首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.

Background  

Domain fusion analysis is a useful method to predict functionally linked proteins that may be involved in direct protein-protein interactions or in the same metabolic or signaling pathway. As separate domain databases like BLOCKS, PROSITE, Pfam, SMART, PRINTS-S, ProDom, TIGRFAMs, and amalgamated domain databases like InterPro continue to grow in size and quality, a computational method to perform domain fusion analysis that leverages on these efforts will become increasingly powerful.  相似文献   

2.
3.
InterPro was developed as a new integrated documentation resource for protein families, domains and functional sites to rationalize the complementary efforts of the PROSITE, PRINTS, Pfam and ProDom database projects and has applications in computational functional classification of newly determined sequences lacking biochemical characterization and in comparative genome analysis. InterPro contains over 3500 entries, with more than 1000000 hits in SWISS-PROT and TrEMBL. The database is accessible for text- and sequence-based searches at http://www.ebi.ac.uk/interpro/. InterPro was used for whole proteome analysis of the pathogenic microorganism, Mycobacterium tuberculosis, and comparison with the predicted protein coding sequences of the complete genomes of Bacillus subtilis and Escherichia coli. 64.8% of the M. tuberculosis proteins in the proteome matched InterPro entries, and these could be classified according to function. The comparison with B. subtilis and E. coli provided information on the most common protein families and domains, and the most highly represented families in each organism. InterPro thus provides a useful tool for global views of whole proteomes and their compositions.  相似文献   

4.
5.
InterPro (http://www.ebi.ac.uk/interpro/) is an integrated documentation resource for protein families, domains and sites, developed initially as a means of rationalizing the complementary efforts of the PROSITE, PRINTS, Pfam and ProDom database projects. It is a useful resource that aids the functional classification of proteins. Almost 90% of the actinopterygii protein sequences from SWISS-PROT and TrEMBL can be classified using InterPro. Over 30% of the actinopterygii protein sequences currently in SWISS-PROT and TrEMBL are of mitochondrial origin, the majority of which belong to the cytochrome b/b6 family. InterPro also gives insights into the domain composition of the classified proteins and has applications in the functional classification of newly determined sequences lacking biochemical characterization, and in comparative genome analysis. A comparison of the actinopterygii protein sequences against the sequences of other eukaryotes confirms the high representation of eukaryotic protein kinase in the organisms studied. The comparisons also show that, based on InterPro families, the trans-species evolution of MHC class I and II molecules in mammals and teleost fish can be recognized.  相似文献   

6.
MOTIVATION: As databanks grow, sequence classification and prediction of function by searching protein family databases becomes increasingly valuable. The original Blocks Database, which contains ungapped multiple alignments for families documented in Prosite, can be searched to classify new sequences. However, Prosite is incomplete, and families from other databases are now available to expand coverage of the Blocks Database. RESULTS: To take advantage of protein family information present in several existing compilations, we have used five databases to construct Blocks+, a unified database that is built on the PROTOMAT/BLOSUM scoring model and that can be searched using a single algorithm for consistent sequence classification. The LAMA blocks-versus-blocks searching program identifies overlapping protein families, making possible a non-redundant hierarchical compilation. Blocks+ consists of all blocks derived from PROSITE, blocks from Prints not present in PROSITE, blocks from Pfam-A not present in PROSITE or Prints, and so on for ProDom and Domo, for a total of 1995 protein families represented by 8909 blocks, doubling the coverage of the original Blocks Database. A challenge for any procedure aimed at non-redundancy is to retain related but distinct families while discarding those that are duplicates. We illustrate how using multiple compilations can minimize this potential problem by examining the SNF2 family of ATPases, which is detectably similar to distinct families of helicases and ATPases. AVAILABILITY: http://blocks.fhcrc.org/  相似文献   

7.
PRINTS prepares for the new millennium.   总被引:7,自引:1,他引:6       下载免费PDF全文
PRINTS is a diagnostic collection of protein fingerprints. Fingerprints exploit groups of motifs to build characteristic family signatures, offering improved diagnostic reliability over single-motif approaches by virtue of the mutual context provided by motif neighbours. Around 1000 fingerprints have now been created and stored in PRINTS. The September 1998 release (version 20.0), encodes approximately 5700 motifs, covering a range of globular and membrane proteins, modular polypeptides and so on. The database is accessible via the DbBrowser Web Server at http://www.biochem.ucl.ac.uk/bsm/dbbrowser /. In addition to supporting its continued growth, recent enhancements to the resource include a BLAST server, and more efficient fingerprint search software, with improved statistics for estimating the reliability of retrieved matches. Current efforts are focused on the design of more automated methods for database maintenance; implementation of an object-relational schema for efficient data management; and integration with PROSITE, profiles, Pfam and ProDom, as part of the international InterPro project, which aims to unify protein pattern databases and offer improved tools for genome analysis.  相似文献   

8.
The ProDom database of protein domain families.   总被引:12,自引:1,他引:11       下载免费PDF全文
F Corpet  J Gouzy    D Kahn 《Nucleic acids research》1998,26(1):323-326
The ProDom database contains protein domain families generated from the SWISS-PROT database by automated sequence comparisons. It can be searched on the World Wide Web (http://protein.toulouse.inra. fr/prodom.html ) or by E-mail (prodom@toulouse.inra.fr) to study domain arrangements within known families or new proteins. Strong emphasis has been put on the graphical user interface which allows for interactive analysis of protein homology relationships. Recent improvements to the server include: ProDom search by keyword; links to PROSITE and PDB entries; more sensitive ProDom similarity search with BLAST or WU-BLAST; alignments of query sequences with homologous ProDom domain families; and links to the SWISS-MODEL server (http: //www.expasy.ch/swissmod/SWISS-MODEL.html ) for homology based 3-D domain modelling where possible.  相似文献   

9.
InterPro, an integrated documentation resource of protein families, domains and functional sites, was created in 1999 as a means of amalgamating the major protein signature databases into one comprehensive resource. PROSITE, Pfam, PRINTS, ProDom, SMART and TIGRFAMs have been manually integrated and curated and are available in InterPro for text- and sequence-based searching. The results are provided in a single format that rationalises the results that would be obtained by searching the member databases individually. The latest release of InterPro contains 5629 entries describing 4280 families, 1239 domains, 95 repeats and 15 post-translational modifications. Currently, the combined signatures in InterPro cover more than 74% of all proteins in SWISS-PROT and TrEMBL, an increase of nearly 15% since the inception of InterPro. New features of the database include improved searching capabilities and enhanced graphical user interfaces for visualisation of the data. The database is available via a webserver (http://www.ebi.ac.uk/interpro) and anonymous FTP (ftp://ftp.ebi.ac.uk/pub/databases/interpro).  相似文献   

10.
11.
InterPro, an integrated documentation resource for protein families, protein domains, and functional sites, was developed to amalgamate the individual efforts of the PROSITE, PRINTS, Pfam, and ProDom databases. InterPro can be used for the computational functional classification of newly determined amino acid sequences that lack biochemical characterization and for comparative genome analysis. InterPro contains over 3500 entries for more than 1 000 000 hits in SWISS-PROT and TrEMBL. The database is accessible for text-and sequence-based searches at http://www.ebi.ac.uk/interpro/. InterPro was used for the complete analysis of the proteome of the pathogenic microorganism Mycobacterium tuberculosis and the comparison with the predicted protein-coding sequences of the complete genomes of Bacillus subtilis and Escherichia coli. It was found that 64.8% of proteins in the proteome of M. tuberculosis matched InterPro entries and can be classified by their functions. The comparison with B. subtilis and E. coli provided information on the most common protein families and domains and on the most highly represented protein families in each organism. Thus, InterPro is a useful tool for general comparison of complete proteomes and their compositions.  相似文献   

12.
13.
MOTIVATION: Since protein domains are the units of evolution, databases of domain signatures such as ProDom or Pfam enable both a sensitive and selective sequence analysis. However, manually curated databases have a low coverage and automatically generated ones often miss relationships which have not yet been discovered between domains or cannot display similarities between domains which have drifted apart. METHODS: We present a tool which makes use of the fact that overall domain arrangements are often conserved. AIDAN (Automated Improvement of Domain ANnotations) identifies potential annotation artifacts and domains which have drifted apart. The underlying database supplements ProDom and is interfaced by a graphical tool allowing the localization of single domain deletions or annotations which have been falsely made by the automated procedure. AVAILABILITY: http://www.uni-muenster.de/Evolution/ebb/Services/AIDAN. SUPPLEMENTARY INFORMATION: Supplementary data are available at Bioinformatics online.  相似文献   

14.
Increased coverage of protein families with the blocks database servers   总被引:34,自引:0,他引:34  
The Blocks Database WWW (http://blocks.fhcrc.org ) and Email (blocks@blocks.fhcrc.org ) servers provide tools to search DNA and protein queries against the Blocks+ Database of multiple alignments, which represent conserved protein regions. Blocks+ nearly doubles the number of protein families included in the database by adding families from the Pfam-A, ProDom and Domo databases to those from PROSITE and PRINTS. Other new features include improved Block Searcher statistics, searching with NCBI's IMPALA program and 3D display of blocks on PDB structures.  相似文献   

15.
InterProScan is a tool that scans given protein sequences against the protein signatures of the InterPro member databases, currently--PROSITE, PRINTS, Pfam, ProDom and SMART. The number of signature databases and their associated scanning tools as well as the further refinement procedures make the problem complex. InterProScan is designed to be a scalable and extensible system with a robust internal architecture. AVAILABILITY: The Perl-based InterProScan implementation is available from the EBI ftp server (ftp://ftp.ebi.ac.uk/pub/software/unix/iprscan/) and the SRS-basedInterProScan is available upon request. We provide the public web interface (http://www.ebi.ac.uk/interpro/scan.html) as well as email submission server (interproscan@ebi.ac.uk).  相似文献   

16.
We present the development of a Comprehensive database of 12 076 invariant Peptide Signatures (CoPS) derived from 52 bacterial genomes with a minimum occurrence in at least seven organisms. These peptides were observed in functionally similar proteins and are distributed over nearly 1250 different functional proteins. The database provides function, structure and occurrence in biochemical pathways of the proteins containing these signature peptides. It houses additional information on the signature peptides, such as identical match in other motif/pattern (e.g. PROSITE, BLOCKS, PRINTS and Pfam) databases and the database of interacting proteins, human proteome and mutation effect on these signature peptides. There is a wide applicability of this database in the identification of critical functional residues in proteins. The database also facilitates the identification of folding nucleus/structural determinants in proteins and functional assignment to yet unknown proteins. We demonstrate functional assignment to 2605 hypothetical proteins in bacterial genomes and 112 unknown proteins in human using this database. AVAILABILITY: The database can be freely accessed through the following URL: http://203.195.151.46/copsv2/index.html or http://203.90.127.70/copsv2/index.html  相似文献   

17.
The PredictProtein server   总被引:6,自引:0,他引:6       下载免费PDF全文
Rost B  Liu J 《Nucleic acids research》2003,31(13):3300-3304
PredictProtein (PP, http://cubic.bioc.columbia.edu/pp/) is an internet service for sequence analysis and the prediction of aspects of protein structure and function. Users submit protein sequence or alignments; the server returns a multiple sequence alignment, PROSITE sequence motifs, low-complexity regions (SEG), ProDom domain assignments, nuclear localisation signals, regions lacking regular structure and predictions of secondary structure, solvent accessibility, globular regions, transmembrane helices, coiled-coil regions, structural switch regions and disulfide-bonds. Upon request, fold recognition by prediction-based threading is available. For all services, users can submit their query either by electronic mail or interactively from World Wide Web.  相似文献   

18.
Liu F  Baggerman G  Schoofs L  Wets G 《Peptides》2006,27(12):3137-3153
Bioactive (neuro)peptides play critical roles in regulating most biological processes in animals. Peptides belonging to the same family are characterized by a typical sequence pattern that is conserved among the family's peptide members. Such a conserved pattern or motif usually corresponds to the functionally important part of the biologically active peptide. In this paper, all known bioactive (neuro)peptides annotated in Swiss-Prot and TrEMBL protein databases are collected, and the pattern searching program Pratt is used to search these unaligned peptide sequences for conserved patterns. The obtained patterns are then refined by combining the information on amino acids at important functional sites collected from the literature. All the identified patterns are further tested by scanning them against Swiss-Prot and TrEMBL protein databases. The diagnostic power of each pattern is validated by the fact that any annotated protein from Swiss-Prot and TrEMBL that contains one of the established patterns, is indeed a known (neuro)peptide precursor. We discovered 155 novel peptide patterns in addition to the 56 established ones in the PROSITE database. All the patterns cover 110 peptide families. Fifty-five of these families are not characterized by the PROSITE signatures, and 12 are also not identified by other existing motif databases, such as Pfam and SMART. Using the newly identified peptide signatures as a search tool, we predicted 95 hypothetical proteins as putative peptide precursors.  相似文献   

19.
Scale-free behavior in protein domain networks   总被引:9,自引:0,他引:9  
Several technical, social, and biological networks were recently found to demonstrate scale-free and small-world behavior instead of random graph characteristics. In this work, the topology of protein domain networks generated with data from the ProDom, Pfam, and Prosite domain databases was studied. It was found that these networks exhibited small-world and scale-free topologies with a high degree of local clustering accompanied by a few long-distance connections. Moreover, these observations apply not only to the complete databases, but also to the domain distributions in proteomes of different organisms. The extent of connectivity among domains reflects the evolutionary complexity of the organisms considered.  相似文献   

20.
The structure of many proteins consists of a combination of discrete modules that have been shuffled during evolution. Such modules can frequently be recognized from the analysis of homology. Here we present a systematic analysis of the modular organization of all sequenced proteins. To achieve this we have developed an automatic method to identify protein domains from sequence comparisons. Homologous domains can then be clustered into consistent families. The method was applied to all 21,098 nonfragment protein sequences in SWISS-PROT 21.0, which was automatically reorganized into a comprehensive protein domain database, ProDom. We have constructed multiple sequence alignments for each domain family in ProDom, from which consensus sequences were generated. These nonreduntant domain consensuses are useful for fast homology searches. Domain organization in ProDom is exemplified for proteins of the phosphoenolpyruvate:sugar phosphotransferase system (PEP:PTS) and for bacterial 2-component regulators. We provide 2 examples of previously unrecognized domain arrangements discovered with the help of ProDom.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号