首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The enzyme controlled substrate delivery cultivation technology EnBase(?) Flo allows a fed-batch-like growth in batch cultures. It has been previously shown that this technology can be applied in small cultivation vessels such as micro- and deep well plates and also shake flasks. In these scales high cell densities and improved protein production for Escherichia coli cultures were demonstrated. This current study aims to evaluate the scalability of the controlled glucose release technique to pilot scale bioreactors. Throughout all scales, that is, deep well plates, 3 L bioreactor and 150 L bioreactor cultivations, the growth was very similar and the model protein, a recombinant alcohol dehydrogenase (ADH) was produced with a high yield in soluble form. Moreover, EnBase Flo also was successfully used as a controlled starter culture in high cell density fed-batch cultivations with external glucose feeding. Here the external feeding pump was started after overnight cultivation with EnBase Flo. Final optical densities in these cultivations reached 120 (corresponding to about 40 g L(-1) dry cell weight) and a high expression level of ADH was obtained. The EnBase cultivation technology ensures a controlled initial cultivation under fed-batch mode without the need for a feeding pump. Because of the linear cell growth under glucose limitation it provides optimal and robust starting conditions for traditional external feed-based processes.  相似文献   

2.
The influence of glucose release on growth and biotransformation of yeasts was examined by using the medium EnBase® Flo in shake flasks. The medium contains a polysaccharide acting as substrate, which is degraded to glucose by the addition of an enzyme. In the present paper, this medium was adapted for the cultivation of yeasts by increasing the complex components (booster) and the enzyme concentrations to guarantee a higher glucose release rate. Important changes were an increase of the complex component booster to 10–15% and an increased glucose release by increasing the enzyme content to 15 U L?1. The 20 yeasts investigated in the present work showed an improvement of growth and biomass production when cultivated with the EnBase medium in comparison to yeast extract dextrose (YED) medium. Values of optical densities (OD600) of approximately 40 AU (corresponding to over 60 g L?1 wet cell weight) were achieved for all 20 yeast strains tested. During the following screening of the yeasts in whole-cell biotransformation, an improvement of the conversion for 19 out of the 20 yeasts cultivated with the EnBase Flo medium could be observed. The biomass from the EnBase Flo cultivation showed a higher conversion activity in the reduction of 2-butanone to (R/S)-2-butanol. The enantioselectivity (ee) of 15 yeast strains showed an improvement by using the EnBase medium. The number of yeasts with an ee >97% increased from zero with YED to six with EnBase medium. Thus, the use of a glucose release cultivation strategy in the screening process for transformation approaches provides significant benefits compared to standard batch approaches.  相似文献   

3.
Experimentation in shaken microplate formats offers a potential platform technology for the rapid evaluation and optimization of cell culture conditions. Provided that cell growth and antibody production kinetics are comparable to those found in currently used shake flask systems then the microwell approach offers the possibility to obtain early process design data more cost effectively and with reduced material requirements. This work describes a detailed engineering characterization of liquid mixing and gas–liquid mass transfer in microwell systems and their impact on suspension cell cultures. For growth of murine hybridoma cells producing IgG1, 24‐well plates have been characterized in terms of energy dissipation (P/V) (via Computational Fluid Dynamics, CFD), fluid flow, mixing and oxygen transfer rate as a function of shaking frequency and liquid fill volume. Predicted kLa values varied between 1.3 and 29 h?1; liquid‐phase mixing time, quantified using iodine decolorization experiments, varied from 1.7 s to 3.5 h; while the predicted P/V ranged from 5 to 35 W m?3. CFD simulations of the shear rate predicted hydrodynamic forces will not be detrimental to cells. For hybridoma cultures however, high shaking speeds (>250 rpm) were shown to have a negative impact on cell growth, while a combination of low shaking speed and high well fill volume (120 rpm, 2,000 µL) resulted in oxygen limited conditions. Based on these findings a first engineering comparison of cell culture kinetics in microwell and shake flask formats was made at matched average energy dissipation rates. Cell growth kinetics and antibody titer were found to be similar in 24‐well microtiter plates and 250 mL shake flasks. Overall this work has demonstrated that cell culture performed in shaken microwell plates can provide data that is both reproducible and comparable to currently used shake flask systems while offering at least a 30‐fold decrease in scale of operation and material requirements. Linked with automation this provides a route towards the high throughput evaluation of robust cell lines under realistic suspension culture conditions. Biotechnol. Bioeng. 2010; 105: 260–275. © 2009 Wiley Periodicals, Inc.  相似文献   

4.

Background  

Cultivations for recombinant protein production in shake flasks should provide high cell densities, high protein productivity per cell and good protein quality. The methods described in laboratory handbooks often fail to reach these goals due to oxygen depletion, lack of pH control and the necessity to use low induction cell densities. In this article we describe the impact of a novel enzymatically controlled fed-batch cultivation technology on recombinant protein production in Escherichia coli in simple shaken cultures.  相似文献   

5.

Background

Bioprocess development of recombinant proteins is time consuming and laborious as many factors influence the accumulation of the product in the soluble and active form. Currently, in most cases the developmental line is characterised by a screening stage which is performed under batch conditions followed by the development of the fed-batch process. Performing the screening already under fed-batch conditions would limit the amount of work and guarantee that the selected favoured conditions also work in the production scale.

Results

Here, for the first time, high throughput multifactorial screening of a cloning library is combined with the fed-batch technique in 96-well plates, and a strategy is directly derived for scaling to bioreactor scale. At the example of a difficult to express protein, an RNase inhibitor, it is demonstrated that screening of various vector constructs and growth conditions can be performed in a coherent line by (i) applying a vector library with promoters and ribosome binding sites of different strength and various fusion partners together with (ii) an early stage use of the fed-batch technology. It is shown that the EnBase® technology provides an easy solution for controlled cultivation conditions in the microwell scale. Additionally the high cell densities obtained provide material for various analyses from the small culture volumes. Crucial factors for a high yield of the target protein in the actual case were (i) the fusion partner, (ii) the use of of a mineral salt medium together with the fed-batch technique, and (iii) the preinduction growth rate. Finally, it is shown that the favorable conditions selected in the microwell plate and shake flask scales also work in the bioreactor.

Conclusions

Cultivation media and culture conditions have a major impact on the success of a screening procedure. Therefore the application of controlled cultivation conditions is pivotal. The consequent use of fed-batch conditons from the first screening phase not only shortens the developmental line by guarantying that the selected conditions are relevant for the scale up, but in our case also standard batch cultures failed to select the right clone or conditions at all.  相似文献   

6.
Fermentation studies were performed on an Escherichia coli culture that carries a recombinant plasmid composed of an ampicillin-resistant gene, a temperature-regulated pL promoter, and a porcine pituitary cDNA sequence coding for growth hormone. The objective was to achieve high cell density while maintaining the specific expression level of recombinant porcine growth hormone (r-pGH) observed in shake flasks. At a specific expression level of 20% of total cell protein, the cell density of a glucose-limited fed-batch process reached 38 units of OD600 in 14 h, compared to flask cultivation, which resulted in only 1.4 units of OD600 in the same period. The observed critical fermentation conditions for maximal expression included (1) limiting glucose concentration below 1 g l-1 throughout the fed-batch growth and induction phases, (2) keeping postinduction temperature at 42 degrees C for 5-7 h, and (3) maintaining a postinduction growth rate around 0.17-0.21 h-1.  相似文献   

7.
For strain improvement, robust and scalable high-throughput cultivation systems as well as simple and rapid high-throughput detection methods are crucial. However, most of the screening methods for lactic acid bacteria (LAB) strains were conducted in shake flasks and detected by high-performance liquid chromatography (HPLC), making the screening program laborious, time-consuming and costly. In this study, an integrated strategy for high-throughput screening of high l-lactic acid-productivity strains by Bacillus coagulans in deep-well microtiter plates (MTPs) was developed. The good agreement of fermentation results obtained in the MTPs platform with shake flasks confirmed that 24-well U-bottom MTPs could well alternate shake flasks for cell cultivation as a scale-down tool. The high-throughput pH indicator (bromocresol green) and l-lactate oxidase (LOD) assays were subsequently developed to qualitatively and quantitatively analyze l-lactic acid concentration. Together with the color halos method, the pH indicator assay and LOD assay, the newly developed three-step screening strategy has greatly accelerated the screening process for LAB strains with low cost. As a result, two high l-lactic acid-productivity mutants, IH6 and IIIB5, were successfully screened out, which presented, respectively, 42.75 and 46.10 % higher productivities than that of the parent strain in a 5-L bioreactor.  相似文献   

8.
While wave‐mixed and stirred bag bioreactors are common devices for rapid, safe insect cell culture‐based production at liter‐scale, orbitally shaken disposable flasks are mainly used for screening studies at milliliter‐scale. In contrast to the two aforementioned bag bioreactor types, which can be operated with standard or disposable sensors, shaker flasks have not been instrumented until recently. The combination of 250 mL disposable shake flasks with PreSens's Shake Flask Reader enables both pH and dissolved oxygen to be measured, as well as allowing characterization of oxygen mass transfer. Volumetric oxygen transfer coefficients (kLa‐values) for PreSens 250 mL disposable shake flasks, which were determined for the first time in insect cell culture medium at varying culture volumes and shaker frequencies, ranged between 4.4 and 37.9/h. Moreover, it was demonstrated that online monitoring of dissolved oxygen in shake flasks is relevant for limitation‐free growth of insect cells up to high cell densities in batch mode (1.6×107 cells/mL) and for the efficient expression of an intracellular model protein.  相似文献   

9.

Background

Small-scale micro-bioreactors have become the cultivation vessel of choice during the first steps of bioprocess development. They combine high cultivation throughput with enhanced cost efficiency per cultivation. To gain the most possible information in the early phases of process development, online monitoring of important process parameters is highly advantageous. One of these important process parameters is the oxygen transfer rate (OTR). Measurement of the OTR, however, is only available for small-scale fermentations in shake flasks via the established RAMOS technology until now. A microtiter plate-based (MTP) μRAMOS device would enable significantly increased cultivation throughput and reduced resource consumption. Still, the requirements of miniaturization for valve and sensor solutions have prevented this transfer so far. This study reports the successful transfer of the established RAMOS technology from shake flasks to 48-well microtiter plates. The introduced μRAMOS device was validated by means of one bacterial, one plant cell suspension culture and two yeast cultures.

Results

A technical solution for the required miniaturized valve and sensor implementation for an MTP-based μRAMOS device is presented. A microfluidic cover contains in total 96 pneumatic valves and 48 optical fibers, providing two valves and one optical fiber for each well. To reduce costs, an optical multiplexer for eight oxygen measuring instruments and 48 optical fibers is introduced. This configuration still provides a reasonable number of measurements per time and well. The well-to-well deviation is investigated by 48 identical Escherichia coli cultivations showing standard deviations comparable to those of the shake flask RAMOS system. The yeast Hansenula polymorpha and parsley suspension culture were also investigated.

Conclusions

The introduced MTP-based μRAMOS device enables a sound and well resolved OTR monitoring for fast- and slow-growing organisms. It offers a quality similar to standard RAMOS in OTR determination combined with an easier handling. The experimental throughput is increased 6-fold and the media consumption per cultivation is decreased roughly 12.5-fold compared to the established eight shake flask RAMOS device.
  相似文献   

10.
An amylolytic yeast strain Pichia subpelliculosawas shown to produce glucoamylase in submerged cultivation. The yeast strain produced the enzyme optimally at 30 °C and pH 5.6 in shake flasks agitated at 200 rev min–1 in the optimized glucoamylase production medium containing 1% starch, 0.2% yeast extract, 0.4% K2HPO4, 0.035% NaCl and 0.1% MgCl2. Maximum enzyme production was attained during early growth of 11 h in shake flasks, and 6 h in a laboratory fermenter. By optimizing media components and cultivation parameters, a 15-fold increase in glucoamylase secretion was achieved.  相似文献   

11.
Disposable orbitally shaken TubeSpin bioreactor 600 tubes (TS600s) were recently developed for the bench-scale cultivation of animal cells in suspension. Here we compared batch cultures of Sf9 insect cells in TS600s, spinner flasks, and shake flasks. Superior cell growth was observed in TS600s and shake flasks as compared with spinner flasks, and more favorable oxygen-enriched cell culture conditions were observed in TS600s as compared with either spinner or shake flasks. The results demonstrated the suitability of TS600s as a disposable vessel for the cultivation of Sf9 cells in suspension.  相似文献   

12.
13.
An often underestimated problem when working with different clones in microtiter plates and shake flask screenings is the non‐parallel and non‐equal growth of batch cultures. These growth differences are caused by variances of individual clones regarding initial biomass concentration, lag‐phase or specific growth rate. Problems arising from unequal growth kinetics are different induction points in expression studies or uneven cultivation periods at the time of harvest. Screening for the best producing clones of a library under comparable conditions is thus often impractical or even impossible. A new approach to circumvent the problem of unequal growth kinetics of main cultures is the application of fed‐batch mode in precultures in microtiter plates and shake flasks. Fed‐batch operation in precultures is realized through a slow‐release system for glucose. After differently growing cultures turn to glucose‐limited growth, they all consume the same amount of glucose due to the fixed feed profile of glucose provided by the slow‐release system. This leads to equalized growth. Inherent advantages of this method are that it is easy to use and requires no additional equipment like pumps. This new technique for growth equalization in high‐throughput cultivations is simulated and verified experimentally. The growth of distinctly inoculated precultures in microtiter plates and shake flasks could be equalized for different microorganisms such as Escherichia coli and Hansenula polymorpha. Biotechnol. Bioeng. 2009;103: 1095–1102. © 2009 Wiley Periodicals, Inc.  相似文献   

14.

Background  

Shake flasks are widely used because of their low price and simple handling. Many researcher are, however, not aware of the physiological consequences of oxygen limitation and substrate overflow metabolism that occur in shake flasks. Availability of a wireless measuring system brings the possibilities for quality control and design of cultivation conditions.  相似文献   

15.

Background

Single-use rocking-motion-type bag bioreactors provide advantages compared to standard stirred tank bioreactors by decreased contamination risks, reduction of cleaning and sterilization time, lower investment costs, and simple and cheaper validation. Currently, they are widely used for cell cultures although their use for small and medium scale production of recombinant proteins with microbial hosts might be very attractive. However, the utilization of rocking- or wave-induced motion-type bioreactors for fast growing aerobic microbes is limited because of their lower oxygen mass transfer rate. A conventional approach to reduce the oxygen demand of a culture is the fed-batch technology. New developments, such as the BIOSTAT® CultiBag RM system pave the way for applying advanced fed-batch control strategies also in rocking-motion-type bioreactors. Alternatively, internal substrate delivery systems such as EnBase® Flo provide an opportunity for adopting simple to use fed-batch-type strategies to shaken cultures. Here, we investigate the possibilities which both strategies offer in view of high cell density cultivation of E. coli and recombinant protein production.

Results

Cultivation of E. coli in the BIOSTAT® CultiBag RM system in a conventional batch mode without control yielded an optical density (OD600) of 3 to 4 which is comparable to shake flasks. The culture runs into oxygen limitation. In a glucose limited fed-batch culture with an exponential feed and oxygen pulsing, the culture grew fully aerobically to an OD600 of 60 (20 g L-1 cell dry weight). By the use of an internal controlled glucose delivery system, EnBase® Flo, OD600 of 30 (10 g L-1 cell dry weight) is obtained without the demand of computer controlled external nutrient supply. EnBase® Flo also worked well in the CultiBag RM system with a recombinant E. coli RB791 strain expressing a heterologous alcohol dehydrogenase (ADH) to very high levels, indicating that the enzyme based feed supply strategy functions well for recombinant protein production also in a rocking-motion-type bioreactor.

Conclusions

Rocking-motion-type bioreactors may provide an interesting alternative to standard cultivation in bioreactors for cultivation of bacteria and recombinant protein production. The BIOSTAT® Cultibag RM system with the single-use sensors and advanced control system paves the way for the fed-batch technology also to rocking-motion-type bioreactors. It is possible to reach cell densities which are far above shake flasks and typical for stirred tank reactors with the improved oxygen transfer rate. For more simple applications the EnBase® Flo method offers an easy and robust solution for rocking-motion-systems which do not have such advanced control possibilities.
  相似文献   

16.
17.

Background

The Ala-Pro-rich O-glycoprotein known as the 45/47 kDa or APA antigen from Mycobacterium tuberculosis is an immunodominant adhesin restricted to mycobacterium genus and has been proposed as an alternative candidate to generate a new vaccine against tuberculosis or for diagnosis kits. In this work, the recombinant O-glycoprotein APA was produced by the non-pathogenic filamentous bacteria Streptomyces lividans, evaluating three different culture conditions. This strain is known for its ability to produce heterologous proteins in a shorter time compared to M. tuberculosis.

Results

Three different shake flask geometries were used to provide different shear and oxygenation conditions; and the impact of those conditions on the morphology of S. lividans and the production of rAPA was characterized and evaluated. Small unbranched free filaments and mycelial clumps were found in baffled and coiled shake flasks, but one order of magnitude larger pellets were found in conventional shake flasks. The production of rAPA is around 3 times higher in small mycelia than in larger pellets, most probably due to difficulties in mass transfer inside pellets. Moreover, there are four putative sites of O-mannosylation in native APA, one of which is located at the carboxy-terminal region. The carbohydrate composition of this site was determined for rAPA by mass spectrometry analysis, and was found to contain different glycoforms depending on culture conditions. Up to two mannoses residues were found in cultures carried out in conventional shake flasks, and up to five mannoses residues were determined in coiled and baffled shake flasks.

Conclusions

The shear and/or oxygenation parameters determine the bacterial morphology, the productivity, and the O-mannosylation of rAPA in S. lividans. As demonstrated here, culture conditions have to be carefully controlled in order to obtain recombinant O-glycosylated proteins with similar "quality" in bacteria, particularly, if the protein activity depends on the glycosylation pattern. Furthermore, it will be an interesting exercise to determine the effect of shear and oxygen in shake flasks, to obtain evidences that may be useful in scaling-up these processes to bioreactors. Another approach will be using lab-scale bioreactors under well-controlled conditions, and study the impact of those on rAPA productivity and quality.  相似文献   

18.
This article describes the optimization of cultivation factor settings, that is the shaking rate and working volume in 50 mL spin tubes for a Chinese hamster ovary cell line expressing recombinant human α‐erythropoietin, using a response D‐optimal surface method. The main objectives of the research were, firstly, to determine a setting in which the product titer and product quality attributes in spin tubes are equivalent to those in 250 mL shake flasks in a seven day batch and, secondly, to find a setting in which the product titer is maximal. The model for product titer prediction as a function of shaking rate and working volume in the defined design space was successfully applied to the optimization of cultivation conditions in spin tubes for the tested cell line. Subsequently, validation experiments were carried out simultaneously in spin tubes, shake flasks and bench scale bioreactors to compare cell culture performance parameters such as growth, productivity and product quality attributes in the form of isoform profiles and glycan antennarity structures. The results of the experiments showed that similar cell culture performance and product quality could be achieved in spin tubes when compared to shake flasks. Additionally, bioreactor titers could be reproduced in spin tubes at high shaking rates and low working volumes, but with differing product quality. Cultivation at lower shaking rates in spin tubes and shake flasks produced a glycoprotein with a product quality slightly comparable to that from bioreactors, but with titers being only two thirds. © 2010 American Institute of Chemical Engineers Biotechnol. Prog., 2010  相似文献   

19.

Background  

The specific productivity of cultivation processes can be optimized, amongst others, by using genetic engineering of strains, choice of suitable host/vector systems or process optimization (e.g. choosing the right induction time). A further possibility is to reduce biomass buildup in favor of an enhanced product formation, e.g. by limiting secondary substrates in the medium, such as phosphate. However, with conventional techniques (e.g. small scale cultivations in shake flasks), it is very tedious to establish optimal conditions for cell growth and protein expression, as the start of protein expression (induction time) and the degree of phosphate limitation have to be determined in numerous concerted, manually conducted experiments.  相似文献   

20.
Cover Image     
Conventional microbial cell cultivation techniques are typically labor intensive, low throughput, and poorlyparallelized, rendering them inefficient. The development of automated, modular microbial cell micro-cultivation systems, particularly those employing droplet microfluidics, have gained attention for their high-throughput, highly paralellized and efficient cultivation capabilities. Here, we report the development of a microbial microdroplet culture system (MMC), which is an integrated platform for automated, high-throughput cultivation and adaptive evolution of microorganisms. We demonstrated that the MMC yielded both accurate and reproducible results for the manipulation and detection of droplets. The superior performance of MMC for microbial cell cultivation was validated by comparing the growth curves of six microbial strains grown in MMC, conventional shake flasks or well plates. The highest incipient growth rate for all six microbial strains was achieved by using MMC. We also conducted an 18-day process of adaptive evolution of methanol-essential Escherichia coli strain in MMC and obtained two strains exhibiting higher growth rates compared with the parent strain. Our study demonstrates the power of MMC to provide an efficient and reliable approach for automated, high-throughput microbial cultivation and adaptive evolution.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号