共查询到20条相似文献,搜索用时 0 毫秒
1.
Feasibility of 55Fe Autoradiography as Performed on N2-Fixing Anabaena spp. Populations and Associated Bacteria
下载免费PDF全文

Hans W. Paerl 《Applied microbiology》1982,43(1):210-217
55Fe emits low-energy X rays and Auger electrons by electron capture decay. Auger electrons are useful for autoradiographic examination of 55Fe incorporation among microbial communities. Attainable resolution, in terms of silver grain deposition, is excellent and comparable to 3H. Two known Fe-demanding processes, photosynthetic CO2 fixation and N2 fixation, were examined by autoradiography of Anabaena populations. During photosynthetically active (illuminated) N2-fixing periods, biological incorporation of 55FeCl3 by vegetative cells and heterocysts was evident. When N2 fixation was suppressed by NH4+ additions, heterocysts revealed no incorporation of 55Fe. Conversely, when N2-fixing Anabaena filaments were placed in darkness, 55Fe incorporation decreased in vegetative cells, whereas heterocysts showed sustained rates of 55Fe incorporation. Bacteria actively incorporated 55Fe under both light and dark conditions. The chelated (by Na2-ethylenediaminetetraacetate) form of 55FeCl3 was more readily incorporated than the nonchelated form. Furthermore, abiotic adsorption of 55Fe to filters and nonliving particles proved lower when chelated 55Fe was used in experiments. 55Fe autoradiography is useful for observing the fate and cellular distribution of various forms of Fe among aquatic microbial communities. 相似文献
2.
McClung CR van Berkum P Davis RE Sloger C 《Applied and environmental microbiology》1983,45(6):1914-1920
Numbers and possible locations of N(2)-fixing bacteria were investigated in roots of Spartina alterniflora Loisel, which support nitrogenase activity in the undisturbed native habitat. N(2)-fixing bacteria were recovered in cultures both from S. alterniflora roots and from the surrounding sediment, and they formed a greater proportion of the bacteria recovered from root homogenates than from salt-marsh sediment. N(2)-fixing bacteria were recovered in high numbers from the rhizoplane of S. alterniflora after roots were treated with 1 or 5% chloramine-T for 1 h or with 1% NaOCl for 1 or 2 h. Immersing S. alterniflora roots in 5% NaOCl for 1 h was more effective in distinguishing bacteria inside the roots since this treatment nearly eliminated N(2)-fixing bacteria recoverable from the rhizoplane, although high numbers of N(2)-fixing bacteria were recovered from homogenates of roots treated with 5% NaOCl for 1 h. However, this treatment was less effective with roots of Zea mays L. (Funks G4646) and Sorghum bicolor (L.) Moench (CK-60 A), indicating that techniques to surface sterilize roots should be evaluated for different plants. Bacteria were observed by light and electron microscopy inter- and intracellularly in the cortex and in the aerenchyma of S. alterniflora roots. This study clearly shows that bacteria, including N(2) fixers, colonize the interior of roots of S. alterniflora growing in a Chesapeake Bay, Maryland, salt marsh. 相似文献
3.
Enumeration and Localization of N2-Fixing Bacteria Associated with Roots of Spartina alterniflora Loisel
下载免费PDF全文

C. Robertson McClung Peter van Berkum Robert E. Davis Charles Sloger 《Applied microbiology》1983,45(6):1914-1920
Numbers and possible locations of N2-fixing bacteria were investigated in roots of Spartina alterniflora Loisel, which support nitrogenase activity in the undisturbed native habitat. N2-fixing bacteria were recovered in cultures both from S. alterniflora roots and from the surrounding sediment, and they formed a greater proportion of the bacteria recovered from root homogenates than from salt-marsh sediment. N2-fixing bacteria were recovered in high numbers from the rhizoplane of S. alterniflora after roots were treated with 1 or 5% chloramine-T for 1 h or with 1% NaOCl for 1 or 2 h. Immersing S. alterniflora roots in 5% NaOCl for 1 h was more effective in distinguishing bacteria inside the roots since this treatment nearly eliminated N2-fixing bacteria recoverable from the rhizoplane, although high numbers of N2-fixing bacteria were recovered from homogenates of roots treated with 5% NaOCl for 1 h. However, this treatment was less effective with roots of Zea mays L. (Funks G4646) and Sorghum bicolor (L.) Moench (CK-60 A), indicating that techniques to surface sterilize roots should be evaluated for different plants. Bacteria were observed by light and electron microscopy inter- and intracellularly in the cortex and in the aerenchyma of S. alterniflora roots. This study clearly shows that bacteria, including N2 fixers, colonize the interior of roots of S. alterniflora growing in a Chesapeake Bay, Maryland, salt marsh. 相似文献
4.
Pseudomonas aeruginosa Chemotaxis Associated with Blooms of N2-Fixing Blue-Green Algae (Cyanobacteria)
下载免费PDF全文

Pseudomonas aeruginosa (Schroeter) Migula, a numerically significant bacterium found during N2-fixing blooms of the blue-green algae (cyanobacteria) Anabaena sp. in the Chowan River, North Carolina, was chemotactically attracted to amino acids when tested in a radioassay. The bacterium was labeled with 32Pi, and the disintegrations per minute determined by liquid scintillation counting were proportional to the number of cells accumulating in microcapillaries containing amino acids. Positive chemotaxis was observed toward all of the amino acids tested, although the degrees of response varied. Since many nitrogen-fixing blue-green algae secrete nitrogenous compounds, this attraction may be instrumental in establishing a symbiotic relationship between this bacterium and blue-green algae in freshwater. 相似文献
5.
Pseudomonas aeruginosa (Schroeter) Migula, a numerically significant bacterium found during N(2)-fixing blooms of the blue-green algae (cyanobacteria) Anabaena sp. in the Chowan River, North Carolina, was chemotactically attracted to amino acids when tested in a radioassay. The bacterium was labeled with P(i), and the disintegrations per minute determined by liquid scintillation counting were proportional to the number of cells accumulating in microcapillaries containing amino acids. Positive chemotaxis was observed toward all of the amino acids tested, although the degrees of response varied. Since many nitrogen-fixing blue-green algae secrete nitrogenous compounds, this attraction may be instrumental in establishing a symbiotic relationship between this bacterium and blue-green algae in freshwater. 相似文献
6.
Jian-Bo Xie Zhenglin Du Lanqing Bai Changfu Tian Yunzhi Zhang Jiu-Yan Xie Tianshu Wang Xiaomeng Liu Xi Chen Qi Cheng Sanfeng Chen Jilun Li 《PLoS genetics》2014,10(3)
We provide here a comparative genome analysis of 31 strains within the genus Paenibacillus including 11 new genomic sequences of N2-fixing strains. The heterogeneity of the 31 genomes (15 N2-fixing and 16 non-N2-fixing Paenibacillus strains) was reflected in the large size of the shell genome, which makes up approximately 65.2% of the genes in pan genome. Large numbers of transposable elements might be related to the heterogeneity. We discovered that a minimal and compact nif cluster comprising nine genes nifB, nifH, nifD, nifK, nifE, nifN, nifX, hesA and nifV encoding Mo-nitrogenase is conserved in the 15 N2-fixing strains. The nif cluster is under control of a σ70-depedent promoter and possesses a GlnR/TnrA-binding site in the promoter. Suf system encoding [Fe–S] cluster is highly conserved in N2-fixing and non-N2-fixing strains. Furthermore, we demonstrate that the nif cluster enabled Escherichia coli JM109 to fix nitrogen. Phylogeny of the concatenated NifHDK sequences indicates that Paenibacillus and Frankia are sister groups. Phylogeny of the concatenated 275 single-copy core genes suggests that the ancestral Paenibacillus did not fix nitrogen. The N2-fixing Paenibacillus strains were generated by acquiring the nif cluster via horizontal gene transfer (HGT) from a source related to Frankia. During the history of evolution, the nif cluster was lost, producing some non-N2-fixing strains, and vnf encoding V-nitrogenase or anf encoding Fe-nitrogenase was acquired, causing further diversification of some strains. In addition, some N2-fixing strains have additional nif and nif-like genes which may result from gene duplications. The evolution of nitrogen fixation in Paenibacillus involves a mix of gain, loss, HGT and duplication of nif/anf/vnf genes. This study not only reveals the organization and distribution of nitrogen fixation genes in Paenibacillus, but also provides insight into the complex evolutionary history of nitrogen fixation. 相似文献
7.
Non-nodular tissue of soybean (Glycine max L. Merrill) plants grown hydroponically in the absence of added N have a 15N abundance close to that of atmospheric N2. In contrast, nodules are usually enriched in 15N. In this paper, we report measurements of the 15N abundance of foliar tissue and nodules of soybeans inoculated with 11 variably efficient strains of Rhizobum japonicum and grown hydroponically with no added N. The efficiency of the 11 symbioses varied over a wide range as judged by a 16-fold difference in N content. The degree of 15N enrichment of nodules was closely correlated with N2-fixing efficiency (milligrams N fixed per milligram N in the nodules).
These results confirm prior preliminary data based on six variably efficient R. japonicum strains. The strong correlation between NN enrichment of soybean nodules and N2-fixing efficiency is consistent with the hypothesis that new nodule tissue is synthesized from a pool of recently fixed N within the same nodule.
相似文献8.
Nitrogen-fixing Klebsiella and Enterobacter strains isolated from several plants were assayed for fimbriae and for adhesion to plant roots in vitro. All eight Klebsiella strains formed type 3 fimbriae, and five strains also formed type 1 fimbriae; all 21 Enterobacter strains had type 1 fimbriae. Three strains of Klebsiella carrying either type 1, type 3, or no fimbriae were used as model organisms in developing an in vitro adhesion test. Adhesion was assayed with bacterial cells labeled with [3H]leucine. Fifteen N2-fixing strains and the three model strains were compared for adhesion to the roots of seven grasses and five cereals. Type 3-fimbriated Klebsiella strains adhered better than the other strains, and type 3 fimbriae appeared to be major adhesins for the Klebsiella strains. Although variations between plants were observed, no host specificity for bacterial adhesion was found. 相似文献
9.
Wong TY 《Applied and environmental microbiology》1988,54(2):473-475
Mannose is not a suitable substrate for N(2)-fixing Azotobacter vinelandii. However, when H(2) gas is provided, A. vinelandii can grow mixotrophically with H(2) as the energy source and mannose as the carbon source (T.-Y. Wong and R. J. Maier, J. Bacteriol. 163:528-533, 1985). In this report, seven sugars were used to determine whether A. vinelandii could derive energy from these sugars for mannose utilization. Supplementation of fructose- or galactose-limited medium with mannose did not influence the biomass produced by N(2)-fixing A. vinelandii. The presence of mannose in glucose- or maltose-limited cultures increased cell yield slightly. The addition of mannose decreased the total biomass in the melibiose-limited culture slightly. Mannose was a potent inhibitor of growth when sucrose or turanose was used as the primary sugar. The inhibitory effect of mannose on utilization of sucrose and turanose seems to be related to the energy requirement of the N(2)-fixing processes. 相似文献
10.
11.
Specific Adhesion of Bacteria to Heterocysts of Anabaena spp. and Its Ecological Significance
下载免费PDF全文

Two bacterial isolates, Pseudomonas sp. SL10 and Zoogloea sp. SL20, attach to heterocysts of Anabaena spp. with a high degree of selectivity, and this attachment can be expressed quantitatively in terms of adsorption isotherms. Adhesion of Pseudomonas sp. SL10 was restricted to a monolayer and exhibited a type I (Langmuir) isotherm, whereas adhesion of Zoogloea sp. SL20 involved multilayer attachment and exhibited a type II isotherm. The degree of adhesion by the bacteria to heterocysts of different Anabaena species may reflect the distribution and abundance of binding sites on the surface of different heterocysts. Both Pseudomonas sp. SL10 and Zoogloea sp SL20 promoted higher rates of acetylene reduction by Anabaena spp. under oxygenated culture conditions when compared with a cyanobacterial control. At ambient oxygen levels, however, only Zoogloea sp. SL20 stimulated acetylene reduction by Anabaena spp. 相似文献
12.
The interactions between colorless sulfur bacteria and the chemical microgradients at the oxygen-sulfide interface were studied in Beggiatoa mats from marine sediments and in Thiovulum veils developing above the sediments. The gradients of O(2), H(2)S, and pH were measured by microelectrodes at depth increments of 50 mum. An unstirred boundary layer in the water surrounding the mats and veils prevented microturbulent or convective mixing of O(2) and H(2)S. The two substrates reached the bacteria only by molecular diffusion through the boundary layer. The bacteria lived as microaerophiles or anaerobes even under stirred, oxic water. Oxygen and sulfide zones overlapped by 50 mum in the bacterial layers. Both compounds had concentrations in the range of 0 to 10 mumol liter and residence times of 0.1 to 0.6 s in the overlapping zone. The sulfide oxidation was purely biological. Diffusion calculations showed that formation of mats on solid substrates or of veils in the water represented optimal strategies for the bacteria to achieve a stable microenvironment, a high substrate supply, and an efficient competition with chemical sulfide oxidation. The continuous gliding movement of Beggiatoa cells in mats or the flickering motion of Thiovulum cells in veils were important for the availability of both O(2) and H(2)S for the individual bacteria. 相似文献
13.
The ultrastructural features of two groups of filamentous sulfur bacteria, Thiothrix spp. and an unnamed organism designated type 021N, were examined by transmission electron microscopy. Negative staining of whole cells and filaments with uranyl acetate revealed the presence of tufts of fimbriae located at the ends of individual gonidia of Thiothrix sp. strain A1 and type 021N strain N7. Holdfast material present at the center of mature rosettes was observed in thin sections stained with ruthenium red. A clearly defined sheath enveloped the trichomes of two of three Thiothrix strains but was absent from type 021N filaments. The outer cell wall appeared more complex in type 021N strains than in Thiothrix isolates. Bulbs or clusters of irregularly shaped cells, often present in filaments of type 021N bacteria, appeared to result from crosswalls which formed at angles oblique to the filament axis. The multicellular nature of these sulfur bacteria was apparent in that only the cytoplasmic membrane and peptidoglycan layer of the cell wall were involved in the septation process. Sulfur inclusions which developed in the presence of sodium thiosulfate were enclosed by a single-layered envelope and located within invaginations of the cytoplasmic membrane. 相似文献
14.
Smith RL Schank SC Milam JR Baltensperger AA 《Applied and environmental microbiology》1984,47(6):1331-1336
Three field inoculation experiments, two in Florida and one in New Mexico, were conducted with Azospirillum brasilense Cd. Each of the Florida experiments evaluated two crop species. One species in each of the Florida experiments responded to inoculation with a significant dry matter yield increases of 11 to 24% and nitrogen yield increases of 9 to 39%. No inoculation response was noted in the New Mexico experiment. The responding species were Sorghum bicolor (L.) Moench (sorghum) and the interspecific hybrid between Pennisetum americanum (L.) K. Schum. (pearl millet) and P. purpureum Schumach. (napiergrass). Nonresponding species were pearl millet (Florida) and Sorghum sudanense (Piper) Staph. (New Mexico). Acetylene reduction activity of inoculated plots in Florida was low, showing no increase over the natural uninoculated background rates and, in one case, was negatively correlated with yield. Acetylene reduction activity was not measured in New Mexico. In Florida, A. brasilense populations were found to decline from 5 x 10 to 5 x 10 bacteria g of soil in about 3 weeks (quadratic regressions). Continued decline to less than 10 by week 5 indicated that the inoculated bacteria did not become established in the soil in high numbers. The A. brasilense population declined at about the same rate in the New Mexico experiment. The erractic inoculation responses in these experiments are similar to those observed in earlier work at the University of Florida. The lack of acetylene reduction activity response to inoculation and the rapid population decline of the inoculated bacteria suggest that N(2) fixation is not the major mechanism causing yield responses after inoculation. 相似文献
15.
Hans W. Paerl 《Oecologia》1978,32(2):135-139
Summary It is well known that N2-fixation in blue-green algae is O2 sensitive. However, at least two species of the filamentous, N2-fixing blue-green alga Anabaena possess an indigenous mechanism allowing recovery of nitrogenase activity during O2 supersaturation. The process is light-mediated and appears to employ photoreduction as a means of overcoming N2 inhibition. Such recovery should optimize radiant energy utilization and N2 fixation in freshwater blooms, which are often O2 supersaturated during peak daylight hours. 相似文献
16.
In light of recent proposals that iron (Fe) availability may play an important role in controlling oceanic primary production and nutrient flux, its regulatory impact on N(2) fixation and production dynamics was investigated in the widespread and biogeochemically important diazotrophic, planktonic cyanobacteria Trichodesmium spp. Fe additions, as FeCl(3) and EDTA-chelated FeCl(3), enhanced N(2) fixation (nitrogenase activity), photosynthesis (CO(2) fixation), and growth (chlorophyll a production) in both naturally occurring and cultured (on unenriched oligotrophic seawater) Trichodesmium populations. Maximum enhancement of these processes occurred under FeEDTA-amended conditions. On occasions, EDTA alone led to enhancement. No evidence for previously proposed molybdenum or phosphorus limitation was found. Our findings geographically extend support for Fe limitation of N(2) fixation and primary production to tropical and subtropical oligotrophic ocean waters often characterized by Trichodesmium blooms. 相似文献
17.
兼性厌氧细菌Enterobacter cloacae菌株E-26和Klebsiella oxytoca菌株NG-13的氢酶与固氮酶同时形成。固氮的最佳碳源为蔗糖、葡萄糖和丙酮酸,此外延胡索酸和苹果酸也能支持固氮。支持固氮的碳源也支持放氢,两者动力学基本一致。40%乙炔预处理后,吸氢活性下跌,放氢量未增加;NH_4~ 抑制固氮酶,但未导致放氢量降低;可能E-26菌株的放氢主要依赖于氢酶。菌株E-26和NG-13的吸氢反应,既能以O_2为电子受体,也能以延胡索酸、硝酸、MB为电子受体。但仅延胡索酸为电子受体时,E-26菌的固氮活性被分子H_2促进,它的氢吸收利用与固氮相偶联;而在CO_2和NH_4~ 代谢与H_2利用之间并无明显相关性,吸氢活性不被CO_2和NH_4~ 促进。 相似文献
18.
Tit-Yee Wong 《Applied microbiology》1988,54(2):473-475
Mannose is not a suitable substrate for N2-fixing Azotobacter vinelandii. However, when H2 gas is provided, A. vinelandii can grow mixotrophically with H2 as the energy source and mannose as the carbon source (T.-Y. Wong and R. J. Maier, J. Bacteriol. 163:528-533, 1985). In this report, seven sugars were used to determine whether A. vinelandii could derive energy from these sugars for mannose utilization. Supplementation of fructose- or galactose-limited medium with mannose did not influence the biomass produced by N2-fixing A. vinelandii. The presence of mannose in glucose- or maltose-limited cultures increased cell yield slightly. The addition of mannose decreased the total biomass in the melibiose-limited culture slightly. Mannose was a potent inhibitor of growth when sucrose or turanose was used as the primary sugar. The inhibitory effect of mannose on utilization of sucrose and turanose seems to be related to the energy requirement of the N2-fixing processes. 相似文献
19.
20.
The metabolism of dissimilatory iron-reducing bacteria (DIRB) may provide a means of remediating contaminated subsurface soils. The factors controlling the rate and extent of bacterial F(III) mineral reduction are poorly understood. Recent research suggests that molecular-scale interactions between DIRB cells and Fe(III) mineral particles play an important role in this process. One of these interactions, cell adhesion to Fe(III) mineral particles, appears to be a complex process that is, at least in part, mediated by a variety of surface proteins. This study examined the hypothesis that the flagellum serves as an adhesin to different Fe(III) minerals that range in their surface area and degree of crystallinity. Deflagellated cells of the DIRB Shewanella algae BrY showed a reduced ability to adhere to hydrous ferric oxide (HFO) relative to flagellated cells. Flagellated cells were also more hydrophobic than deflagellated cells. This was significant because hydrophobic interactions have been previously shown to dominate S. algae cell adhesion to Fe(III) minerals. Pre-incubating HFO, goethite, or hematite with purified flagella inhibited the adhesion of S. algae BrY cells to these minerals. Transposon mutagenesis was used to generate a flagellum-deficient mutant designated S. algae strain NF. There was a significant difference in the rate and extent of S. algae NF adhesion to HFO, goethite, and hematite relative to that of S. algae BrY. Amiloride, a specific inhibitor of Na + -driven flagellar motors, inhibited S. algae BrY motility but did not affect the adhesion of S. algae BrY to HFO. S.algae NF reduced HFO at the same rate as S. algae BrY. Collectively, the results of this study support the hypothesis that the flagellum of S. algae functions as a specific Fe(III) mineral adhesin. However, these results suggest that flagellum-mediated adhesion is not requisite for Fe(III) mineral reduction. 相似文献