共查询到20条相似文献,搜索用时 15 毫秒
1.
Gene selection algorithms for microarray data based on least squares support vector machine 总被引:1,自引:0,他引:1
Background
In discriminant analysis of microarray data, usually a small number of samples are expressed by a large number of genes. It is not only difficult but also unnecessary to conduct the discriminant analysis with all the genes. Hence, gene selection is usually performed to select important genes. 相似文献2.
MOTIVATION: With the development of DNA microarray technology, scientists can now measure the expression levels of thousands of genes simultaneously in one single experiment. One current difficulty in interpreting microarray data comes from their innate nature of 'high-dimensional low sample size'. Therefore, robust and accurate gene selection methods are required to identify differentially expressed group of genes across different samples, e.g. between cancerous and normal cells. Successful gene selection will help to classify different cancer types, lead to a better understanding of genetic signatures in cancers and improve treatment strategies. Although gene selection and cancer classification are two closely related problems, most existing approaches handle them separately by selecting genes prior to classification. We provide a unified procedure for simultaneous gene selection and cancer classification, achieving high accuracy in both aspects. RESULTS: In this paper we develop a novel type of regularization in support vector machines (SVMs) to identify important genes for cancer classification. A special nonconvex penalty, called the smoothly clipped absolute deviation penalty, is imposed on the hinge loss function in the SVM. By systematically thresholding small estimates to zeros, the new procedure eliminates redundant genes automatically and yields a compact and accurate classifier. A successive quadratic algorithm is proposed to convert the non-differentiable and non-convex optimization problem into easily solved linear equation systems. The method is applied to two real datasets and has produced very promising results. AVAILABILITY: MATLAB codes are available upon request from the authors. 相似文献
3.
In this paper, we propose some very simple algorithms and architectures for a digital VLSI implementation of Support Vector Machines. We discuss the main aspects concerning the realization of the learning phase of SVMs, with special attention on the effects of fixed-point math for computing and storing the parameters of the network. Some experiments on two classification problems are described that show the efficiency of the proposed methods in reaching optimal solutions with reasonable hardware requirements. 相似文献
4.
Background
Protein-protein interaction (PPI) plays essential roles in cellular functions. The cost, time and other limitations associated with the current experimental methods have motivated the development of computational methods for predicting PPIs. As protein interactions generally occur via domains instead of the whole molecules, predicting domain-domain interaction (DDI) is an important step toward PPI prediction. Computational methods developed so far have utilized information from various sources at different levels, from primary sequences, to molecular structures, to evolutionary profiles. 相似文献5.
This paper proposes a new power spectral-based hybrid genetic algorithm-support vector machines (SVMGA) technique to classify five types of electrocardiogram (ECG) beats, namely normal beats and four manifestations of heart arrhythmia. This method employs three modules: a feature extraction module, a classification module and an optimization module. Feature extraction module extracts electrocardiogram's spectral and three timing interval features. Non-parametric power spectral density (PSD) estimation methods are used to extract spectral features. Support vector machine (SVM) is employed as a classifier to recognize the ECG beats. We investigate and compare two such classification approaches. First they are specified experimentally by the trial and error method. In the second technique the approach optimizes the relevant parameters through an intelligent algorithm. These parameters are: Gaussian radial basis function (GRBF) kernel parameter σ and C penalty parameter of SVM classifier. Then their performances in classification of ECG signals are evaluated for eight files obtained from the MIT–BIH arrhythmia database. Classification accuracy of the SVMGA approach proves superior to that of the SVM which has constant and manually extracted parameter. 相似文献
6.
Conotoxins are disulfide rich small peptides that target a broad spectrum of ion-channels and neuronal receptors. They offer promising avenues in the treatment of chronic pain, epilepsy and cardiovascular diseases. Assignment of newly sequenced mature conotoxins into appropriate superfamilies using a computational approach could provide valuable preliminary information on the biological and pharmacological functions of the toxins. However, creation of protein sequence patterns for the reliable identification and classification of new conotoxin sequences may not be effective due to the hypervariability of mature toxins. With the aim of formulating an in silico approach for the classification of conotoxins into superfamilies, we have incorporated the concept of pseudo-amino acid composition to represent a peptide in a mathematical framework that includes the sequence-order effect along with conventional amino acid composition. The polarity index attribute, which encodes information such as residue surface buriability, polarity, and hydropathy, was used to store the sequence-order effect. Several methods like BLAST, ISort (Intimate Sorting) predictor, least Hamming distance algorithm, least Euclidean distance algorithm and multi-class support vector machines (SVMs), were explored for superfamily identification. The SVMs outperform other methods providing an overall accuracy of 88.1% for all correct predictions with generalized squared correlation of 0.75 using jackknife cross-validation test for A, M, O and T superfamilies and a negative set consisting of short cysteine rich sequences from different eukaryotes having diverse functions. The computed sensitivity and specificity for the superfamilies were found to be in the range of 84.0-94.1% and 80.0-95.5%, respectively, attesting to the efficacy of multi-class SVMs for the successful in silico classification of the conotoxins into their superfamilies. 相似文献
7.
Hybrid huberized support vector machines for microarray classification and gene selection 总被引:1,自引:0,他引:1
MOTIVATION: The standard L(2)-norm support vector machine (SVM) is a widely used tool for microarray classification. Previous studies have demonstrated its superior performance in terms of classification accuracy. However, a major limitation of the SVM is that it cannot automatically select relevant genes for the classification. The L(1)-norm SVM is a variant of the standard L(2)-norm SVM, that constrains the L(1)-norm of the fitted coefficients. Due to the singularity of the L(1)-norm, the L(1)-norm SVM has the property of automatically selecting relevant genes. On the other hand, the L(1)-norm SVM has two drawbacks: (1) the number of selected genes is upper bounded by the size of the training data; (2) when there are several highly correlated genes, the L(1)-norm SVM tends to pick only a few of them, and remove the rest. RESULTS: We propose a hybrid huberized support vector machine (HHSVM). The HHSVM combines the huberized hinge loss function and the elastic-net penalty. By doing so, the HHSVM performs automatic gene selection in a way similar to the L(1)-norm SVM. In addition, the HHSVM encourages highly correlated genes to be selected (or removed) together. We also develop an efficient algorithm to compute the entire solution path of the HHSVM. Numerical results indicate that the HHSVM tends to provide better variable selection results than the L(1)-norm SVM, especially when variables are highly correlated. AVAILABILITY: R code are available at http://www.stat.lsa.umich.edu/~jizhu/code/hhsvm/. 相似文献
8.
Molecular classification of cancer types from microarray data using the combination of genetic algorithms and support vector machines 总被引:11,自引:0,他引:11
Simultaneous multiclass classification of tumor types is essential for future clinical implementations of microarray-based cancer diagnosis. In this study, we have combined genetic algorithms (GAs) and all paired support vector machines (SVMs) for multiclass cancer identification. The predictive features have been selected through iterative SVMs/GAs, and recursive feature elimination post-processing steps, leading to a very compact cancer-related predictive gene set. Leave-one-out cross-validations yielded accuracies of 87.93% for the eight-class and 85.19% for the fourteen-class cancer classifications, outperforming the results derived from previously published methods. 相似文献
9.
Recurrent chromosomal alterations provide cytological and molecular positions for the diagnosis and prognosis of cancer. Comparative genomic hybridization (CGH) has been useful in understanding these alterations in cancerous cells. CGH datasets consist of samples that are represented by large dimensional arrays of intervals. Each sample consists of long runs of intervals with losses and gains. In this article, we develop novel SVM-based methods for classification and feature selection of CGH data. For classification, we developed a novel similarity kernel that is shown to be more effective than the standard linear kernel used in SVM. For feature selection, we propose a novel method based on the new kernel that iteratively selects features that provides the maximum benefit for classification. We compared our methods against the best wrapper-based and filter-based approaches that have been used for feature selection of large dimensional biological data. Our results on datasets generated from the Progenetix database, suggests that our methods are considerably superior to existing methods. AVAILABILITY: All software developed in this article can be downloaded from http://plaza.ufl.edu/junliu/feature.tar.gz. 相似文献
10.
For the first time, multiple sets of n-peptide compositions from antifreeze protein (AFP) sequences of various cold-adapted fish and insects were analyzed using support vector machine and genetic algorithms. The identification of AFPs is difficult because they exist as evolutionarily divergent types, and because their sequences and structures are present in limited numbers in currently available databases. Our results reveal that it is feasible to identify the shared sequential features among the various structural types of AFPs. Moreover, we were able to identify residues involved in ice binding without requiring knowledge of the three-dimensional structures of these AFPs. This approach should be useful for genomic and proteomic studies involving cold-adapted organisms. 相似文献
11.
Protein secondary structure prediction based on an improved support vector machines approach 总被引:7,自引:0,他引:7
The prediction of protein secondary structure is an important step in the prediction of protein tertiary structure. A new protein secondary structure prediction method, SVMpsi, was developed to improve the current level of prediction by incorporating new tertiary classifiers and their jury decision system, and the PSI-BLAST PSSM profiles. Additionally, efficient methods to handle unbalanced data and a new optimization strategy for maximizing the Q(3) measure were developed. The SVMpsi produces the highest published Q(3) and SOV94 scores on both the RS126 and CB513 data sets to date. For a new KP480 set, the prediction accuracy of SVMpsi was Q(3) = 78.5% and SOV94 = 82.8%. Moreover, the blind test results for 136 non-redundant protein sequences which do not contain homologues of training data sets were Q(3) = 77.2% and SOV94 = 81.8%. The SVMpsi results in CASP5 illustrate that it is another competitive method to predict protein secondary structure. 相似文献
12.
The chemical modification of histones at specific DNA regulatory elements is linked to the activation, inactivation and poising of genes. A number of tools exist to predict enhancers from chromatin modification maps, but their practical application is limited because they either (i) consider a smaller number of marks than those necessary to define the various enhancer classes or (ii) work with an excessive number of marks, which is experimentally unviable. We have developed a method for chromatin state detection using support vector machines in combination with genetic algorithm optimization, called ChromaGenSVM. ChromaGenSVM selects optimum combinations of specific histone epigenetic marks to predict enhancers. In an independent test, ChromaGenSVM recovered 88% of the experimentally supported enhancers in the pilot ENCODE region of interferon gamma-treated HeLa cells. Furthermore, ChromaGenSVM successfully combined the profiles of only five distinct methylation and acetylation marks from ChIP-seq libraries done in human CD4+ T cells to predict ∼21 000 experimentally supported enhancers within 1.0 kb regions and with a precision of ∼90%, thereby improving previous predictions on the same dataset by 21%. The combined results indicate that ChromaGenSVM comfortably outperforms previously published methods and that enhancers are best predicted by specific combinations of histone methylation and acetylation marks. 相似文献
13.
Background
Previous studies on protein-DNA interaction mostly focused on the bound structure of DNA-binding proteins but few paid enough attention to the unbound structures. As more new proteins are discovered, it is useful and imperative to develop algorithms for the functional prediction of unbound proteins. In our work, we apply an alpha shape model to represent the surface structure of the protein-DNA complex and extract useful statistical and geometric features, and use structural alignment and support vector machines for the prediction of unbound DNA-binding proteins.Results
The performance of our method is evaluated by discriminating a set of 104 DNA-binding proteins from 401 non-DNA-binding proteins. In the same test, the proposed method outperforms the other method using conditional probability. The results achieved by our proposed method for; precision, 83.33%; accuracy, 86.53%; and MCC, 0.5368 demonstrate its good performance.Conclusions
In this study we develop an effective method for the prediction of protein-DNA interactions based on statistical and geometric features and support vector machines. Our results show that interface surface features play an important role in protein-DNA interaction. Our technique is able to predict unbound DNA-binding protein and discriminatory DNA-binding proteins from proteins that bind with other molecules.14.
15.
Modelling ecological niches with support vector machines 总被引:2,自引:1,他引:2
16.
Secondary structure prediction with support vector machines 总被引:8,自引:0,他引:8
MOTIVATION: A new method that uses support vector machines (SVMs) to predict protein secondary structure is described and evaluated. The study is designed to develop a reliable prediction method using an alternative technique and to investigate the applicability of SVMs to this type of bioinformatics problem. METHODS: Binary SVMs are trained to discriminate between two structural classes. The binary classifiers are combined in several ways to predict multi-class secondary structure. RESULTS: The average three-state prediction accuracy per protein (Q(3)) is estimated by cross-validation to be 77.07 +/- 0.26% with a segment overlap (Sov) score of 73.32 +/- 0.39%. The SVM performs similarly to the 'state-of-the-art' PSIPRED prediction method on a non-homologous test set of 121 proteins despite being trained on substantially fewer examples. A simple consensus of the SVM, PSIPRED and PROFsec achieves significantly higher prediction accuracy than the individual methods. 相似文献
17.
Li HD Liang YZ Xu QS Cao DS Tan BB Deng BC Lin CC 《IEEE/ACM transactions on computational biology and bioinformatics / IEEE, ACM》2011,8(6):1633-1641
Selecting a small number of informative genes for microarray-based tumor classification is central to cancer prediction and treatment. Based on model population analysis, here we present a new approach, called Margin Influence Analysis (MIA), designed to work with support vector machines (SVM) for selecting informative genes. The rationale for performing margin influence analysis lies in the fact that the margin of support vector machines is an important factor which underlies the generalization performance of SVM models. Briefly, MIA could reveal genes which have statistically significant influence on the margin by using Mann-Whitney U test. The reason for using the Mann-Whitney U test rather than two-sample t test is that Mann-Whitney U test is a nonparametric test method without any distribution-related assumptions and is also a robust method. Using two publicly available cancerous microarray data sets, it is demonstrated that MIA could typically select a small number of margin-influencing genes and further achieves comparable classification accuracy compared to those reported in the literature. The distinguished features and outstanding performance may make MIA a good alternative for gene selection of high dimensional microarray data. (The source code in MATLAB with GNU General Public License Version 2.0 is freely available at http://code.google.com/p/mia2009/). 相似文献
18.
Background
Human genetic variations primarily result from single nucleotide polymorphisms (SNPs) that occur approximately every 1000 bases in the overall human population. The non-synonymous SNPs (nsSNPs) that lead to amino acid changes in the protein product may account for nearly half of the known genetic variations linked to inherited human diseases. One of the key problems of medical genetics today is to identify nsSNPs that underlie disease-related phenotypes in humans. As such, the development of computational tools that can identify such nsSNPs would enhance our understanding of genetic diseases and help predict the disease. 相似文献19.
Background
Alpha-helical transmembrane (TM) proteins are involved in a wide range of important biological processes such as cell signaling, transport of membrane-impermeable molecules, cell-cell communication, cell recognition and cell adhesion. Many are also prime drug targets, and it has been estimated that more than half of all drugs currently on the market target membrane proteins. However, due to the experimental difficulties involved in obtaining high quality crystals, this class of protein is severely under-represented in structural databases. In the absence of structural data, sequence-based prediction methods allow TM protein topology to be investigated. 相似文献20.
Steinn Gudmundsson Gudny Lilja Oddsdottir Thomas Philip Runarsson Sven Sigurdsson Eythor Kristjansson 《Biomedical signal processing and control》2010,5(4):311-317
A new method is proposed for detecting fraudulent whiplash claims based on measurements of movement control of the neck. The method is noninvasive and inexpensive. The subjects track a slowly moving object on a computer screen with their head. The deviation between the measured and actual trajectory is quantified and used as input to an ensemble of support vector machine classifiers. The ensemble was trained on a group of 34 subjects with chronic whiplash disorder together with a group of 31 healthy subjects instructed to feign whiplash injury. The sensitivity of the proposed method was 86%, the specificity 84% and the area under curve (AUC) was 0.86. This suggests that the method can be of practical use for evaluating the validity of whiplash claims. 相似文献