首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
2.
3.
4.
We investigated the visual-cortex neurons of the conscious rabbit during simultaneous stimulation with a clicking sound and a light flash (complex) and during separate application of these stimuli. We tested the development of the reflex with time and of the sound-light association during prolonged rhythmic application of the sound and light. Fifty visual-cortex neurons were studied; 20% of the cells responded with a specific phased reaction and 16% exhibited a specific response to the complex different from the responses to each of its components. Development of a sound-light association was observed in 18% of the cells and a temporal reflex was induced in 25%. In most cases, the conditioned reaction evoked was similar to some informational element in the neuronal response to the complex.M. V. Lomonosov Moscow State University. Institute of Cybernetics, Academy of Sciences of the GruzSSR. Translated from Neirofiziologiya, Vol. 2, No. 4, pp. 391–398, July–August, 1970.  相似文献   

5.
Raghu SV  Borst A 《PloS one》2011,6(5):e19472
The visual system of Drosophila contains approximately 60,000 neurons that are organized in parallel, retinotopically arranged columns. A large number of these neurons have been characterized in great anatomical detail. However, studies providing direct evidence for synaptic signaling and the neurotransmitter used by individual neurons are relatively sparse. Here we present a first layout of neurons in the Drosophila visual system that likely release glutamate as their major neurotransmitter. We identified 33 different types of neurons of the lamina, medulla, lobula and lobula plate. Based on the previous Golgi-staining analysis, the identified neurons are further classified into 16 major subgroups representing lamina monopolar (L), transmedullary (Tm), transmedullary Y (TmY), Y, medulla intrinsic (Mi, Mt, Pm, Dm, Mi Am), bushy T (T), translobula plate (Tlp), lobula intrinsic (Lcn, Lt, Li), lobula plate tangential (LPTCs) and lobula plate intrinsic (LPi) cell types. In addition, we found 11 cell types that were not described by the previous Golgi analysis. This classification of candidate glutamatergic neurons fosters the future neurogenetic dissection of information processing in circuits of the fly visual system.  相似文献   

6.
The optic tectum holds a central position in the tectofugal pathway of non-mammalian species and is reciprocally connected with the nucleus isthmi. Here, we recorded from individual nucleus isthmi pars parvocellularis (Ipc) neurons in the turtle eye-attached whole-brain preparation in response to a range of computer-generated visual stimuli. Ipc neurons responded to a variety of moving or flashing stimuli as long as those stimuli were small. When mapped with a moving spot, the excitatory receptive field was of circular Gaussian shape with an average half-width of less than 3°. We found no evidence for directional sensitivity. For moving spots of varying sizes, the measured Ipc response-size profile was reproduced by the linear Difference-of-Gaussian model, which is consistent with the superposition of a narrow excitatory center and an inhibitory surround. Intracellular Ipc recordings revealed a strong inhibitory connection from the nucleus isthmi pars magnocellularis (Imc), which has the anatomical feature to provide a broad inhibitory projection. The recorded Ipc response properties, together with the modulatory role of the Ipc in tectal visual processing, suggest that the columns of Ipc axon terminals in turtle optic tectum bias tectal visual responses to small dark changing features in visual scenes.  相似文献   

7.
In acute experiments on immobilized cats 13 functional characteristics of 96 visual cortex neurons were investigated. By means of regression, cluster, and multivariate analyses, these could be divided into two subgroups with varying degrees of correlatedness. Cells of the first subgroup were more frequently characterized by their relatively central location in the visual receptive field, while those of the second subgroup were more often found at the periphery. A significant correlation was found between 11 of the properties investigated. In each subgroup, cells with more centrally localized small receptive fields had, in comparison with neurons of the peripheral visual projection, short latent periods, lower thresholds, phasic response, and brief summation; their responses varied widely in intensity, and they had greater differential sensitivity, and were distinguished by high-frequency discharges. Significant correlation coefficients between the factors studied fluctuated between 0.21 and 0.99; moreover, there were almost twice as many significant relationships in the first subgroup of neurons as in the second. The possible mechanisms of correlations between the properties of the visual cortex neurons are discussed, as well as the reasons why they differ in cells of the two subgroups, the cortex, and the lateral geniculate body.Institute of Higher Nervous Activity and Neurophysiology, Academy of Sciences of the USSR, Moscow. Translated from Neirofiziologiya, Vol. 17, No. 5, pp. 587–596, September–October, 1985.  相似文献   

8.
Changes in activity of 54 neurons in the rabbit visual cortex evoked by the replacement of eight color and eight achromatic stimuli in pairs were analyzed. The diffused stimuli generated by color SVGA monitor were used in the experiments. The earliest response of phasic neurons (50-90 ms after the replacement) was strongly correlated with differences between stimuli in color or intensity. This response ("the signal of differences") was used as a basis of a matrix (8 x 8) constructed for each neuron. Such matrices included mean numbers of spikes per second in responses to changes of different stimuli pairs. All matrices were subjected to factor analysis, and the basic axes (the main factors) of sensory spaces were revealed. It was found that 16 neurons (30%) detected only achromatic differences between stimuli. Perceptual spaces of these neurons were two-dimensional with brightness and darkness orthogonal axes. The spaces of 12 neurons (22%) were four-dimensional with two chromatic and two achromatic axes. The structure of the perceptual space reconstructed from neuronal spikes was similar to the space calculated from the early VEP components recorded under similar conditions and to another space reconstructed on the basis of rabbit's instrumental learning. The fundamental coincidence of color spaces revealed by different methods may reflect the general principle of vector coding in the visual system and suggests the coexistence of two independent cortical mechanisms of the detection of chromatic and achromatic differences.  相似文献   

9.
10.
Responses of rabbit visual cortical neurons to single and repetitive intracortical electrical stimulation were investigated. The stimulating electrode was located 0.7–1.2 mm away from the recording electrode. Response thresholds to single stimulation were as a rule 150–180 µA, whereas to series of stimuli they were 30–60 µA. The latent period to the first spike averaged 5–15 msec but the probability of the initial discharge was very low, namely 3–6%. With an increase in current intensity the duration of the initial inhibitory pause was increased in half of the neurons responding to it, whereas in the rest it was unchanged. After presentation of series of stimuli spontaneous activity was enhanced for a short time (4–6 sec). In about half of the cells the same kinds of discharge dynamics were observed in response to repetitive stimulation (frequency 0.25 Hz) as in responses to light, but more neurons with sensitization of discharge and fewer "habituating" neurons took part in responses to electrical stimulation. It is postulated that stimulation of a given point of the visual cortex evokes excitation of a local neuron hypercolumn and inhibition of neighboring cell columns.M. V. Lomonosov Moscow State University. Translated from Neirofiziologiya, Vol. 15, No. 4, pp. 412–419, July–August, 1983.  相似文献   

11.
12.
The activity of 41 visual cortex and 20 hippocampal neurons from field CA1 was registered in experiments using oddball-stimulation with different color stimuli varied in intensity. 34% cortical and 37% hippocampal neurons demonstrated plasticity reactions. The significant increase of latest phases of neuronal activity (200-500 and 200-1000 ms after stimulation for cortical neurons and 300-550 ms for hippocampal neurons) was shown in responses to rare deviant stimuli, which had a less intensity than frequently standards. The quantity of the earliest neuronal phase of activity (40-120 ms after stimulation) was stabilized in responses to deviants and standards during the experiment. We propose that such increase of the latest phases of neuronal activity (the limited plasticity) may reflect the mechanisms of orienting reaction.  相似文献   

13.
14.
BACKGROUND: Despite having tiny brains and relatively low-resolution compound eyes, many fly species frequently engage in precisely controlled aerobatic pursuits of conspecifics. Recent investigations into high-order processing in the fly visual system have revealed a class of neurons, coined small-target-motion detectors (STMDs), capable of responding robustly to target motion against the motion of background clutter. Despite limited spatial acuity in the insect eye, these neurons display exquisite sensitivity to small targets. RESULTS: We recorded intracellularly from morphologically identified columnar neurons in the lobula complex of the hoverfly Eristalis tenax. We show that these columnar neurons with exquisitely small receptive fields, like their large-field counterparts recently described from both male and female flies, have an extreme selectivity for the motion of small targets. In doing so, we provide the first physiological characterization of small-field neurons in female flies. These retinotopically organized columnar neurons include both direction-selective and nondirection-selective classes covering a large area of visual space. CONCLUSIONS: The retinotopic arrangement of lobula columnar neurons sensitive to the motion of small targets makes a strong case for these neurons as important precursors in the local processing of target motion. Furthermore, the continued response of STMDs with such small receptive fields to the motion of small targets in the presence of moving background clutter places further constraints on the potential mechanisms underlying their small-target tuning.  相似文献   

15.
16.
17.
Investigation of receptive fields of 232 primary visual cortical neurons in rabbits by the use of shaped visual stimuli showed that 21.1% are unselective for stimulus orientation, and 34.1% have simple, 16.4% complex, and 18.5% hypercomplex receptive fields, and 9.9% have other types. Neurons with different types of receptive fields also differed in spontaneous activity, selectivity for rate of stimulus movement, and acuteness of orientational selectivity. Neurons not selective to orientation were found more frequently in layer IV than in other layers, and very rarely in layer VI. Cells with simple receptive fields were numerous in all layers but predominated in layer VI. Neurons with complex receptive fields were rare in layer IV and more numerous in layers V and VI. Neurons with hypercomplex receptive fields were found frequently in layers II + III and IV, rarely in layers V and VI. Spontaneous unit activity in layer II + III was lowest on average, and highest in layer V. Acuteness or orientational selectivity of neurons with simple and complex receptive fields in layers II + III and V significantly exceeded the analogous parameter in layers IV and VI.A. N. Severtsov Institute of Evolutionary Morphology and Ecology of Animals, Academy of Sciences of the USSR, Moscow. Translated from Neirofiziologiya, Vol. 17, No. 1, pp. 19–27, January–February, 1985.  相似文献   

18.
Our study compares the spatio-temporal visual receptive field properties of different subcortical stages of the ascending tectofugal visual system. Extracellular single-cell recordings were performed in the superficial (SCs) and intermediate (SCi) layers of the superior colliculus (SC), the suprageniculate nucleus (Sg) of the posterior thalamus and the caudate nucleus (CN) of halothane-anesthetized cats. Neuronal responses to drifting gratings of various spatial and temporal frequencies were recorded. The neurons of each structure responded optimally to low spatial and high temporal frequencies and displayed narrow spatial and temporal frequency tuning. The detailed statistical analysis revealed that according to its stimulus preferences the SCs has markedly different spatio-temporal properties from the homogeneous group formed by the SCi, Sg and CN. The SCs neurons preferred higher spatial and lower temporal frequencies and had broader spatial tuning than the other structures. In contrast to the SCs the visually active SCi, as well as the Sg and the CN neurons possessed consequently similar spatio-temporal preferences. These data support our hypothesis that the visually active SCi, Sg and CN neurons form a homogeneous neuronal population given a similar spatio-temporal frequency preference and a common function in processing of dynamic visual information.  相似文献   

19.
20.
Earlier detailed studies of cnidarian planula larvae have revealed a simple nervous system but no eyes or identifiable light sensing structures. Here, we describe the planula of a box jellyfish, Tripedalia cystophora, and report that these larvae have an extremely simple organization with no nervous system at all. Their only advanced feature is the presence of 10-15 pigment-cup ocelli, evenly spaced across the posterior half of the larval ectoderm. The ocelli are single cell structures containing a cup of screening pigment filled with presumably photosensory microvilli. These rhabdomeric photoreceptors have no neural connections to any other cells, but each has a well-developed motor-cilium, appearing to be the only means by which light can control the behaviour of the larva. The ocelli are thus self-contained sensory-motor entities, making a nervous system superfluous.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号