首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Some neurons, including cerebellar Purkinje cells, are completely ensheathed by astrocytes. When granule cell neurons and functional glia were eliminated from newborn mouse cerebellar cultures by initial exposure to a DNA synthesis inhibitor, Purkinje cells lacked glial sheaths and there was a tremendous sprouting of Purkinje cell recurrent axon collaterals, terminals of which hyperinnervated Purkinje cell somata, including persistent somatic spines, and formed heterotypical synapses with Purkinje cell dendritic spines, sites usually occupied by parallel fiber (granule cell axon) terminals. Purkinje cells in such preparations failed to develop complex spikes when recorded from intracellularly, and their membrane input resistances were low, making them less sensitive to inhibitory input. If granule cells and oligodendrocytes were eliminated, but astrocytes were not compromised, sprouting of recurrent axon collaterals occurred and their terminals projected to Purkinje cell dendritic spines, but the Purkinje cells had astrocytic sheaths, their somata were not hyperinnervated, the somatic spines had disappeared, complex spike discharges predominated, and membrane input resistance was like that of Purkinje cells in untreated control cultures. When cerebellar cultures without granule cells and glia were transplanted with granule cells and/or glia from another source, a series of changes occurred that included stripping of excess Purkinje cell axosomatic synapses by astrocytic processes, reduction of heterotypical axospinous synapses in the presence of astrocytes, disappearance of Purkinje cell somatic spines with astrocytic ensheathment, and proliferation of Purkinje cell dendritic spines after the introduction of astrocytes. Dendritic spine proliferation was followed by formation of homotypical axospinous synapses when granule cells were present or persistence as unattached spines in the absence of granule cells. The results of these studies indicate that astrocytes regulate the numbers of Purkinje cell axosomatic and axospinous synapses, induce Purkinje cell dendritic spine proliferation, and promote the structural and functional maturation of Purkinje cells.  相似文献   

2.
Summary The teleostean cerebellar cortex has been studied with respect to its cytoarchitectonic arrangement and intracortical neuronal circuits. Samples of fish cerebellum were fixed either by immersion or vascular perfusion in 5% glutaraldehyde solution and processed for light and scanning electron microscopy. The cerebellar cortex shows four distinct layers: granular; fibrous stratum; Purkinje cell; and molecular layers. In the granular layer, mossy and climbing fiber glomeruli were characterized. The mossy glomerular region appeared as polygonal, round or ovoid clews formed by the convergence of up to 17 dendritic profiles upon a thick mossy fiber branch. The en passant nature of mossy fiber-granule cell dendrite synaptic relationship was clearly appreciated. The climbing fibers showed tendril and glomerular collaterals. The latter form thin, elongated glomeruli. Remnants of a neuroglial envelope were observed in the mossy fiber glomeruli but are apparently absent from the climbing fiber glomeruli. The beaded-shape Golgi cell axonal ramifications were observed participating in the formation of both glomerular types. Velate protoplasmic astrocytes and oligodendrocytes were also identified. The fibrous stratum appeared to be formed by compact bundles of thick and thin myelinated axons, running horizontally beneath the Purkinje cell layer and apparently belonging to ascending climbing fibers and descending Purkinje cell axons. At the Purkinje cell layer a selective removal of Bergmann glial cells was observed allowing the visualization of the pericellular basket and the pinceaux. Climbing fiber stems and their tendril collaterals were seen on their way to the molecular layer ascending parallel to the Purkinje dendritic ramifications. Stellate neuron processes were found passing through the fan-like arborescence of Purkinje cell dendrites.  相似文献   

3.
Abstract: A60 is a 60-kDa component of the axonal cortical cytoskeleton in CNS neurones. It appears to be neurone specific and is tightly bound to brain membranes. In this study the cytoskeletal activities and developmental expression of A60 in rat cerebellum have been examined using the monoclonal antibody DR1. A60 in a partially purified soluble extract of brain membranes interacts selectively with brain but not erythrocyte spectrin. Because erythrocyte spectrin is more closely related to the dendritic form of spectrin than the axonal form, this raises the possibility that AGO localises in axons by interaction with the axonal form of spectrin only. A60 is not found in rat cerebellum before the day of birth. However, during postnatal development of the cerebellum (days 1–13) DR1 reactivity appears progressively. On postnatal day 1, a small population of cells in the mantle layer (presumptive Purkinje cells) is DR1 positive. There is no DR1 reactivity found in Purkinje cell axons during their initial phase of growth. By postnatal day 7, Purkinje cell bodies, initial dendritic segments, and the cerebellar white matter are all positive. This pattern of labelling is strengthened up until postnatal day 13. By contrast, in adult rat cerebellum, the location of A60 has changed so that it is most concentrated in axons, and dendritic staining is lost. These data indicate that A60 is a spectrin-binding component of the adult axonal membrane skeleton, the presence of which is only required in axons after the initial phase of growth.  相似文献   

4.
In addition to (i) mossy terminals, (ii) Golgi axons, (iii) granule cell dendrites and (iv), occasionally, Golgi cell dendrites, a third axonal profile identified by morphological criteria as the collateral of Purkinje axons, has been found in 2% of all cerebellar glomeruli. These infrequent components of a few glomeruli, however, were never seen in normal cerebellar cortex to establish specialized synaptic contact with glomerular dendrites. Two to four weeks after surgical isolation of the cerebellar cortex, i.e. following the destruction of both efferent and afferent fibres, the number of glomeruli containing (hypertrophic) axonal branches of Purkinje cells has increased to 13% of all surveyed glomeruli. In addition, the Purkinje axon terminals in the mossy fibre-deprived glomeruli were observed to establish numerous Gray II-type synaptic contacts with surrounding granule cell dendrites. It is suggested that the development of heterologous synapses between hypertrophic, or even intact, Purkinje axon collaterals on the one hand and the mossy fibre-vacated granule cell dendrites on the other, is a compensatory, reactive process to the synaptic "desaturation" of granule neurons, which demonstrate a dormant potential of Purkinje cells to form new synaptic contacts in the adult cerebellum.  相似文献   

5.
Motoneurons were labelled by retrograde axonal transport of HRP applied to transected spinal nerves in 9-11-day chick embryos in the in vitro spinal cord preparation. Recurrent motor axon collaterals were revealed in 17 of 48 motor axons which could be followed in the edge regions of labelled motoneuronal pools. The results, coupled with author's earlier electrophysiological data, provide further evidence for the presence of the Renshaw inhibition in the avian spinal cord.  相似文献   

6.
The development of connections between neurons and their target cells involves competition between axons for target-derived neurotrophic factors. Although the notion of competition is commonly used in neurobiology, the process is not well understood, and only a few formal models exist. In population biology, in contrast, the concept of competition is well developed and has been studied by means of many formal models of consumer-resource systems. Here we show that a recently formulated model of axonal competition can be rewritten as a general consumer-resource system. This allows neurobiological phenomena to be interpreted in population biological terms and, conversely, results from population biology to be applied to neurobiology. Using findings from population biology, we have studied two extensions of our axonal competition model. In the first extension, the spatial dimension of the target is explicitly taken into account. We show that distance between axons on their target mitigates competition and permits the coexistence of axons. The model can account for the fact that in many types of neurons a positive correlation exists between the size of the dendritic tree and the number of innervating axons surviving into adulthood. In the second extension, axons are allowed to respond to more than one neurotrophic factor. We show that this permits competitive exclusion among axons of one type, while at the same time there is coexistence with axons of another type innervating the same target. The model offers an explanation for the innervation pattern found on cerebellar Purkinje cells, where climbing fibres compete with each other until only a single one remains, which coexists with parallel fibre input to the same Purkinje cell.  相似文献   

7.
8.
Neurofilaments are central determinants of the diameter of myelinated axons. It is less clear whether neurofilaments serve other functional roles such as maintaining the structural integrity of axons over time. Here we show that an age-dependent axonal atrophy develops in the lumbar ventral roots of mice with a null mutation in the mid-sized neurofilament subunit (NF-M) but not in animals with a null mutation in the heavy neurofilament subunit (NF-H). Mice with null mutations in both genes develop atrophy in ventral and dorsal roots as well as a hind limb paralysis with aging. The atrophic process is not accompanied by significant axonal loss or anterior horn cell pathology. In the NF-M-null mutant atrophic ventral root, axons show an age-related depletion of neurofilaments and an increased ratio of microtubules/neurofilaments. By contrast, the preserved dorsal root axons of NF-M-null mutant animals do not show a similar depletion of neurofilaments. Thus, the lack of an NF-M subunit renders some axons selectively vulnerable to an age-dependent atrophic process. These studies argue that neurofilaments are necessary for the structural maintenance of some populations of axons during aging and that the NF-M subunit is especially critical.  相似文献   

9.
Cortical topography can be remapped as a consequence of sensory deprivation, suggesting that cortical circuits are continually modified by experience. To see the effect of altered sensory experience on specific components of cortical circuits, we imaged neurons, labeled with a genetically modified adeno-associated virus, in the intact mouse somatosensory cortex before and after whisker plucking. Following whisker plucking we observed massive and rapid reorganization of the axons of both excitatory and inhibitory neurons, accompanied by a transient increase in bouton density. For horizontally projecting axons of excitatory neurons there was a net increase in axonal projections from the non-deprived whisker barrel columns into the deprived barrel columns. The axon collaterals of inhibitory neurons located in the deprived whisker barrel columns retracted in the vicinity of their somata and sprouted long-range projections beyond their normal reach towards the non-deprived whisker barrel columns. These results suggest that alterations in the balance of excitation and inhibition in deprived and non-deprived barrel columns underlie the topographic remapping associated with sensory deprivation.  相似文献   

10.
It was shown by the Golgi and Golgi-Kopsch method that pyramidal cells of layers II–IV in the frontal cortex of the monkeyMacaca rhesus have numeruous, mainly recurrent axon collaterals by means of which they form vertical connections. Pyramidal cells with ascending axons are found. Axons of stellate basket neurons unite pyramidal cells in both horizontal (modules) and vertical (micromodules) directions; depending on the direction of the axon collaterals, two groups of stellate neurons can be distinguished. Groups of 14 to 16 pyramidal cells whose apical dendrites are connected into bundles were found. Axons of pyramidal cells in layers II–IV descend in the composition of the pyramidal tract and give off collaterals which run toward the bodies and dendrites of neighboring pyramidal cells, united into the same group, forming terminal and en passant junctions. Besides bundles, special kinds of "local" cell groups with U-shaped axons are found.A. A. Zhdanov Leningrad State University. Translated from Neirofiziologiya, Vol. 15, No. 2, pp. 115–120, March–April, 1983.  相似文献   

11.
The delivery of neurofilaments via axonal transport has been proposed as an important mechanism for regulating axonal caliber. If this hypothesis is correct, alterations in axonal caliber should appear coincident with changes in the delivery of neurofilaments to the axon. The purpose of this study was to determine whether alterations in the caliber of axons in the proximal stumps of transected motor fibers precede, coincide with, or occur substantially later than changes in the delivery of neurofilaments via axonal transport. Between 3 d and 12 wk after crushing the sciatic nerves of 7-wk-old rats, lumbar motor neurons were labeled by the intraspinal injection of [35S]methionine. In neurons labeled between 3 d and 6 wk after axotomy, the relative amount of neurofilament protein in the slow component, as reflected by the ratio of the radioactivities of the 145-kD neurofilament protein to tubulin, was reduced to 30-40% of the control value. Moreover, as determined by immunoreactivity on blots, the amounts of neurofilament protein and tubulin in these nerve fibers were reduced fourfold and twofold, respectively. Thus, changes in the ratio of labeled neurofilament protein to tubulin correlated with comparable changes in the quantities of these proteins in nerve fibers. This decrease in the quantity of neurofilament proteins delivered to axons coincided temporally with reductions in axonal caliber. After regeneration occurred, the delivery of neurofilament proteins returned to pre-axotomy levels (i.e., 8 wk after axotomy), and caliber was restored with resumption of normal age-related radial growth of these axons. Thus, changes in axonal caliber coincided temporally with alterations in the delivery of neurofilament proteins. These results suggest that the majority of neurofilaments in these motor fibers continuously move in the anterograde direction as part of the slow component of axonal transport and that the transport of neurofilaments plays an important role in regulating the caliber of these axons.  相似文献   

12.
A method is described for studying the morphological features of extensive axonal projections within the central nervous system of the gerbil, Meriones anguiculatus. Potentially long descending axonal projections between the auditory thalamus and lower brainstem were used as a model. The inferior colliculus (IC) in the tectum was injected in vivo with a fluorescent retrograde tracer, Fluoro-Gold, to label cells in the medial geniculate body (MGB) that had descending projections to the IC, and cells in the superior olivary complex (SOC) that had ascending projections to the IC. Another fluorescent retrograde tracer, fast blue, was injected into the cochlea to label olivocochlear (OC) cells in the SOC. Inferomedially curved parasagittal slices containing ipsilateral auditory cell groups from the thalamus to the brainstem were cut and descending axons of the pre-labeled MGB cells were traced anterogradely with Biocytin. After visualizing histologically the injected Biocytin, discretely labeled IC-projecting axons of the MGB cells were traced including their collaterals that extended further into the SOC. In the SOC, these axons terminated on pre-labeled cells including OC cells. The combination of anterograde and retrograde tracing in the slice preparations described here demonstrated extensive descending axonal projections from the thalamus to their targets in the lower brainstem that had known ascending/descending projections within the auditory system.  相似文献   

13.
The formation of axonal connections in the nervous system involves cell-specific decisions of the growth cone. In this article we examine the contribution of early fate decisions to axonal pathfinding. Evidence is accumulating that different neuronal cell types in the cerebral cortex are specified during their final mitosis. It would seem that cortical projection neurons are pre-specified to choose particular pathways, since the newly generated neurons send out their axons in the correct direction from the onset of outgrowth. Pathfinding decisions that are made much later during development, such as the recognition of specific target-derived chemoattractants and the retraction of inappropriate axon collaterals, also seem to be at least partially pre-specified at much earlier developmental stages. Hence, the early determination of a neuron's phenotype includes the specification of axonal growth occuring over a protracted phase of development. Understanding more about the regulative events targeted to the growth cone should help us to unravel the decisions made by this specialized neuronal organelle.  相似文献   

14.

Background

Chondroitin sulphate proteoglycan (NG2) expressing cells, morphologically characterized by multi-branched processes and small cell bodies, are the 4th commonest cell population of non-neuronal cell type in the central nervous system (CNS). They can interact with nodes of Ranvier, receive synaptic input, generate action potential and respond to some pathological stimuli, but the function of the cells is still unclear. We assumed the NG2 cells may play an active role in neuropathogenesis and aimed to determine if NG2 cells could sense and response to the alterations in the axonal contents caused by disruption of neurofilament light subunit (NFL) expression.

Results

In the early neuropathological development stage, our study showed that the diameter of axons of upper motor neurons of NFL-/- mice decreased significantly while the thickness of their myelin sheath increased remarkably. Although there was an obvious morphological distortion in axons with occasionally partial demyelination, no obvious changes in expression of myelin proteins was detected. Parallel to these changes in the axons and their myelination, the processes of NG2 cells were disconnected from the nodes of Ranvier and extended further, suggesting that these cells in the spinal cord white matter could sense the alteration in axonal contents caused by disruption of NFL expression before astrocytic and microglial activation.

Conclusion

The structural configuration determined by the NFL gene may be important for maintenance of normal morphology of myelinated axons. The NG2 cells might serve as an early sensor for the delivery of information from impaired neurons to the local environment.  相似文献   

15.
Intracellular and extracellular recordings of antidromic action potentials were applied to invetigate neurons of the S2 segment projecting to the C6 segment of the cat spinal cord. The cell bodies were located in laminae VII and VIII of the gray matter while axons ascended in lateral funiculi. Thirty-two out of the total 45 neurons were found to project to the C6 segment bilaterally, seven ipsilaterally and six contralaterally. The axonal conduction velocities were in the 42–96 m/s range and in some neurons were significantly lower in distal parts of axons, supposing that some neurons may give off collateral branches to various segments of the spinal cord. It is discussed if the investigated neurons form a part of the propriospinal system or if their cervical projections are only collaterals of long tracts ascending to supraspinal levels. The organisation of the presented connections between spinal enlargements indicates their contribution in complex mechanisms of co-ordination of movements of the limbs.  相似文献   

16.
The molecular mechanisms responsible for long-distance, directional spread of alphaherpesvirus infections via axons of infected neurons are poorly understood. We describe the use of red and green fluorescent protein (GFP) fusions to capsid and tegument components, respectively, to visualize purified, single extracellular virions and axonal assemblies after pseudorabies virus (PRV) infection of cultured neurons. We observed heterogeneity in GFP fluorescence when GFP was fused to the tegument component VP22 in both single extracellular virions and discrete puncta in infected axons. This heterogeneity was observed in the presence or absence of a capsid structure detected by a fusion of monomeric red fluorescent protein to VP26. The similarity of the heterogeneous distribution of these fluorescent protein fusions in both purified virions and in axons suggested that tegument-capsid assembly and axonal targeting of viral components are linked. One possibility was that the assembly of extracellular and axonal particles containing the dually fluorescent fusion proteins occurred by the same process in the cell body. We tested this hypothesis by treating infected cultured neurons with brefeldin A, a potent inhibitor of herpesvirus maturation and secretion. Brefeldin A treatment disrupted the neuronal secretory pathway, affected fluorescent capsid and tegument transport in the cell body, and blocked subsequent entry into axons of capsid and tegument proteins. Electron microscopy demonstrated that in the absence of brefeldin A treatment, enveloped capsids entered axons, but in the presence of the inhibitor, unenveloped capsids accumulated in the cell body. These results support an assembly process in which PRV capsids acquire a membrane in the cell body prior to axonal entry and subsequent transport.  相似文献   

17.
Yue Z 《Autophagy》2007,3(2):139-141
Autophagy has recently emerged as potential drug target for prevention of neurodegeneration. However, the details of autophagy process and regulation in the central nervous system (CNS) are unclear. By using a neuronal excitotoxicity model mice, we engineered expression of a fluorescent autophagic marker and systematically investigated autophagic activity under neurodegenerative condition. The study reveals an early response of Purkinje cells to excitotoxic insult by induction of autophagy in axon terminals, and that axonal autophagy is particularly robust in comparison to the cell body and dendrites. The accessibility of axons to rapid autophagy induction suggests local biogenesis of autophagosomes in axons. Characterization of functional interaction between autophagosome protein LC3 and microtubule-associated protein 1B (MAP1B), which is involved in axonal growth, injury and transport provides evidence for neuron or axon-specific regulation of autophagosomes. Furthermore, we propose that p62/SQSTM1, a putative autophagic substrate can serve as a marker for evaluating impairment of autophagic degradation, which helps resolve the controversy over autophagy levels under various pathological conditions. Future study of the relationship between autophagy and axonal function (e.g., transport) will provide insight into the mechanism underlying axonopathy which is directly linked to neurodegeneration.  相似文献   

18.
Diverse modes of axon elaboration in the developing neocortex   总被引:2,自引:2,他引:0       下载免费PDF全文
The development of axonal arbors is a critical step in the establishment of precise neural circuits, but relatively little is known about the mechanisms of axonal elaboration in the neocortex. We used in vivo two-photon time-lapse microscopy to image axons in the neocortex of green fluorescent protein-transgenic mice over the first 3 wk of postnatal development. This period spans the elaboration of thalamocortical (TC) and Cajal-Retzius (CR) axons and cortical synaptogenesis. Layer 1 collaterals of TC and CR axons were imaged repeatedly over time scales ranging from minutes up to days, and their growth and pruning were analyzed. The structure and dynamics of TC and CR axons differed profoundly. Branches of TC axons terminated in small, bulbous growth cones, while CR axon branch tips had large growth cones with numerous long filopodia. TC axons grew rapidly in straight paths, with frequent interstitial branch additions, while CR axons grew more slowly along tortuous paths. For both types of axon, new branches appeared at interstitial sites along the axon shaft and did not involve growth cone splitting. Pruning occurred via retraction of small axon branches (tens of microns, at both CR and TC axons) or degeneration of large portions of the arbor (hundreds of microns, for TC axons only). The balance between growth and retraction favored overall growth, but only by a slight margin. Given the identical layer 1 territory upon which CR and TC axons grow, the differences in their structure and dynamics likely reflect distinct intrinsic growth programs for axons of long projection neurons versus local interneurons.  相似文献   

19.
The rat olivocerebellar climbing fiber system has been investigated at the light and electron microscopic level with anterograde Phaseolus vulgaris leucoagglutinin (PHA-L) tracing. From PHA-L Injections in different parts of the inferior olive labelled axons could be traced to the contralateral cerebellum. Arriving in the deep cerebellar white matter, the olivocerebellar axons ran around and through the cerebellar nuclei. Plexuses of labelled terminal fibers appeared in the cerebellar nuclei, and the density of this innervation was estimated to 1-4 million varicosities per mm3. Ultrastructurally, these boutons engaged in asymmetric synapses with small dendrites. Bundles of labelled fibers continued into the folial white matter, and terminated as climbing fibers in sagittal zones of the cerebellar cortex. Both the cortical and nuclear terminations of the olivocerebellar system are strictly topographically organized. The plasticity of climbing fibers was studied after partial lesions of the inferior olive induced by 3-acetylpyridine. One to 6 months after the lesion, surviving climbing fibers demonstrated extensive sprouting. The newly formed axons originated from parent climbing fiber plexuses, grew in the direction of parallel fibers, and formed terminal plexuses around several neighbouring Purkinje cells. As normal climbing fiber terminals, these terminals formed asymmetric synapses with spines of proximal Purkinje cell dendrites, and evidence by Benedetti et al. (1983) shows that the regenerated innervation is electrophysiologically functional. It is suggested that denervated Purkinje cells release a trophic substance, which stimulate surviving climbing fibers to sprouting, axonal growth and synapse formation.  相似文献   

20.
Abstract: Transient and time-dependent modulations of neural cell adhesion molecule (NCAM) polysialylation in the dentate gyrus of the rodent hippocampus are a feature of spatial and nonspatial forms of learning. In the hippocampal formation, polysialic acid immunoreactivity was localized to granule-like cells and their mossy fibre axons. We now demonstrate the latter to extend to the CA3 region where apparent recurrent and Schaffer collaterals were labelled. The axons of the CA1 pyramidal cell layer were immunopositive, as was the subiculum that they innervate. Layers I and III of the entorhinal cortex stained intensely for polysialic acid; however, these were not visible in the more lateral aspect of this region and were replaced by a single band of immunopositive neurons that extended to include the perirhinal and piriform cortices. After Morris water maze training, the number of polysialylated neurons within the entorhinal cortex exhibited a two- to threefold increase at the 10–12-h posttraining time with respect to that observed immediately after training. This increase was task specific, as no change was observed in freely swimming animals or those required to locate a visible platform. These results suggest the presence of a corticohippocampal pathway involved in the eventual consolidation of memory.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号