首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
In this work, two phage biopanning strategies were developed to identify affinity peptides for a single Fab and multiple kappa Fabs. For the biopanning rounds, protein L beads were employed to bind Fab targets in a fixed orientation, and NHS functionalized magnetic beads were used to facilitate evaluation of low pH elution conditions. The resulting peptide sequences were synthesized and the binding to different Fabs was evaluated using fluorescence polarization. The first biopanning approach yielded a peptide with similar affinities for two forms of the Fab (recombinantly expressed and post papain-digestion) as well as the intact antibody. While moderate affinity was observed toward a murine variant of the Fab with the same complementarity determining regions (CDR) region but different framework, minimal binding occurred to a Fab with high sequence homology but containing different CDR loops. The second biopanning strategy yielded a peptide with affinity for all three kappa Fabs indicating that it may be a good lead for the development of more general affinity reagents for recombinant kappa Fabs. Finally, an affinity peptide column was developed, and its efficacy was demonstrated for Fab purification from a complex cell culture fluid mixture. The results presented in this article demonstrate that different peptide-based phage biopanning strategies can be effectively employed to identify affinity peptide leads for specific Fab and more general kappa Fab purifications.  相似文献   

2.
3.
Fusion of peptide‐based tags to recombinant proteins is currently one of the most used tools for protein production. Also, immobilized metal ion affinity chromatography (IMAC) has a huge application in protein purification, especially in research labs. The combination of expression systems of recombinant tagged proteins with this robust chromatographic system has become an efficient and rapid tool to produce milligram‐range amounts of proteins. IMAC‐Ni(II) columns have become the natural partners of 6xHis‐tagged proteins. The Ni(II) ion is considered as the best compromise of selectivity and affinity for purification of a recombinant His‐tagged protein. The palladium(II) ion is also able to bind to side chains of amino acids and form ternary complexes with iminodiacetic acid and free amino acids and other sulfur‐containing molecules. In this work, we evaluated two different cysteine‐ and histidine‐containing six amino acid tags linked to the N‐terminal group of green fluorescent protein (GFP) and studied the adsorption and elution conditions using novel eluents. Both cysteine‐containing tagged GFPs were able to bind to IMAC‐Pd(II) matrices and eluted successfully using a low concentration of thiourea solution. The IMAC‐Ni(II) system reaches less than 20% recovery of the cysteine‐containing tagged GFP from a crude homogenate of recombinant Escherichia coli, meanwhile the IMAC‐Pd(II) yields a recovery of 45% with a purification factor of 13. Copyright © 2014 John Wiley & Sons, Ltd.  相似文献   

4.
Geminin binds to Cdt1 to ensure that DNA replication occurs only once during the cell cycle. To identify the peptide that binds to Geminin and thereby modifies the latter's ability to alter the DNA replication activity in human cancer cells, we screened a phage display library of random peptides in successive cycles of phage library panning and found one peptide sequence that bound to the 31-111 amino acid residues of Geminin. Delivery of this peptide sequence into the nucleus of HCT116 human colon cancer cells resulted in the suppression of BrdU incorporation. These results provide new insights into the function of Geminin and further validate Geminin as a potential therapeutic target in tumors.  相似文献   

5.
The contribution of lysine and arginine residues to the formation of yeast ribonucleoprotein complex 5S RNA. protein YL3 has been investigated by determining the effects on complex formation of modification with chemical reagents specific for either lysine or arginine. Treatment of protein YL3 with acetic anhydride, malefic anhydride or phenylglyoxal is accompanied by loss of its capacity to bind to 5S RNA. This effect is accomplished by modification with phenylglyoxal of only 3 arginine residues per YL3 molecule. In contrast, a large number of protein YL3 amino groups [16] must be modified by acetic anhydride to prevent complex formation.  相似文献   

6.
The extracellular alkaline protease in the supernatant of cell culture of the marine yeast Aureobasidium pullulans 10 was purified to homogeneity with a 2.1-fold increase in specific protease activity as compared to that in the supernatant by ammonium sulfate fractionation, gel filtration chromatography (Sephadex™ G-75), and anion-exchange chromatography (DEAE Sepharose Fast Flow). According to the sodium dodecyl sulfate-polyacrylamide gel electrophoresis data, the molecular mass of the purified enzyme was estimated to be 32.0 kDa. The optimal pH and temperature of the purified enzyme were 9.0 and 45°C, respectively. The enzyme was activated by Cu2+ (at a concentration of 1.0 mM) and Mn2+ and inhibited by Hg2+, Fe2+, Fe3+, Zn2+, and Co2+. The enzyme was strongly inhibited by phenylmethylsulfonyl fluoride, but weakly inhibited by EDTA, 1–10-phenanthroline, and iodoacetic acid. The K m and V max values of the purified enzyme for casein were 0.25 mg/ml and 0.0286 μmol/min/mg of protein, respectively. After digestion of shrimp protein, spirulina (Arthospira platensis) protein, proteins of marine yeast strains N3C (Yarrowia lipolytica) and YA03a (Hanseniaspora uvarum), milk protein, and casein with the purified alkaline protease, angiotensin I converting enzyme (ACE) inhibitory activities of the resulting peptides reached 85.3%, 12.1%, 29.8%, 22.8%, 14.1%, and 15.5%, respectively, while the antioxidant activities of these were 52.1%. 54.6%, 25.1%, 35%, 12.5%, and 24.2%, respectively, indicating that ACE inhibitory activity of the resulting peptides from the shrimp protein and antioxidant activity of those produced from the spirulina protein were the highest, respectively. These results suggest that the bioactive peptides produced by digestion of the shrimp protein with the purified alkaline protease have potential applications in the food and pharmaceutical industries.  相似文献   

7.
The ability to control the interaction between proteins and cells with biomaterials is critical for the effective application of materials for a variety of biomedical applications. Herein, the surface modification of the biological dopant dextran sulphate-doped polypyrrole (PPy-DS) with poly(ethylene glycol) to generate a biomaterial interface that is highly resistant to protein and cellular adhesion is described. Thiolated poly(ethylene glycol) (PEG-thiol) was covalently bound to PPy-DS backbone via a thiol-ene reaction. The surface resistance to an extracellular matrix protein fibronectin increased with increasing molecular weight and concentration of PEG-thiol, and was further optimised via increasing the reaction temperature and the pH of the reactant aqueous solution. Optimised surface modification conditions substantially reduced interfacial protein adsorption, with the complete inhibition of adhesion and colonisation by primary mouse myoblasts. PEG-thiol-modified inherently conducting polymers are highly protein resistant multifunctional materials that are promising compounds for a range of biomedical and aquatic applications.  相似文献   

8.
Wu HT  Hsu CC  Tsai CF  Lin PC  Lin CC  Chen YJ 《Proteomics》2011,11(13):2639-2653
Magnetic nanoparticles (MNP, <100 nm) have rapidly evolved as sensitive affinity probes for phosphopeptide enrichment. By taking advantage of the easy magnetic separation and flexible surface modification of the MNP, we developed a surface‐blocked, nanoprobe‐based immobilized metal ion affinity chromatography (NB‐IMAC) method for the enhanced purification of multiply phosphorylated peptides. The NB‐IMAC method allowed rapid and specific one‐step enrichment by blocking the surface of titanium (IV) ion‐charged nitrilotriacetic acid‐conjugated MNP (Ti4+‐NTA‐PEG@MNP) with low molecular weight polyethylene glycol. The MNP demonstrated highly sensitive and unbiased extraction of both mono‐ and multiply phosphorylated peptides from diluted β‐casein (2×10?10 M). Without chemical derivation or fractionation, 1283 phosphopeptides were identified from 400 μg of Raji B cells with 80% purification specificity. We also showed the first systematic comparison on the particle size effect between nano‐sclae IMAC and micro‐scale IMAC. Inductively coupled plasma‐mass spectrometry (ICP‐MS) analysis revealed that MNP had a 4.6‐fold higher capacity for metal ions per unit weight than did the magnetic micro‐sized particle (MMP, 2–10 μm), resulting in the identification of more phosphopeptides as well as a higher percentage of multiply phosphorylated peptides (31%) at the proteome scale. Furthermore, NB‐IMAC complements chromatography‐based IMAC and TiO2 methods because <13% of mono‐ and 12% of multiply phosphorylated peptide identifications overlapped among the 2700 phosphopeptides identified by the three methods. Notably, the number of multiply phosphorylated peptides was enriched twofold and threefold by NB‐IMAC relative to micro‐scale IMAC and TiO2, respectively. NB‐IMAC is an innovative material for increasing the identification coverage in phosphoproteomics.  相似文献   

9.
《朊病毒》2013,7(5):355-366
ABSTRACT

Prion diseases involve the conversion of the endogenous cellular prion protein, PrPC, into a misfolded infectious isoform, PrPSc. Several functions have been attributed to PrPC, and its role has also been investigated in the olfactory system. PrPC is expressed in both the olfactory bulb (OB) and olfactory epithelium (OE) and the nasal cavity is an important route of transmission of diseases caused by prions. Moreover, Prnp?/? mice showed impaired behavior in olfactory tests. Given the high PrPC expression in OE and its putative role in olfaction, we screened a mouse OE cDNA library to identify novel PrPC-binding partners. Ten different putative PrPC ligands were identified, which were involved in functions such as cellular proliferation and apoptosis, cytoskeleton and vesicle transport, ubiquitination of proteins, stress response, and other physiological processes. In vitro binding assays confirmed the interaction of PrPC with STIP1 homology and U-Box containing protein 1 (Stub1) and are reported here for the first time. Stub1 is a co-chaperone with ubiquitin E3-ligase activity, which is associated with neurodegenerative diseases characterized by protein misfolding and aggregation. Physiological and pathological implications of PrPC-Stub1 interaction are under investigation. The PrPC-binding proteins identified here are not exclusive to the OE, suggesting that these interactions may occur in other tissues and play general biological roles. These data corroborate the proposal that PrPC is part of a multiprotein complex that modulates several cellular functions and provide a platform for further studies on the physiological and pathological roles of prion protein.  相似文献   

10.
11.
High-level recombinant expression of protein kinases in eukaryotic cells or Escherichia coli commonly gives products that are phosphorylated by autocatalysis or by the action of endogenous kinases. Here, we report that phosphorylation occurred on serine residues adjacent to hexahistidine affinity tags (His-tags) derived from several commercial expression vectors and fused to overexpressed kinases. The result was observed with a variety of recombinant kinases expressed in either insect cells or E. coli. Multiple phosphorylations of His-tagged full-length Aurora A, a protein serine/threonine kinase, were detected by mass spectrometry when it was expressed in insect cells in the presence of okadaic acid, a protein phosphatase inhibitor. Peptide mapping by liquid chromatography-mass spectrometry detected phosphorylations on all three serine residues in an N-terminal tag, alpha-N-acetyl-MHHHHHHSSGLPRGS. The same sequence was also phosphorylated, but only at a low level, when a His-tagged protein tyrosine kinase, Pyk2 was expressed in insect cells and activated in vitro. When catalytic domains of Aurora A and several other protein serine/threonine kinases were expressed in E. coli, serines in the affinity tag sequence GSSHHHHHHSSGLVPRGS were also variably phosphorylated. His-Aurora A with hyperphosphorylation of the serine residues in the tag aggregated and resisted thrombin-catalyzed removal of the tag. Treatment with alkaline phosphatase partly restored sensitivity to thrombin. The same His-tag sequence was also detected bearing alpha-N-d-gluconoylation in addition to multiple phosphorylations. The results show that histidine-tag sequences can receive complicated posttranslational modification, and that the hyperphosphorylation and resulting heterogeneity of the recombinant fusion proteins can interfere with downstream applications.  相似文献   

12.
Lipopolysaccharide (LPS)-binding peptides were enriched by using epoxy beads as a novel support to immobilize LPS for a phage displayed peptide library screening. The sequence of Phe-Ala-Pro-Trp (FAPW) was the most significant consensus motif of 10 selected clones, and Pro-Phe (PF) was the key dipeptide for binding at the apex of the loop to form a characteristic structure of CXXPFXXXC. Moreover, AWLPWAK, one of the highly conserved heptamer peptides, could detect specifically Gram-negative bacteria via a whole cell binding test at 106 cells ml−1. Received 12 July 2005; Revisions requested 1 August 2005 and 26 September 2005; Revisions received 12 September 2005 and 25 October 2005; Accepted 1 November 2005  相似文献   

13.
The alkaline protease genes (cDNAALP2 gene and ALP2 gene) were amplified from complementary DNA (cDNA) and genomic DNA of the marine yeast Aureobasidium pullulans HN2-3, respectively. An open reading frame of 1,248 bp encoding a 415-amino acid protein with a calculated molecular weight of 42.9 kDa was characterized. The ALP2 gene contained two introns, which had 54 and 52 bp, respectively. When the cDNAALP2 gene was cloned into the multiple cloning sites of the surface display vector pINA1317-YlCWP110 and expressed in cells of Yarrowia lipolytica, the cells displaying protease could form a clear zone on the double plate containing milk protein and had protease activity. The cells displaying alkaline protease were also found to be able to produce bioactive peptides from different sources of proteins. The peptides produced from single-cell protein of marine yeast strain G7a had the highest angiotensin-converting enzyme inhibitory activity, while the peptides produced from spirulina protein had the highest antioxidant activity. This is the first report that the yeast cells displaying alkaline protease were used to produce bioactive peptides.  相似文献   

14.
15.
Solid phase synthesis of Bax-alpha1, the 25 amino acids domain (14TSSEQIMKTGALLLQGFIQDRAGRM38) of the pro-apoptotic Bax protein has been accomplished using Fmoc chemistry. A new fast and harmless protocol is described for complete TFA removal from the purified peptide powder leading to a final purity greater than 98% as controlled by 19F-NMR, UV and MALDI-TOF mass spectrometry. Secondary structure was determined in various solution and membrane media using UV Circular Dichroism. In water solution, Bax-alpha1 is present as a mixture of beta-sheet and unstructured (random coil) conformations. A marked change from beta-sheet to alpha-helix secondary structures is observed upon interaction with negatively charged phospholipids vesicles whereas neutral lipid membranes have no significant effect on the aqueous peptide conformation. Results are discussed in terms of Bax binding to mitochondrial membranes.  相似文献   

16.
Three-dimensional modeling of the complex between retinoic acid-binding protein (CRABP) and retinoic acid suggests that binding of the ligand is mediated by interaction between the carboxyl group of retinoic acid and two charged amino acids (Arg-111 and Arg-131) whose side chains project into the barrel of the protein. To assess the contribution of these amino acids to protein-ligand interaction, amino acid substitutions were made by oligonucleotide-directed, site-specific mutagenesis. The wild-type and mutant proteins were expressed in E. coli and subsequently purified. Like wild-type CRABP, the mutant proteins are composed mainly of beta-strands as determined by circular dichroism in the presence and absence of ligand, and thus presumably are folded into the same compact barrel structure as the wild-type protein. Mutants in which Arg-111 and Arg-131 are replaced by glutamine bind retinoic acid with significantly lower affinity than the wild-type protein, arguing that these two residues indeed interact with the ligand. The mutant proteins are more resistant to thermal denaturation than wild-type CRABP in the absence of retinoic acid, but they are not as thermostable as the CRABP-retinoic acid complex. These data suggest a model for CRABP-retinoic acid interaction in which the repulsive forces between the positively-charged arginine residues provide conformational flexibility to the native protein for retinoic acid to enter the binding pocket. Elimination of the positively-charged pair of amino acids produces a protein that is more thermostable than wild-type CRABP but less effective at ligand-binding.  相似文献   

17.
Epitope and mimotope for an antibody to the Na, K-ATPase.   总被引:2,自引:1,他引:1       下载免费PDF全文
The epitope of a monoclonal antibody specific for the alpha 2 isoform of the Na,K-ATPase was determined and its accessibility in native enzyme was examined. Protein fragmentation with N-chlorosuccinimide, formic acid, trypsin, and leucine aminopeptidase indicated binding near the Na,K-ATPase N-terminus but did not unambiguously delineate the extent of the epitope. The ability of the antibody to bind to denatured enzyme made it a good candidate for screening a random peptide library displayed on M13 phage, but the consensus sequence that emerged was not found in the Na,K-ATPase, Full-length cDNA for the Na,K-ATPase was randomly fragmented and cloned into beta-galactosidase to create a lambda gt11 expression library; screening with the antibody yielded a set of overlaps spanning 23 amino acids at the N-terminus. Chimeras of Na,K-ATPase alpha 1 and alpha 2 narrowed down the epitope to 14-19 amino acids. The antibody did not recognize fusion proteins constructed with shorter segments of this epitope. It did recognize a fusion protein containing the M13 library consensus sequence, however, indicating that this sequence, which is rich in proline and hydrophobic amino acids (FPPNFLFPPPP), was a mimotope. The natural epitope, unique to the Na,K-ATPase alpha 2 isoform, was GREYSPAATTAENG. Reconstitution of antibody binding in a foreign context such as M13 PIII protein or beta-galactosidase thus required a relatively large number of amino acids, indicating that antibody mapping approaches must allow for epitopes of significant size. The epitope was accessible in native enzyme and exposed on the cytoplasmic side, documenting the surface exposure of a stretch of amino acids at the N-terminus, where the Na,K-ATPase isoforms differ most.  相似文献   

18.
The cholecystokinin receptor-type 1 (CCK1R) is a G-protein coupled receptor localized in the animal gastrointestinal tract. Receptor activation by the natural peptide ligand CCK leads to a feeling of satiety. In this study, hydrolysates from soy and milk proteins were evaluated for their potential to activate the CCK1R, assuming that bioactive peptides with a satiogenic effect can be used as an effective therapeutic strategy for obesity. Different protein hydrolysates were screened with a cell-based bioassay, which relies on the generation of a fluorescent signal upon receptor activation. Fluorescence was monitored using a fluorescence plate reader and confocal microscopy. Results from the fluorescence plate reader were biased by background autofluorescence of the protein hydrolysate matrices, which makes the fluorescence plate reader inappropriate for the evaluation of complex formulations. Measurements with the confocal microscope resulted in reliable and specific results. The latter approach showed that the gastrointestinal digested 7S fraction of soy protein demonstrates CCK1R activity.  相似文献   

19.
A series of protein expression vectors with dual-affinity tags has been developed. With these constructed vectors, FLAG and hexahistidine tags were fused to a given protein at either the N- or the C-terminal ends or both, for a total of six combinations. Three auxotrophy markers were introduced into each construct, thus yielding 18 different vectors. These vectors allow evaluation of different positions and orders of two different tags. To confirm the efficacy of these vectors, we purified a histone acetyltransferase (Esa1p)-containing complex. First, an appropriate position of the tags was selected through small-scale purification. Next, large-scale purification was done for the selected construct, yielding an Esa1p-containing complex that was comparable to an Esa1p-containing complex (NuA4) obtained by a conventional activity-based purification. These vectors provide a convenient way to select the best position of tags for efficient purification of protein complexes also applicable in proteomics studies.  相似文献   

20.
Membrane-bound guanylate cyclase activity was detected by ultracytochemistry at the electron microscope level in several mammalian tissues. The technique used in these studies allows the detection of active enzyme at the membrane site where it is located. In a few cases, such as normal and regenerating peripheral nerves and placenta, membrane-bound guanylate cyclase could be detected in the absence of stimulators of enzyme activity. However, in the majority of these studies membrane-bound guanylate cyclase was investigated following stimulation with natriuretic peptides, guanylin, or the Ca2+ sensor proteins, S100B and S100A1. In general, membrane-bound guanylate cyclase was localized to plasma membranes, in accordance with the functional role of this enzyme. Yet, in secretory cells the enzyme activity was localized on intracellular membranes, suggesting a role of membrane-bound guanylate cyclase in secretory processes. Finally, S100B and S100A1 were found to colocalize with membrane-bound guanylate cyclase on photoreceptor disc membranes and to stimulate enzyme activity at these sites in dark-adapted retinas in a Ca2+-dependent manner. The results of these analyses are discussed in relation to the proposed functional role(s) of this enzyme.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号