首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 78 毫秒
1.
Host sterilization is a common feature of sexually transmitted diseases (STDs). Because host reproductive failure may free up resources for pathogen reproduction and transmission, theory predicts that selection on sterilizing pathogens will favour maximum virulence (i.e. complete sterilization). We examined patterns of infection in sexually transmitted anther-smut fungi (Microbotryum) on four of their host species in the Caryophyllaceae. Using controlled fungal matings and experimental inoculations, we compared disease expression in inoculations ranging from host-specific pathogens to hybrids and cross-species treatments. Our data support the existence of host-specific sibling species within the genus Microbotryum based on a low infection rate from cross-inoculations and reduced fitness for hybrid pathogens. These patterns of host specificity and reproductive isolation, however, were not absolute. We did observe some successful cross-species and hybrid infections, but the expression of disease was frequently incomplete, including only partial host sterilization and the failed dehiscence of pathogen spores. The prevalence of these maladapted disease phenotypes may greatly inhibit the emergence of novel host pathogen combinations. Infections by hybrid pathogen genotypes were intermediate, in terms of both infection rate and the normality of disease symptoms, between host-specific and cross-inoculated pathogens. In addition, the frequency with which hybrid and cross-inoculated anther-smut pathogens were able to infect but not sterilize new hosts supports the prediction that sterilizing STDs are under selection to maximize virulence in natural populations.  相似文献   

2.
Many epidemics involve plants infected with more than one pathogen, but few experiments address climate change scenarios that influence mixed infections. This study addresses the interactive effects of co‐infection and temperature on disease development in plants of the annual pasture species subterranean clover (Trifolium subterraneum), which is widely sown in different world regions. Bean yellow mosaic virus (BYMV) and the fungus Kabatiella caulivora are two important pathogens causing considerable production losses in pastures containing this species. Both occur together in such pastures causing a severe necrotic disease when mixed infection occurs. Effects of temperature on symptom expression were investigated in subterranean clover plants infected singly or in mixed infection with these pathogens. Plants were maintained in controlled environment rooms at 18°C, 20°C or 22.5°C after sap inoculation with BYMV. K. caulivora conidia suspensions were inoculated to plants once systemic BYMV symptoms developed. Plants were assessed for three disease assessment parameters, dead petioles numbers, marginal leaflet necrosis and overall plant damage. In general, mixed infection caused most severe symptoms, K. caulivora least severe symptoms, and BYMV symptoms of intermediate severity. In single infections, effects of temperature on disease severity differed between pathogens: BYMV symptoms were most pronounced at 18°C, but K. caulivora induced more severe symptoms at 20°C and 22.5°C. In mixed infections, disease severity generally followed the pattern developed with BYMV alone as temperature increased. Also, synergistic increase in disease severity sometimes occurred at 18°C, but increases were only additive at 20°C and 22.5°C. These results reflected the greater BYMV multiplication detected in infected leaves at 18°C compared with 20°C or 22.5°C. Our findings indicate that in rainfed subterranean clover pastures, as global warming progresses disease severity from infection with BYMV and K. caulivora alone may decline or increase, respectively, and mixed infection with them may become less damaging.  相似文献   

3.
Natural infections often consist of multiple pathogens of the same or different species. When coinfections occur, pathogens compete for access to host resources and fitness is determined by how well a pathogen can reproduce compared to its competitors. Yet not all hosts provide the same resource pool. Males and females, in particular, commonly vary in both their acquisition of resources and investment in immunity, but their ability to modify any competition between different pathogens remains unknown. Using the Daphnia magna–Pasteuria ramosa model system, we exposed male and female hosts to either a single genotype infection or coinfections consisting of two pathogen genotypes of varying levels of virulence. We found that coinfections within females favored the transmission of the more virulent pathogen genotype, whereas coinfections within male hosts resulted in equal transmission of competing pathogen genotypes. This contrast became less pronounced when the least virulent pathogen was able to establish an infection first, suggesting that the influence of host sex is shaped by priority effects. We suggest that sex is a form of host heterogeneity that may influence the evolution of virulence within coinfection contexts and that one sex may be a reservoir for pathogen genetic diversity in nature.  相似文献   

4.
5.
Sun K  Metzger DW 《Nature medicine》2008,14(5):558-564
Secondary bacterial infection often occurs after pulmonary virus infection and is a common cause of severe disease in humans, yet the mechanisms responsible for this viral-bacterial synergy in the lung are only poorly understood. We now report that pulmonary interferon-gamma (IFN-gamma) produced during T cell responses to influenza infection in mice inhibits initial bacterial clearance from the lung by alveolar macrophages. This suppression of phagocytosis correlates with lung IFN-gamma abundance, but not viral burden, and leads to enhanced susceptibility to secondary pneumococcal infection, which can be prevented by IFN-gamma neutralization after influenza infection. Direct inoculation of IFN-gamma can mimic influenza infection and downregulate the expression of the class A scavenger receptor MARCO on alveolar macrophages. Thus, IFN-gamma, although probably facilitating induction of specific anti-influenza adaptive immunity, suppresses innate protection against extracellular bacterial pathogens in the lung.  相似文献   

6.
A major cost of group‐living is its inherent risk of pathogen infection. To limit this risk, many group‐living animals have developed the capability to prophylactically boost their immune system in the presence of group members and/or to mount collective defences against pathogens. These two phenomena, called density‐dependent prophylaxis and social immunity, respectively, are often used to explain why, in group‐living species, individuals survive better in groups than in isolation. However, this survival difference may also reflect an alternative and often overlooked process: a cost of social isolation on individuals’ capability to fight against infections. Here, we disentangled the effects of density‐dependent prophylaxis, social immunity and stress of social isolation on the survival after pathogen exposure in group‐living adults of the European earwig Forficula auricularia. By manipulating the presence of group members both before and after pathogen exposure, we demonstrated that the cost of being isolated after infection, but not the benefits of social immunity or density‐dependent prophylaxis, explained the survival of females. Specifically, females kept constantly in groups or constantly isolated had higher survival rates than females that were first in groups and then isolated after infection. Our results also showed that this cost of social isolation was absent in males and that social isolation did not reduce the survival of noninfected individuals. Overall, this study gives a new perspective on the role of pathogens in social evolution, as it suggests that an apparently nonadaptive, personal immune process may promote the maintenance of group‐living under pathogenic environments.  相似文献   

7.
Many important pathogens have humans as their normal ecological niche where healthy carriage dominates over disease. The ability of these commensal pathogens, such as Streptococcus pneumoniae, to cause disease depends on a series of microbial factors as well as of genetic and environmental factors in the human host affecting the clearing capacity mediated by the innate and adaptive immune system. This delicate interplay between microbe and host affects not only the likelihood for a commensal pathogen to cause disease, but also disease type and disease severity.  相似文献   

8.
The atypical symptoms first described by Bryan (1932) of the angular leaf spot disease of cotton caused by Xanthomonas malvacearum (E. F. Sm.) Dowson were reproduced by inoculation into seeds, stem apices or buds. The lesions that developed on the veins of the newly produced leaves were elongated and water-soaked, becoming dark brown. The leaf tissue dependent upon infected veins became yellow, flaccid and withered. The development of these symptoms was enhanced when inoculations were made into opening buds or germinating seeds as compared with inoculations into closed buds or dormant seeds.
In other bacterial diseases caused by Xanthomonas spp., somewhat atypical symptoms could also be produced by bud inoculation into the appropriate host. Those produced by X. ricini (Yoshi & Takimato) Dowson on castor, closely resembled the vein lesions described above on cotton but resulted only from bud inoculations; inoculations into stem apices and seeds failed to produce them. In dolichos bean inoculated with X. phaseoli (Smith) Dowson, atypical symptoms were produced only by seed inoculations and were confined to the first simple leaves (prophylls).
The differences in the production of atypical symptoms on the three hosts are correlated with differences in host structure and with the degree of virulence of the pathogen. The leaf parasite X. ricini , for example, which cannot infect castor bean stems, does not produce atypical symptoms when inoculated below the stem apex.
From the data discussed below, the incidence of atypical symptoms is attributed to infection either of an actively growing tissue or of a telescoped structure which subsequently completes its development.
The atypical symptoms of the cotton disease are not caused by a special strain of X. malvacearum. Further, they are not a peculiarity of this disease but may also develop in other necrotic diseases under similar conditions.  相似文献   

9.
Understanding the interactions between pathogen, crop and vector are necessary for the development of disease control practices of vector-borne pathogens. For instance, resistant plant genotypes can help constrain disease symptoms due to infections and limit pathogen spread by vectors. On the other hand, genotypes susceptible to infection may increase pathogen spread owing to their greater pathogen quantity, regardless of their symptom status. In this study, we evaluated under greenhouse conditions the relative levels of resistance (i.e. relatively lower pathogen quantity) versus tolerance (i.e. less symptom severity) of 10 commercial grapevine (Vitis vinifera) cultivars to Pierce’s disease etiological agent, the bacterium Xylella fastidiosa. Overall, no correlation was detected between pathogen quantity and disease severity, indicating the existence of among-cultivar variation in plant response to infection. Thompson Seedless and Barbera were the two most susceptible among 10 evaluated cultivars. Rubired showed the least severe disease symptoms and was categorized as one of the most resistant genotypes in this study. However, within each cultivar the degree of resistance/tolerance was not consistent across sampling dates. These cultivar and temporal differences in susceptibility to infection may have important consequences for disease epidemiology and the effectiveness of management protocols.  相似文献   

10.
Our understanding of immunity to fungal pathogens has advanced considerably in recent years. Particularly significant have been the parallel discoveries in the C-type lectin receptor family and the Th effector arms of immunity, especially Th17 cells and their signature cytokine, IL-17. Many of these studies have focused on the most common human fungal pathogen, Candida albicans, which is typically a commensal microbe in healthy individuals but causes various disease manifestations in immunocompromised hosts, ranging from mild mucosal infections to lethal disseminated disease. Here, we discuss emerging fundamental discoveries with C.?albicans that have informed our overall molecular understanding of fungal immunity. In particular, we focus on the importance of pattern recognition receptor-mediated fungal recognition and subsequent IL-17 responses in host defense against mucosal candidiasis. In light of these recent advances, we also discuss the implications for anticytokine biologic therapy and vaccine development.  相似文献   

11.
S T Lund  R E Stall    H J Klee 《The Plant cell》1998,10(3):371-382
Ethylene evolution occurs concomitantly with the progression of disease symptoms in response to many virulent pathogen infections in plants. A tomato mutant impaired in ethylene perception-Never ripe-exhibited a significant reduction in disease symptoms in comparison to the wild type after inoculations of both genotypes with virulent bacterial (Xanthomonas campestris pv vesicatoria and Pseudomonas syringae pv tomato) and fungal (Fusarium oxysporum f sp lycopersici) pathogens. Bacterial spot disease symptoms were also reduced in tomato genotypes impaired in ethylene synthesis (1-aminocyclopropane-1-carboxylic acid deaminase) and perception (14893), thereby corroborating a reducing effect for ethylene insensitivity on foliar disease development. The reduction in foliar disease symptoms in Never ripe plants was a specific effect of ethylene insensitivity and was not due to reductions in bacterial populations or decreased ethylene synthesis. PR-1B1 mRNA accumulation in response to X. c. vesicatoria infection was not affected by ethylene insensitivity, indicating that ethylene is not required for defense gene induction. Our findings suggest that broad tolerance of diverse vegetative diseases may be achieved via engineering of ethylene insensitivity in tomato.  相似文献   

12.
《Trends in microbiology》2023,31(6):644-656
Respiratory viral infections such as severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) and influenza A virus (IAV) trigger distinct clinical outcomes defined by immunity-based viral clearance or disease associated with exaggerated and prolonged inflammation. The important role of T cells in shaping both antiviral immunity and inflammation has revived interest in understanding the host–pathogen interactions that lead to the diverse functions of T cells in respiratory viral infections. Inborn deficiencies and acquired insufficiency in immunity can prolong infection and shift the immune response towards exacerbated inflammation, which results from persistent innate immune activation and bystander T-cell activation that is nonspecific to the pathogen but is often driven by cytokines. This review discusses how virus variants, exposure doses, routes of infection, host genetics, and immune history can modulate the activation and function of T cells, thus influencing clinical outcomes. Knowledge of virus–host interaction can inform strategies to prevent immune dysfunction in respiratory viral infection and help in the treatment of associated diseases.  相似文献   

13.
Coinfections with multiple pathogens can result in complex within‐host dynamics affecting virulence and transmission. While multiple infections are intensively studied in solitary hosts, it is so far unresolved how social host interactions interfere with pathogen competition, and if this depends on coinfection diversity. We studied how the collective disease defences of ants – their social immunity – influence pathogen competition in coinfections of same or different fungal pathogen species. Social immunity reduced virulence for all pathogen combinations, but interfered with spore production only in different‐species coinfections. Here, it decreased overall pathogen sporulation success while increasing co‐sporulation on individual cadavers and maintaining a higher pathogen diversity at the community level. Mathematical modelling revealed that host sanitary care alone can modulate competitive outcomes between pathogens, giving advantage to fast‐germinating, thus less grooming‐sensitive ones. Host social interactions can hence modulate infection dynamics in coinfected group members, thereby altering pathogen communities at the host level and population level.  相似文献   

14.
15.
Group A streptococcus (GAS, Streptococcus pyogenes) is the cause of a variety of clinical conditions, ranging from pharyngitis to autoimmune disease. Peptide-major histocompatibility complex class II (pMHCII) tetramers have recently emerged as a highly sensitive means to quantify pMHCII-specific CD4+ helper T cells and evaluate their contribution to both protective immunity and autoimmune complications induced by specific bacterial pathogens. In lieu of identifying an immunodominant peptide expressed by GAS, a surrogate peptide (2W) was fused to the highly expressed M1 protein on the surface of GAS to allow in-depth analysis of the CD4+ helper T cell response in C57BL/6 mice that express the I-A(b) MHCII molecule. Following intranasal inoculation with GAS-2W, antigen-experienced 2W:I-A(b)-specific CD4+ T cells were identified in the nasal-associated lymphoid tissue (NALT) that produced IL-17A or IL-17A and IFN-γ if infection was recurrent. The dominant Th17 response was also dependent on the intranasal route of inoculation; intravenous or subcutaneous inoculations produced primarily IFN-γ+ 2W:I-A(b+) CD4+ T cells. The acquisition of IL-17A production by 2W:I-A(b)-specific T cells and the capacity of mice to survive infection depended on the innate cytokine IL-6. IL-6-deficient mice that survived infection became long-term carriers despite the presence of abundant IFN-γ-producing 2W:I-A(b)-specific CD4+ T cells. Our results suggest that an imbalance between IL-17- and IFN-γ-producing CD4+ T cells could contribute to GAS carriage in humans.  相似文献   

16.
Barley stripe mosaic virus (BSMV) has emerged as a vector for virus-induced gene silencing (VIGS) in cereals, having been used to study a number of genes involved in resistance in both wheat and barley. However, the effects of the BSMV vector on plant physiology and disease resistance in plants remains unexplored. The BSMV inoculation control vector, BSMV:GFP was shown to cause severe viral symptoms in wheat, displaying chlorosis, leaf curling and growth inhibition typical of the symptoms seen in BSMV-infected barley. These viral symptoms were accompanied by induction of genes implicated in defense against pathogens, namely PR1, PR4, PR5, PR10 and PAL. Subsequent inoculation of BSMV:GFP-infected wheat with a wheat pathotype of Magnaporthe oryzae, the blast pathogen, resulted in decreased susceptibility. Penetration of epidermal cells and subsequent multiple cell colonization by M. oryzae was significantly reduced. This increased restriction of pathogen growth observed for BSMV:GFP infections with and without the viral coat protein gene. However, prior infection with BSMV:GFP had no effect on the development of a compatible isolate of Blumeria graminis f. sp. tritici, the causal agent of powdery mildew.  相似文献   

17.
The role of microbial interactions in infectious disease   总被引:1,自引:0,他引:1  
The occurrence of infectious disease is affected by interaction between microorganisms in three ways. The indigenous flora (commensal microorganisms) of some mucous surfaces provide one of the main protective mechanisms against infection by pathogens (disease-producing microbes). The commensal populations interfere with the establishment of pathogens on mucous membranes by evoking anaerobic conditions, by competing for space and nutrients and by producing inhibitors. How, at the beginning of successful infection, pathogens in relatively small numbers overcome this protective activity of the commensal population is unknown. Although not a general phenomenon, some pathogens exacerbate the effects of others. The best examples are the potentiation of bacterial infections by existing viral infections: mucosal adherence and penetration by bacteria are enhanced and phagocytic defences against them weakened. Some microorganisms that are unable to produce significant disease on their own may combine with others to cause serious sickness. The harmful effects of these combinations of microorganisms can be explained by the multifactorial nature of pathogenicity (virulence), i.e. the capacity to produce disease. Although each member of the mixed population cannot alone produce the full complement of factors needed for disease production, the complement can be attained by combining contributions from different members.  相似文献   

18.
Goss EM  Bergelson J 《Oecologia》2007,152(1):71-81
Variation in plant resistance to pathogen infection is commonly observed in interactions between wild plants and their foliar pathogens. Models of host–pathogen interactions indicate that a large cost of infection is generally necessary to maintain this variation, yet there is limited evidence that foliar pathogens cause detectable fitness reductions in wild host plants. Most published work has focused on fungal pathogens. Pseudomonas viridiflava, a common bacterial pathogen of the annual weed Arabidopsis thaliana across its range, comprises two distinct genetic clades that cause disease symptoms of different severity. Here we measured the extent of infection of wild A. thaliana populations in the Midwest, USA, and examined the effect on seed production, in field and growth-chamber experiments, of experimental inoculation with isolates from the two clades. We found infection with P. viridiflava varied from 0 to 56% in Midwest A. thaliana populations, with the possibility of several leaves per plant infected later in the growing season. In the growth chambers, experimental inoculation reduced seed set by averages of 15 and 11% for clades A and B, respectively. In the field experiment, only clade A affected plant fitness significantly, reducing seed set by an average of 38%. Underlying these average effects we observed both negative and positive effects of infection, and variation in both fitness among plant genotypes and sensitivity to environmental conditions.  相似文献   

19.
In human and experimental paracoccidioidomycosis the severe disease is characterized by depressed cellular immunity whereas the mild disease is associated with persistent T cell immunity. Since the subcutaneous route of antigen inoculation is an efficient inducer of cellular immunity, we decided to study this route of infection and verify its effect on a lethal secondary infection of susceptible hosts. It was observed that the s.c. infection induces positive delayed type hypersensitivity (DTH) responses in 9 different mouse strains, is a self healing process and susceptible mice develop more intense DTH reactions than resistant mice to Paracoccidioides brasiliensis infection. Unexpectedly, the previous s.c. infection of susceptible mice led to immunoprotection or disease exacerbation depending on the route of fungal challenge. Immunoprotection was achieved after intraperitoneal challenge and was associated with persistent cell-mediated immunity and a mixed type-1/type-2 immunity. Exacerbated disease was found after intravenous challenge, was associated with cellular immunity anergy and prevalent type-2 immune response. As a whole, our work demonstrates that susceptibility to P. brasiliensis infection cannot be ascribed to intrinsic inability to mount cellular immune responses, that a single immunization procedure can result in opposite disease outcomes and immunoprotection can be achieved by a balanced Th1/Th2 immunity.  相似文献   

20.
《Trends in microbiology》2023,31(5):480-497
Human cytomegalovirus (HCMV) is an important pathogen worldwide. Although HCMV infection is often asymptomatic in immunocompetent individuals, it can cause severe or even life-threatening symptoms in immunocompromised patients. Due to limitations of antiviral treatments, it is necessary to search for new therapeutic alternatives. Recent studies have highlighted the contribution of antibodies in protecting against HCMV disease, including neutralizing and non-neutralizing antibodies. Given the immunocompromised target population, monoclonal antibodies (mAbs) may represent an alternative to the clinical management of HCMV infection. In this context, we provide a synthesis of recent data revising the literature supporting and arguing about the role of the humoral immunity in controlling HCMV infection. Additionally, we review the state of the art in the development of therapies based on mAbs.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号