with these chemicals, commonly used for preparation of NMR protein samples. 相似文献
9.
J C Negele D G Dotson W Liu H L Sweeney J A Putkey 《The Journal of biological chemistry》1992,267(2):825-831
Fast skeletal and cardiac troponin C (TnC) contain two high affinity Ca2+/Mg2+ binding sites within the C-terminal domain that are thought to be important for association of TnC with the troponin complex of the thin filament. To test directly the function of these high affinity sites in cardiac TnC they were systematically altered by mutagenesis to generate proteins with a single inactive site III or IV (CBM-III and CBM-IV, respectively), or with both sites III and IV inactive (CBM-III-IV). Equilibrium dialysis indicated that the mutated sites did not bind Ca2+ at pCa 4. Both CBM-III and CBM-IV were similar to the wild type protein in their ability to regulate Ca(2+)-dependent contraction in slow skeletal muscle fibers, and Ca(2+)-dependent ATPase activity in fast skeletal and cardiac muscle myofibrils. The mutant CBM-III-IV is capable of regulating contraction in permeabilized slow muscle fibers but only if the fibers are maintained in a contraction solution containing a high concentration of the mutant protein. CBM-III-IV also regulates myofibril ATPase activity in fast skeletal and cardiac myofibrils but only at concentrations 10-100-fold greater than the normal protein. The pCa50 and Hill coefficient values for Ca(2+)-dependent activation of fast skeletal muscle myofibril ATPase activity by the normal protein and all three mutants are essentially the same. Competition between active and inactive forms of cardiac and slow TnC in a functional assay demonstrates that mutation of both sites III and IV greatly reduces the affinity of cardiac and slow TnC for its functionally relevant binding site in the myofibrils. The data indicate that although neither high affinity site is absolutely essential for regulation of muscle contraction in vitro, at least one active C-terminal site is required for tight association of cardiac troponin C with myofibrils. This requirement can be satisfied by either site III or IV. 相似文献
10.
Kinetic studies of calcium and magnesium binding to troponin C 总被引:4,自引:0,他引:4
The kinetic mechanism of calcium binding was investigated for the high-affinity calcium-magnesium sites of troponin C (TN-C), for the C-terminal fragment containing only the high-affinity sites (TR2) and for the TN-C:TN-I (where TN-I represents the inhibitory subunit of troponin) complex. Rate constants were measured by the change in fluorescence of the proteins labeled with 4-(N-iodoacetoxyethyl-N-methyl-7-nitrobenz-2-oxa-1,3-diazole at Cys 98. Rate constants for calcium dissociation were also measured using the fluorescent calcium chelating agent quin 2. Calcium binding to TR2 at 4 degrees C is a two-step process at each binding site. (formula; see text) A first order transition (k1 = 700 s-1) follows the formation of a weakly bound collision complex (K0 = 2.5 X 10(3) M-1). The two sits of the labeled protein are distinguishable because of a 2-4-fold difference in rate constants of calcium dissociation. The kinetic evidence is consistent with additive changes in structure induced by calcium binding to two identical or nearly identical high-affinity sites. The mechanism for TN-C:TN-I is similar to TR2. TN-C gave complex kinetic behavior for calcium binding but calcium dissociation occurred with the same rate constants found for TR2. Calcium binding to the high-affinity sites of TnC can be interpreted by the same mechanism as for TR2 but an additional reaction possibly arriving from calcium binding to the low-affinity sites leads to a high-fluorescence intermediate state which is detected by the fluorophore. The interactions between the two classes of sites are interpreted by a model in which calcium binding at the high-affinity sites reverses the fluorescence change induced by calcium binding at the low-affinity sites. Magnesium binding to the calcium-magnesium sites of TR2 and TN-C occurs by the same two-step binding mechanism with a smaller value for K0 and a 5-fold larger rate constant of dissociation. 相似文献
11.
Enthalpy, entropy and heat capacity changes induced by binding of calcium ions to cardiac troponin C
Microcalorimetric titrations have been used to study the binding of Ca2+ to cardiac troponin C. Measurements were made both in the presence and in the absence of Mg2+, and at temperatures of 5 degrees, 15 degrees and 25 degrees C. Changes in enthalpy, entropy and heat capacity of troponin C associated with Ca binding have been determined. Cardiac troponin C exhibited a decrease in enthalpy and an increase in entropy associated with Ca binding. Enthalpy changes increased linearly with temperature, indicating that the Ca binding causes negative changes in the heat capacity of troponin C. These results show that the Ca binding causes a strong hydrophobic effect and a tightening of the molecular structure of cardiac troponin C. 相似文献
12.
Comparative NMR studies on cardiac troponin C and a mutant incapable of binding calcium at site II 总被引:2,自引:0,他引:2
One- and two-dimensional NMR techniques were used to study both the influence of mutations on the structure of recombinant normal cardiac troponin C (cTnC3) and the conformational changes induced by Ca2+ binding to site II, the site responsible for triggering muscle contraction. Spin systems of the nine Phe and three Tyr residues were elucidated from DQF-COSY and NOESY spectra. Comparison of the pattern of NOE connectivities obtained from a NOESY spectrum of cTnC3 with a model of cTnC based on the crystal structure of skeletal TnC permitted sequence-specific assignment of all three Tyr residues, as well as Phe-101 and Phe-153. NOESY spectra and calcium titrations of cTnC3 monitoring the aromatic region of the 1H NMR spectrum permitted localization of six of the nine Phe residues to either the N- or C-terminal domain of cTnC3. Analysis of the downfield-shifted C alpha H resonances permitted sequence-specific assignment of those residues involved in the beta-strand structures which are part of the Ca(2+)-binding loops in both the N- and C-terminal domains of cTnC3. The short beta-strands in the N-terminal domain of cTnC3 were found to be present and in close proximity even in the absence of Ca2+ bound at site II. Using these assignments, we have examined the effects of mutating Asp-65 to Ala, CBM-IIA, a functionally inactive mutant which is incapable of binding Ca2+ at site II [Putkey, J.A., Sweeney, H. L., & Campbell, S. T. (1989) J. Biol. Chem. 264, 12370]. Comparison of the apo, Mg(2+)-, and Ca(2+)-bound forms of cTnC3 and CBM-IIA demonstrates that the inability of CBM-IIA to trigger muscle contraction is not due to global structural changes in the mutant protein but is a consequence of the inability of CBM-IIA to bind Ca2+ at site II. The pattern of NOEs between aromatic residues in the C-terminal domain is nearly identical in cTnC3 and CBM-IIA. Similar interresidue NOEs were also observed between Phe residues assigned to the N-terminal domain in the Ca(2+)-saturated forms of both cTnC3 and CBM-IIA. However, chemical shift changes were observed for the N-terminal Phe residues in CBM-IIA. This suggests that binding of Ca2+ to site II alters the chemical environment of the residues in the N-terminal hydrophobic cluster without disrupting the spatial relationship between the Phe residues located in helices A and D. 相似文献
13.
An NMR and spin label study of the effects of binding calcium and troponin I inhibitory peptide to cardiac troponin C. 下载免费PDF全文
J. W. Howarth G. A. Krudy X. Lin J. A. Putkey P. R. Rosevear 《Protein science : a publication of the Protein Society》1995,4(4):671-680
The paramagnetic relaxation reagent, 4-hydroxy-2,2,6,6-tetramethylpiperidinyl-1-oxy (HyTEMPO), was used to probe the surface exposure of methionine residues of recombinant cardiac troponin C (cTnC) in the absence and presence of Ca2+ at the regulatory site (site II), as well as in the presence of the troponin I inhibitory peptide (cTnIp). Methyl resonances of the 10 Met residues of cTnC were chosen as spectral probes because they are thought to play a role in both formation of the N-terminal hydrophobic pocket and in the binding of cTnIp. Proton longitudinal relaxation rates (R1's) of the [13C-methyl] groups in [13C-methyl]Met-labeled cTnC(C35S) were determined using a T1 two-dimensional heteronuclear single- and multiple-quantum coherence pulse sequence. Solvent-exposed Met residues exhibit increased relaxation rates from the paramagnetic effect of HyTEMPO. Relaxation rates in 2Ca(2+)-loaded and Ca(2+)-saturated cTnC, both in the presence and absence of HyTEMPO, permitted the topological mapping of the conformational changes induced by the binding of Ca2+ to site II, the site responsible for triggering muscle contraction. Calcium binding at site II resulted in an increased exposure of Met residues 45 and 81 to the soluble spin label HyTEMPO. This result is consistent with an opening of the hydrophobic pocket in the N-terminal domain of cTnC upon binding Ca2+ at site II. The binding of the inhibitory peptide cTnIp, corresponding to Asn 129 through Ile 149 of cTnI, to both 2Ca(2+)-loaded and Ca(2+)-saturated cTnC was shown to protect Met residues 120 and 157 from HyTEMPO as determined by a decrease in their measured R1 values. These results suggest that in both the 2Ca(2+)-loaded and Ca(2+)-saturated forms of cTnC, cTnIp binds primarily to the C-terminal domain of cTnC. 相似文献
14.
Isotope labeling of recombinant normal cardiac troponin C (cTnC3) with 15N-enriched amino acids and multidimensional NMR were used to assign the downfield-shifted amide protons of Gly residues at position 6 in Ca(2+)-binding loops II, III, and IV, as well as tightly hydrogen-bonded amides within the short antiparallel beta-sheets between pairs of Ca(2+)-binding loops. The amide protons of Gly70, Gly110, and Gly146 were found to be shifted significantly downfield from the remaining amide proton resonances in Ca(2+)-saturated cTnC3. No downfield-shifted Gly resonance was observed from the naturally inactive site I. Comparison of downfield-shifted amide protons in the Ca(2+)-saturated forms of cTnC3 and CBM-IIA, a mutant having Asp65 replaced by Ala, demonstrated that Gly70 is hydrogen bonded to the carboxylate side chain of Asp65. Thus, the hydrogen bond between Gly and Asp in positions 6 and 1, respectively, of the Ca(2+)-binding loop appears crucial for maintaining the integrity of the helix-loop-helix Ca(2+)-binding sites. In the apo- form of cTnC3, only Gly70 was found to be shifted significantly downfield with respect to the remaining amide proton resonances. Thus, even in the absence of Ca2+ at binding site II, the amide proton of Gly70 is strongly hydrogen bonded to the side-chain carboxylate of Asp65. The amide protons of Ile112 and Ile148 in the C-terminal domain and Ile36 in the N-terminal domain data-sheets exhibit chemical shifts consistent with hydrogen-bond formation between the pair of Ca(2+)-binding loops in each domain of Ca(2+)-saturated cTnC3.(ABSTRACT TRUNCATED AT 250 WORDS) 相似文献
15.
Rachel A. Skowronsky Mechthild Schroeter Tamatha Baxley Yumin Li Joseph M. Chalovich Anne M. Spuches 《Journal of biological inorganic chemistry》2013,18(1):49-58
Human cardiac troponin C (HcTnC), a member of the EF hand family of proteins, is a calcium sensor responsible for initiating contraction of the myocardium. Ca2+ binding to the regulatory domain induces a slight change in HcTnC conformation which modifies subsequent interactions in the troponin–tropomyosin–actin complex. Herein, we report a calorimetric study of Ca2+ binding to HcTnC. Isotherms obtained at 25 °C (10 mM 2-morpholinoethanesulfonic acid, 50 mM KCl, pH 7.0) provided thermodynamic parameters for Ca2+ binding to both the high-affinity and the low-affinity domain of HcTnC. Ca2+ binding to the N-domain was shown to be endothermic in 2-morpholinoethanesulfonic acid buffer and allowed us to extract the thermodynamics of Ca2+ binding to the regulatory domain. This pattern stems from changes that occur at the Ca2+ site rather than structural changes of the protein. Molecular dynamics simulations performed on apo and calcium-bound HcTnC1–89 support this claim. The values of the Gibbs free energy for Ca2+ binding to the N-domain in the full-length protein and to the isolated domain (HcTnC1–89) are similar; however, differences in the entropic and enthalpic contributions to the free energy provide supporting evidence for the cooperativity of the C-domain and the N-domain. Thermograms obtained at two additional temperatures (10 and 37 °C) revealed interesting trends in the enthalpies and entropies of binding for both thermodynamic events. This allowed the determination of the change in heat capacity (?C p ) from a plot of ?H verses temperature and may provide evidence for positive cooperativity of Ca2+ binding to the C-domain. 相似文献
16.
Lim CC Yang H Yang M Wang CK Shi J Berg EA Pimentel DR Gwathmey JK Hajjar RJ Helmes M Costello CE Huo S Liao R 《Biophysical journal》2008,94(9):3577-3589
Troponin C (TnC) belongs to the superfamily of EF-hand (helix-loop-helix) Ca2+-binding proteins and is an essential component of the regulatory thin filament complex. In a patient diagnosed with idiopathic dilated cardiomyopathy, we identified two novel missense mutations localized in the regulatory Ca2+-binding Site II of TnC, TnC(E59D,D75Y). Expression of recombinant TnC(E59D,D75Y) in isolated rat cardiomyocytes induced a marked decrease in contractility despite normal intracellular calcium homeostasis in intact cardiomyocytes and resulted in impaired myofilament calcium responsiveness in Triton-permeabilized cardiomyocytes. Expression of the individual mutants in cardiomyocytes showed that TnCD75Y was able to recapitulate the TnC(E59D,D75Y) phenotype, whereas TnCE59D was functionally benign. Force-pCa relationships in TnC(E59D,D75Y) reconstituted rabbit psoas fibers and fluorescence spectroscopy of TnC(E59D,D75Y) labeled with 2-[(4′-iodoacetamide)-aniline]naphthalene-6-sulfonic acid showed a decrease in myofilament Ca2+ sensitivity and Ca2+ binding affinity, respectively. Furthermore, computational analysis of TnC showed the Ca2+-binding pocket as an active region of concerted motions, which are decreased markedly by mutation D75Y. We conclude that D75Y interferes with proper concerted motions within the regulatory Ca2+-binding pocket of TnC that hinders the relay of the thin filament calcium signal, thereby providing a primary stimulus for impaired cardiomyocyte contractility. This in turn may trigger pathways leading to aberrant ventricular remodeling and ultimately a dilated cardiomyopathy phenotype. 相似文献
17.
18.
Effects of thin and thick filament proteins on calcium binding and exchange with cardiac troponin C 下载免费PDF全文
Davis JP Norman C Kobayashi T Solaro RJ Swartz DR Tikunova SB 《Biophysical journal》2007,92(9):3195-3206
Understanding the effects of thin and thick filament proteins on the kinetics of Ca(2+) exchange with cardiac troponin C is essential to elucidating the Ca(2+)-dependent mechanisms controlling cardiac muscle contraction and relaxation. Unlike labeling of the endogenous Cys-84, labeling of cardiac troponin C at a novel engineered Cys-53 with 2-(4'-iodoacetamidoanilo)napthalene-6-sulfonic acid allowed us to accurately measure the rate of calcium dissociation from the regulatory domain of troponin C upon incorporation into the troponin complex. Neither tropomyosin nor actin alone affected the Ca(2+) binding properties of the troponin complex. However, addition of actin-tropomyosin to the troponin complex decreased the Ca(2+) sensitivity ( approximately 7.4-fold) and accelerated the rate of Ca(2+) dissociation from the regulatory domain of troponin C ( approximately 2.5-fold). Subsequent addition of myosin S1 to the reconstituted thin filaments (actin-tropomyosin-troponin) increased the Ca(2+) sensitivity ( approximately 6.2-fold) and decreased the rate of Ca(2+) dissociation from the regulatory domain of troponin C ( approximately 8.1-fold), which was completely reversed by ATP. Consistent with physiological data, replacement of cardiac troponin I with slow skeletal troponin I led to higher Ca(2+) sensitivities and slower Ca(2+) dissociation rates from troponin C in all the systems studied. Thus, both thin and thick filament proteins influence the ability of cardiac troponin C to sense and respond to Ca(2+). These results imply that both cross-bridge kinetics and Ca(2+) dissociation from troponin C work together to modulate the rate of cardiac muscle relaxation. 相似文献
19.
Energetics of the binding of calcium and troponin I to troponin C from rabbit skeletal muscle. 下载免费PDF全文
We determined the free energy of interaction between rabbit skeletal troponin I (TNI) and troponin C (TNC) at 10 degrees and 20 degrees C with fluorescently labeled proteins. The sulfhydryl probe 5-iodoacetamidoeosin (IAE) was attached to cysteine (Cys)-98 of TNC and to Cys-133 of TNI, and each of the labeled proteins was titrated with the other unlabeled protein. The association constant for formation of the complex between labeled TNC (TNC*) and TNI was 6.67 X 10(5) M-1 in 0.3 M KCl, and pH 7.5 at 20 degrees C. In the presence of bound Mg2+, the binding constant increased to 4.58 X 10(7) M-1 and in the presence of excess of Ca2+, the association constant was 5.58 X 10(9) M-1. Very similar association constants were obtained when labeled TNI was titrated with unlabeled TNC. The energetics of Ca2+ binding to TNC* and the complex TNI X TNC* were also determined at 20 degrees C. The two sets of results were used to separately determine the coupling free energy for binding TNI and Mg2+, or Ca2+ to TNC. The results yielded a total coupling free energy of -5.4 kcal. This free energy appeared evenly partitioned into the two species: TNI X TNC(Mg)2 or TNI X TNC(Ca)2, and TNI X TNC(Ca)4. The first two species were each stabilized by -2.6 kcal, with respect to the Ca2+ free TNI X TNC complex, and TNI X TNC(Ca)4 was stabilized by -2.8 kcal, respect to TNI X TNC(Ca)2 or TNI X TNC(Mg)2. The coupling free energy was shown to produce cooperatively complexes formed between TNI and TNC in which the high affinity sites were initially saturated as a function of free Ca2+ to yield TNI X TNC(Ca)4. This saturation occurred in the free Ca2+ concentration range 10(-7) to 10(-5) M. The cooperative strengthening of the linkage between TNI and TNC induced by Ca2+ binding to the Ca2+-specific sites of TNC may have a direct relationship to activation of actomyosin ATPase. The nature of the forces involved in the Ca2+-induced strengthening of the complex is discussed. 相似文献
20.
Dvoretsky A Abusamhadneh EM Howarth JW Rosevear PR 《The Journal of biological chemistry》2002,277(41):38565-38570
Cardiac troponin C (TnC) is composed of two globular domains connected by a flexible linker. In solution, linker flexibility results in an ill defined orientation of the two globular domains relative to one another. We have previously shown a decrease in linker flexibility in response to cardiac troponin I (cTnI) binding. To investigate the relative orientation of calcium-saturated TnC domains when bound to cTnI, (1)H-(15)N residual dipolar couplings were measured in two different alignment media. Similarity in alignment tensor orientation for the two TnC domains supports restriction of domain motion in the presence of cTnI. The relative spatial orientation of TnC domains bound to TnI was calculated from measured residual dipolar couplings and long-range distance restraints utilizing a rigid body molecular dynamics protocol. The relative domain orientation is such that hydrophobic pockets face each other, forming a latch to constrain separate helical segments of TnI. We have utilized this structure to successfully explain the observed functional consequences of linker region deletion mutants. Together, these studies suggest that, although linker plasticity is important, the ability of TnC to function in muscle contraction can be correlated with a preferred domain orientation and interdomain distance. 相似文献