首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Dominant mutations in the gamma2 regulatory subunit of AMP-activated protein kinase (AMPK), encoded by the gene PRKAG2, cause glycogen storage cardiomyopathy. We sought to elucidate the effect of the Thr400Asn (T400N) human mutation in a transgenic mouse (TGT400N) on AMPK activity, and its ability to protect the heart against ischemia-reperfusion injury. TGT400N hearts had markedly vacuolated myocytes, excessive accumulation of glycogen, hypertrophy, and preexcitation. Early activation of myocardial AMPK, followed by depression, and then recovery to wild-type levels was observed. AMPK activity correlated inversely with glycogen content. Partial rescue of the phenotype was observed when TGT400N mice were crossbred with TGalpha2DN mice, which overexpress a dominant negative mutant of the AMPK alpha2 catalytic subunit. TGT400N hearts had greater infarct sizes and apoptosis when subjected to ischemia-reperfusion. Increased AMPK activity is responsible for glycogen storage cardiomyopathy. Despite high glycogen content, the TGT400N heart is not protected against ischemia-reperfusion injury.  相似文献   

2.
Although mutations in the gamma-subunit of AMP-activated protein kinase (AMPK) can result in excessive glycogen accumulation and cardiac hypertrophy, the mechanisms by which this occurs have not been well defined. Because >65% of cardiac AMPK activity is associated with the gamma1-subunit of AMPK, we investigated the effects of expression of an AMPK-activating gamma1-subunit mutant (gamma1 R70Q) on regulatory pathways controlling glycogen accumulation and cardiac hypertrophy in neonatal rat cardiac myocytes. Whereas expression of gamma1 R70Q displayed the expected increase in palmitate oxidation rates, rates of glycolysis were significantly depressed. In addition, glycogen synthase activity was increased in cardiac myocytes expressing gamma1 R70Q, due to both increased expression and decreased phosphorylation of glycogen synthase. The inhibition of glycolysis and increased glycogen synthase activity were correlated with elevated glycogen levels in gamma1 R70Q-expressing myocytes. In association with the reduced phosphorylation of glycogen synthase, glycogen synthase kinase (GSK)-3beta protein and mRNA levels were profoundly decreased in the gamma1 R70Q-expressing myocytes. Consistent with GSK-3beta negatively regulating hypertrophy via inhibition of nuclear factor of activated T cells (NFAT), the dramatic downregulation of GSK-3beta was associated with increased nuclear activity of NFAT. Together, these data provide important new information about the mechanisms by which a mutation in the gamma-subunit of AMPK causes altered AMPK signaling and identify multiple pathways involved in regulating both cardiac myocyte metabolism and growth that may contribute to the development of the gamma mutant-associated cardiomyopathy.  相似文献   

3.
The receptors for IGF-I (IGF-IR) and insulin (IR) have been implicated in physiological cardiac growth, but it is unknown whether IGF-IR or IR signaling are critically required. We generated mice with cardiomyocyte-specific knockout of IGF-IR (CIGF1RKO) and compared them with cardiomyocyte-specific insulin receptor knockout (CIRKO) mice in response to 5 wk exercise swim training. Cardiac development was normal in CIGF1RKO mice, but the hypertrophic response to exercise was prevented. In contrast, despite reduced baseline heart size, the hypertrophic response of CIRKO hearts to exercise was preserved. Exercise increased IGF-IR content in control and CIRKO hearts. Akt phosphorylation increased in exercise-trained control and CIRKO hearts and, surprisingly, in CIGF1RKO hearts as well. In exercise-trained control and CIRKO mice, expression of peroxisome proliferator-activated receptor-gamma coactivator-1alpha (PGC-1alpha) and glycogen content were both increased but were unchanged in trained CIGF1RKO mice. Activation of AMP-activated protein kinase (AMPK) and its downstream target eukaryotic elongation factor-2 was increased in exercise-trained CIGF1RKO but not in CIRKO or control hearts. In cultured neonatal rat cardiomyocytes, activation of AMPK with 5-aminoimidazole-4-carboxamide-1-beta-D-ribofuranoside (AICAR) prevented IGF-I/insulin-induced cardiomyocyte hypertrophy. These studies identify an essential role for IGF-IR in mediating physiological cardiomyocyte hypertrophy. IGF-IR deficiency promotes energetic stress in response to exercise, thereby activating AMPK, which leads to phosphorylation of eukaryotic elongation factor-2. These signaling events antagonize Akt signaling, which although necessary for mediating physiological cardiac hypertrophy, is insufficient to promote cardiac hypertrophy in the absence of myocardial IGF-I signaling.  相似文献   

4.
Human mutations in PRKAG2, the gene encoding the γ2 subunit of AMP activated protein kinase (AMPK), cause a glycogen storage cardiomyopathy. In a transgenic mouse with cardiac specific expression of the Thr400Asn mutation in PRKAG2 (TGT400N), we previously reported initial cardiac hypertrophy (ages 2–8 weeks) followed by dilation and failure (ages 12–20 weeks). We sought to elucidate the molecular mechanisms of cardiac hypertrophy. TGT400N mice showed significantly increased cardiac mass/body mass ratios up to ~ 3-fold beginning at age 2 weeks. Cardiac expression of ANP and BNP were ~ 2- and ~ 5-fold higher, respectively, in TGT400N relative to wildtype (WT) mice at age 2 weeks. NF-κB activity and nuclear translocation of the p50 subunit were increased ~ 2- to 3-fold in TGT400N hearts relative to WT during the hypertrophic phase. Phosphorylated Akt and p70S6K were elevated ~ 2-fold as early as age 2 weeks. To ascertain whether these changes in TGT400N mice were a consequence of increased AMPK activity, we crossbred TGT400N with TGα2DN mice, which express a dominant negative, kinase dead mutant of the AMPK α2 catalytic subunit and have low myocardial AMPK activity. Genetic reversal of AMPK overactivity led to a reduction in hypertrophy, nuclear translocation of NF-κB, phosphorylated Akt, and p70S6K. We conclude that inappropriate activation of AMPK secondary to the T400N PRKAG2 mutation is associated with the early activation of NF-κB and Akt signaling pathway, which mediates cardiac hypertrophy.  相似文献   

5.
AMP-activated protein kinase (AMPK) plays a critical role in maintaining energy homeostasis and cardiac function during ischemia in the heart. However, the functional role of AMPK in the heart during exercise is unknown. We examined whether acute exercise increases AMPK activity in mouse hearts and determined the significance of these increases by studying transgenic (TG) mice expressing a cardiac-specific dominant-negative (inactivating) AMPKalpha2 subunit. Exercise increased cardiac AMPKalpha2 activity in the wild type mice but not in TG. We found that inactivation of AMPK did not result in abnormal ATP and glycogen consumption during exercise, cardiac function assessed by heart rhythm telemetry and stress echocardiography, or in maximal exercise capacity.  相似文献   

6.
The AMP-activated protein kinase (AMPK) is an alphabetagamma heterotrimer that is activated by low cellular energy status and affects a switch away from energy-requiring processes and toward catabolism. While it is primarily regulated by AMP and ATP, high muscle glycogen has also been shown to repress its activation. Mutations in the gamma2 and gamma3 subunit isoforms lead to arrhythmias associated with abnormal glycogen storage in human heart and elevated glycogen in pig muscle, respectively. A putative glycogen binding domain (GBD) has now been identified in the beta subunits. Coexpression of truncated beta subunits lacking the GBD with alpha and gamma subunits yielded complexes that were active and normally regulated. However, coexpression of alpha and gamma with full-length beta caused accumulation of AMPK in large cytoplasmic inclusions that could be counterstained with anti-glycogen or anti-glycogen synthase antibodies. These inclusions were not affected by mutations that increased or abolished the kinase activity and were not observed by using truncated beta subunits lacking the GBD. Our results suggest that the GBD binds glycogen and can lead to abnormal glycogen-containing inclusions when the kinase is overexpressed. These may be related to the abnormal glycogen storage bodies seen in heart disease patients with gamma2 mutations.  相似文献   

7.
LKB1 encodes a serine/threonine kinase, which functions upstream of the AMP-activated protein kinase (AMPK) superfamily. To clarify the role of LKB1 in heart, we generated and characterized cardiac myocyte-specific LKB1 knock-out (KO) mice using α-myosin heavy chain-Cre deletor strain. LKB1-KO mice displayed biatrial enlargement with atrial fibrillation and cardiac dysfunction at 4 weeks of age. Left ventricular hypertrophy was observed in LKB1-KO mice at 12 weeks but not 4 weeks of age. Collagen I and III mRNA expression was elevated in atria at 4 weeks, and atrial fibrosis was seen at 12 weeks. LKB1-KO mice displayed cardiac dysfunction and atrial fibrillation and died within 6 months of age. Indicative of a prohypertrophic environment, the phosphorylation of AMPK and eEF2 was reduced, whereas mammalian target of rapamycin (mTOR) phosphorylation and p70S6 kinase phosphorylation were increased in both the atria and ventricles of LKB1-deficient mice. Consistent with vascular endothelial growth factor mRNA and protein levels being significantly reduced in LKB1-KO mice, these mice also exhibited a reduction in capillary density of both atria and ventricles. In cultured cardiac myocytes, LKB1 silencing induced hypertrophy, which was ameliorated by the expression of a constitutively active form AMPK or by treatment with the inhibitor of mTOR, rapamycin. These findings indicate that LKB1 signaling in cardiac myocytes is essential for normal development of the atria and ventricles. Cardiac hypertrophy and dysfunction in LKB1-deficient hearts are associated with alterations in AMPK and mTOR/p70S6 kinase/eEF2 signaling and with a reduction in vascular endothelial growth factor expression and vessel rarefaction.  相似文献   

8.
Mutations in the gene encoding the gamma(2) subunit of the AMP-activated protein kinase (AMPK) have recently been shown to cause cardiac hypertrophy and ventricular pre-excitation (Wolff-Parkinson-White syndrome). We have examined the effect of four of these mutations on AMPK activity. The mutant gamma(2) polypeptides are all able to form functional complexes following co-expression with either alpha(1)beta(1) or alpha(2)beta(1) in mammalian cells. None of the mutations caused any detectable change in the phosphorylation of threonine 172 within the alpha subunit of AMPK. Consequently, in the absence of an appropriate stimulus the mutant complexes, like the wild-type complex, exist in an inactive form demonstrating that the mutations do not lead to constitutive activation of the kinase. Three of the mutations we studied occur within the cystathionine beta-synthase (CBS) domains of gamma(2). Two of these mutations lead to a marked decrease in AMP dependence, whereas the third reduces AMP sensitivity. These findings suggest that the CBS domains play an important role in AMP-binding within the complex. In contrast, a fourth mutation, which lies between adjacent CBS domains, has no significant effect on AMPK activity in vitro. These results indicate that mutations in gamma(2) have different effects on AMPK function, suggesting that they may lead to abnormal development of the heart through distinct mechanisms.  相似文献   

9.
Substrate imbalance is a well-recognized feature of diabetic cardiomyopathy. Insulin resistance effectively limits carbohydrate oxidation, resulting in abnormal cardiac glycogen accumulation. Aims of the present study were to 1) characterize the role of glycogen-associated proteins involved in excessive glycogen accumulation in type 2 diabetic hearts and 2) determine if exercise training can attenuate abnormal cardiac glycogen accumulation. Control (db(+)) and genetically diabetic (db/db) C57BL/KsJ-lepr(db)/lepr(db) mice were subjected to sedentary or treadmill exercise regimens. Exercise training consisted of high-intensity/short-duration (10 days) and low-intensity/long-duration (6 wk) protocols. Glycogen levels were elevated by 35-50% in db/db hearts. Exercise training further increased (2- to 3-fold) glycogen levels in db/db hearts. Analysis of soluble and insoluble glycogen pools revealed no differential accumulation of one glycogen subspecies. Phosphorylation (Ser(640)) of glycogen synthase, an indicator of enzymatic fractional activity, was greater in db/db mice subjected to sedentary and exercise regimens. Elevated glycogen levels were accompanied by decreased phosphorylation (Thr(172)) of 5'-AMP-activated kinase and phosphorylation (Ser(79)) of its downstream substrate acetyl-CoA carboxylase. Glycogen concentration was not associated with increases in other glycogen-associated proteins, including malin and laforin. Novel observations show that exercise training does not correct diabetes-induced elevations in cardiac glycogen but, rather, precipitates further accumulation.  相似文献   

10.
5'-AMP-activated protein kinase (AMPK) is a metabolic stress sensor present in all eukaryotes. A dominant missense mutation (R225Q) in pig PRKAG3, encoding the muscle-specific gamma3 isoform, causes a marked increase in glycogen content. To determine the functional role of the AMPK gamma3 isoform, we generated transgenic mice with skeletal muscle-specific expression of wild type or mutant (225Q) mouse gamma3 as well as Prkag3 knockout mice. Glycogen resynthesis after exercise was impaired in AMPK gamma3 knock-out mice and markedly enhanced in transgenic mutant mice. An AMPK activator failed to increase skeletal muscle glucose uptake in AMPK gamma3 knock-out mice, whereas contraction effects were preserved. When placed on a high fat diet, transgenic mutant mice but not knock-out mice were protected against excessive triglyceride accumulation and insulin resistance in skeletal muscle. Transfection experiments reveal the R225Q mutation is associated with higher basal AMPK activity and diminished AMP dependence. Our results validate the muscle-specific AMPK gamma3 isoform as a therapeutic target for prevention and treatment of insulin resistance.  相似文献   

11.
12.
As AMP-activated protein kinase (AMPK) controls protein translation, an anti-hypertrophic effect of AMPK has been suggested. However, there is no genetic evidence to confirm this hypothesis. We investigated the contribution of AMPKα2 in the control of cardiac hypertrophy by using AMPKα2−/− mice submitted to isoproterenol. The isoproterenol-induced cardiac hypertrophy, measured by left ventricular mass and histological examination, was significantly higher in AMPKα2−/− than in WT animals. Moreover, the intensification of cardiac hypertrophy found in AMPKα2−/− mice can be linked to the abnormal basal overstimulation of the p70 ribosomal S6 protein kinase, an enzyme known to regulate protein translation and cell growth. In conclusion, this work shows that AMPKα2 plays a role of brake for the development of cardiac hypertrophy.  相似文献   

13.
Recent in vitro studies suggest that adenosine monophosphate (AMP)-activated protein kinase (AMPK) exerts inhibitory effects on cardiac hypertrophy. However, it is unclear whether long-term activation of AMPK will affect cardiac hypertrophy in vivo. In these reports, we investigate the in vivo effects of long-term AMPK activation on cardiac hypertrophy and the related molecular mechanisms. To examine the effects of AMPK activation in the development of pressure overload-induced cardiac hypertrophy, we administered 5-aminoimidazole 1 carboxamide ribonucleoside (AICAR, 0.5 mg/g body wt), a specific activator of AMPK, to rats with transaortic constriction (TAC) for 7 weeks. We found that long-term AMPK activation attenuated cardiac hypertrophy, and improved cardiac function in rats subjected to TAC. Furthermore, long-term AMPK activation attenuated protein synthesis, diminished calcineurin-nuclear factor of activated T cells (NFAT) and nuclear factor kappaB (NF-kappaB) signaling in pressure overload-induced hypertrophic hearts. Our in vitro experiments further proved that activation of AMPK by infection of AdAMPK blocked cardiac hypertrophy and NFAT, NF-kappaB, and MAPK signal pathways. The present study demonstrates for the first time that pharmacological activation of AMPK inhibits cardiac hypertrophy in through blocking signaling transduction pathways that are involved in cardiac growth. It presents a potential therapy strategy to inhibit pathological cardiac hypertrophy by increasing the activity of AMPK.  相似文献   

14.
Although a diminished ability of tissues and organisms to tolerate stress is a clinically important hallmark of normal aging, little is known regarding its biochemical basis. Our goal was to determine whether age-associated changes in AMP-activated protein kinase (AMPK), a key regulator of cellular metabolism during the stress response, might contribute to the poor stress tolerance of aged cardiac and skeletal muscle. Basal AMPK activity and the degree of activation of AMPK by AMP and by in vivo hypoxemia (arterial Po2 of 39 mmHg) were measured in cardiac and skeletal muscle (gastrocnemius) from 5- and 24-mo-old C57Bl/6 mice. In the heart, neither basal AMPK activity nor its allosteric activation by AMP was affected by age. However, after 10 min of hypoxemia, the activity of alpha2-AMPK, but not alpha1-AMPK, was significantly higher in the hearts from old than from young mice (P < 0.005), this difference being due to differences in phosphorylation of alpha2-AMPK. Significant activation of AMPK in the young hearts did not occur until 30 min of hypoxemia (P < 0.01), stress that was poorly tolerated by the old mice (mortality = 67%). In contrast, AMPK activity in gastrocnemius muscle was unaffected by age or hypoxemia. We conclude that the age-associated decline in hypoxic tolerance in cardiac and skeletal muscle is not caused by changes in basal AMPK activity or a blunted AMPK response to hypoxia. Activation of AMPK by in vivo hypoxia is slower and more modest than might be predicted from in vitro and ex vivo experiments.  相似文献   

15.
AMP-activated protein kinase (AMPK) plays a key role in modulating cellular metabolic processes. AMPK, a serine-threonine kinase, is a heterotrimeric complex of catalytic alpha-subunits and regulatory beta- and gamma-subunits with multiple isoforms. Mutations in the cardiac gamma(2)-isoform have been associated with hypertrophic cardiomyopathy and pre-excitation syndromes. However, physiological regulation of AMPK complexes containing different subunit isoforms is not well defined and is important for an understanding of the function of this signaling pathway in the intact heart. We evaluated the kinase activity associated with heart AMPK complexes containing specific alpha- and gamma-subunit isoforms of AMPK in an in vivo rat model of regional ischemia. Left coronary artery occlusion activated the immunoprecipitated alpha(1)-isoform (6-fold, P < 0.01) and alpha(2)-isoform (9-fold, P < 0.01) in the ischemic left ventricle compared with sham controls. The degree of alpha-subunit activation depended on the extent of ischemia and paralleled echocardiographic contractile dysfunction. The regulatory gamma(1)- and gamma(2)-isoforms were expressed in the heart. The gamma(1)- and gamma(2)-isoforms coimmunoprecipitated with alpha(1)- and alpha(2)-isoforms in proportion to alpha-subunit content. gamma(1)-Isoform immunocomplexes accounted for 70% of AMPK activity and AMPK phosphorylation (Thr(172)) in hearts. Ischemia similarly increased AMPK activity associated with the gamma(1)- and gamma(2)-isoform complexes threefold (P < 0.01 for each). Thus AMPK catalytic alpha(1)- and alpha(2)-isoforms are activated by regional ischemia in vivo in the heart, irrespective of the regulatory gamma(1)- or gamma(2)-isoforms to which they are complexed. Despite the pathophysiological importance of gamma(2)-isoform mutations, gamma(1)-isoform complexes account for most of the AMPK activity in the ischemic heart.  相似文献   

16.
Adenosine-induced acceleration of glycolysis in hearts stressed by transient ischemia is accompanied by suppression of glycogen synthesis and by increases in activity of adenosine 5'-monophosphate-activated protein kinase (AMPK). Because p38 mitogen-activated protein kinase (MAPK) may regulate glucose metabolism and may be activated downstream of AMPK, this study determined the effects of the p38 MAPK inhibitors SB202190 and SB203580 on adenosine-induced alterations in glucose utilization and AMPK activity. Studies were performed in working rat hearts perfused aerobically following stressing by transient ischemia (2 x 10-min ischemia followed by 5-min reperfusion). Phosphorylation of AMPK and p38 MAPK each were increased fourfold by adenosine, and these effects were inhibited by either SB202190 or SB203580. Neither of these inhibitors directly affected AMPK activity. Attenuation of the adenosine-induced increase in AMPK and p38 MAPK phosphorylation by SB202190 and SB203580 occurred independently of any change in tissue ATP-to-AMP ratio and did not alter glucose uptake, but it was accompanied by an increase in glycogen synthesis and glycogen content and by inhibition of glycolysis and proton production. There was a significant inverse correlation between the rate of glycogen synthesis and AMPK activity and between AMPK activity and glycogen content. These data demonstrate that AMPK is likely downstream of p38 MAPK in mediating the effects of adenosine on glucose utilization in hearts stressed by transient ischemia. The ability of p38 MAPK inhibitors to relieve the inhibition of glycogen synthesis and to inhibit glycolysis and proton production suggests that these agents may restore adenosine-induced cardioprotection in stressed hearts.  相似文献   

17.
Hypertrophic growth of the cardiomyocytes is one of the core mechanisms underlying cardiac hypertrophy. However, the mechanism underlying cardiac hypertrophy remains not fully understood. Here we provided evidence that G protein-coupled receptor 39 (GPR39) promotes cardiac hypertrophy via inhibiting AMP-activated protein kinase (AMPK) signaling. GRP39 expression is overexpressed in hypertrophic hearts of humans and transverse aortic constriction (TAC)-induced cardiac hypertrophy in mice. In neonatal cardiomyocytes, adenovirus-mediated overexpression of GPR39 promoted angiotensin II-induced cardiac hypertrophy, while GPR39 knockdown repressed hypertrophic response. Adeno-associated virus 9-mediated knockdown of GPR39 suppressed TAC-induced decline in fraction shortening and ejection fraction, increase in heart weight and cardiomyocyte size, as well as overexpression of hypertrophic fetal genes. A mechanism study demonstrated that GPR39 repressed the activation of AMPK to activate the mammalian target of rapamycin (mTOR) and ribosomal protein S6 kinase β-1 (S6K1), subsequently promoted de novo protein synthesis. Inhibition of mTOR with rapamycin blocked the effects of GPR39 overexpression on protein synthesis and repressed cardiac hypertrophy. Collectively, our findings demonstrated that GPR39 promoted cardiac hypertrophy via regulating the AMPK–mTOR–S6K1 signaling pathway, and GRP39 can be targeted for the treatment of cardiac hypertrophy.  相似文献   

18.
19.
AMP-activated protein kinase (AMPK) is a alphabetagamma heterotrimer that is activated in response to both hormones and intracellular metabolic stress signals. AMPK is regulated by phosphorylation on the alpha subunit and by AMP allosteric control previously thought to be mediated by both alpha and gamma subunits. Here we present evidence that adjacent gamma subunit pairs of CBS repeat sequences (after Cystathionine Beta Synthase) form an AMP binding site related to, but distinct from the classical AMP binding site in phosphorylase, that can also bind ATP. The AMP binding site of the gamma(1) CBS1/CBS2 pair, modeled on the structures of the CBS sequences present in the inosine monophosphate dehydrogenase crystal structure, contains three arginine residues 70, 152, and 171 and His151. The yeast gamma homolog, snf4 contains a His151Gly substitution, and when this is introduced into gamma(1), AMP allosteric control is substantially lost and explains why the yeast snf1p/snf4p complex is insensitive to AMP. Arg70 in gamma(1) corresponds to the site of mutation in human gamma(2) and pig gamma(3) genes previously identified to cause an unusual cardiac phenotype and glycogen storage disease, respectively. Mutation of any of AMP binding site Arg residues to Gln substantially abolishes AMP allosteric control in expressed AMPK holoenzyme. The Arg/Gln mutations also suppress the previously described inhibitory properties of ATP and render the enzyme constitutively active. We propose that ATP acts as an intrasteric inhibitor by bridging the alpha and gamma subunits and that AMP functions to derepress AMPK activity.  相似文献   

20.
AMP-activated protein kinase (AMPK) is a heterotrimeric complex that works as an energy sensor to integrate nutritional and hormonal signals. The naturally occurring R225Q mutation in the gamma3-subunit in pigs is associated with abnormally high glycogen content in skeletal muscle. Because skeletal muscle accounts for most of the body's glucose uptake, and gamma3 is specifically expressed in skeletal muscle, it is important to understand the underlying mechanism of this mutation in regulating glucose and glycogen metabolism. Using skeletal muscle-specific transgenic mice overexpressing wild type gamma3 (WTgamma3) and R225Q mutant gamma3 (MUTgamma3), we show that both WTgamma3 and MUTgamma3 mice have 1.5- to 2-fold increases in muscle glycogen content. In WTgamma3 mice, increased glycogen content was associated with elevated total glycogen synthase activity and reduced glycogen phosphorylase activity, whereas alterations in activities of these enzymes could not explain elevated glycogen in MUTgamma3 mice. Basal, 5-aminoimidazole-AICAR- and phenformin-stimulated AMPKalpha2 isoform-specific activities were decreased only in MUTgamma3 mice. Basal rates of 2-DG glucose uptake were decreased in both WTgamma3 and MUTgamma3 mice. However, AICAR- and phenformin-stimulated 2-DG glucose uptake were blunted only in MUTgamma3 mice. In conclusion, expression of either wild type or mutant gamma3-subunit of AMPK results in increased glycogen concentrations in muscle, but the mechanisms underlying this alteration appear to be different. Furthermore, mutation of the gamma3-subunit is associated with decreases in AMPKalpha2 isoform-specific activity and impairment in AICAR- and phenformin-stimulated skeletal muscle glucose uptake.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号