首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The d-xylose isomerase activity was assayed spectrophotometrically as NADH oxidation in a coupled reaction with the d-arabitol dehydrogenase. The assay system is based on the following reactions:

d-Arabitol dehydrogenase was purified from the d-sorbitol-grown cells of Agrobacterium tumefaciens. The standard assay condition is as follows: 5 μmoles of Tris-HCl buffer (pH 7.0), 0.2 μmole of MnCl2, 2 μl of reduced glutathione (25 mg/ml), 0.05 μmole of NADH, 6 units of d-arabitol dehydrogenase, 5 μmoles of d-xylose and d-xylose isomerase in a total volume of 0.30 ml. The reaction was carried out at 30°C. With the assay system, it was confirmed that d-xylose isomerase did not produce d-xylulose from d-lyxose.  相似文献   

2.
Poly-beta-hydroxybutyric acid (PHB) was produced from xylose and lactose by using Pseudomonas cepacia. Approximately 50% PHB (grams of PHB total/grams of biomass total) was produced. With a laser-based fluorescent probe, beta-galactosidase activity was shown to be induced in P. cepacia cells grown on lactose but not in those grown on glucose or xylose. P. cepacia has the potential to produce biodegradable thermoplastics from hemicellulosic hydrolysates and cheese whey.  相似文献   

3.
Previously a cyclic pathway for the partial oxidation of propionyl-CoA to pyruvate has been proposed. Enzymatic evidence for the presence of the key reactions involved in this pathway is described and discussed herein. The condensation of propionyl-CoA with oxaloacetate into methylcitrate is shown to be catalyzed by an enzyme contained in cell-free extracts of Candida lipolytica; the enzyme seems to differ from the usual citrate synthase. Methylcitrate is easily convertible to a mixture of C7-acids by the action of cell-free extract of the mutant strain. On the other hand, a similar mixture is changed into pyruvate and succinate by the action of cell-free extract of the parent strain. Evidence is given that methylisocitrate, one of the products of the conversion, is mainly cleaved by the action of an additional enzyme other than the usual isocitrate lyase. The accumulation of methylisocitrate in a large amount from odd-carbon n-alkanes by the mutant strain can be safely ascribed to the absence or a low level of this enzyme in the mutant strain.  相似文献   

4.
The immobilization of asparatase-containing Escherichia coli was investigated by various methods, and the most active immobilized cells were obtained by entrapment in a polyacrylamide gel lattice. Other asparatase-containing bacteria were also entrapped by the same method, and the enzymatically active immobilized cells were obtained. The aspartase activity of the immobilized E. coli cells was increased nine- to tenfold by autolysis of the cells entrapped in the gel lattice. Enzymatic properties of the immobilized E. coli cells were investigated and compared with those of the intact cells. The optimal pH was 8.5 for the immobilized cells and 10.5 for the intact cells. The aspartase activities of immobilized and intact cells were not activated by Mn(2+), which can activate the immobilized and native aspartases. The heat stability of the immobilized cells was somewhat higher than that of the intact cells. Bivalent metal ions such as Mn(2+), Mg(2+), Ca(2+) protected against thermal inactivation of the aspartase activity of the immobilized and intact cells.  相似文献   

5.
d-Xylulose, an intermediate of d-xylose catabolism, was observed to be fermentable to ethanol and carbon dioxide in a yield of greater than 80% by yeasts (including industrial bakers' yeast) under fermentative conditions. This conversion appears to be carried out by many yeasts known for d-glucose fermentation. In some yeasts, xylitol, in addition to ethanol, was produced from d-xylulose. Fermenting yeasts are also able to produce ethanol from d-xylose when d-xylose isomerizing enzyme is present. The results indicate that ethanol could be produced from d-xylose in a yield of greater than 80% by a two-step process. First, d-xylose is converted to d-xylulose by xylose isomerase. d-Xylulose is then fermented to ethanol by yeasts.  相似文献   

6.
Poly-β-hydroxybutyric acid (PHB) was produced from xylose and lactose by using Pseudomonas cepacia. Approximately 50% PHB (grams of PHB total/grams of biomass total) was produced. With a laser-based fluorescent probe, β-galactosidase activity was shown to be induced in P. cepacia cells grown on lactose but not in those grown on glucose or xylose. P. cepacia has the potential to produce biodegradable thermoplastics from hemicellulosic hydrolysates and cheese whey.  相似文献   

7.
The enzymatic preparation of laminaribiose was investigated in this research. When curdlan was hydrolyzed with the β-1,3-glucanase system of Streptomyces sp. K27-4, the hydrolyzate mainly consisted of glucose and laminaribiose in an approximate ratio of 1:1 by weight. Yeast strains selected in this study, effectively and selectively metabolized all of the glucose in the hydrolyzate, without any degradation of laminaribiose.

By successive treatment of curdlan with the glucanase system and glucose-metabolizable yeast, 31 g of crystalline laminaribiose was obtained from l00g of curdlan.  相似文献   

8.
酶法制备荷叶黄酮苷元的研究   总被引:1,自引:0,他引:1  
利用微生物产生的β-葡萄糖苷酶水解荷叶黄酮苷成苷元型黄酮,可以提高黄酮的生物活性.本文通过单因素和正交试验考察了pH值、温度和酶/底物比对酶解效率的影响,并运用HPLC-MS对酶解前后的产物进行了分析.结果表明:pH值为4.5,温度为45℃,酶/底物为3:1时酶解效率最高.在此条件下,25 mL荷叶黄酮苷在6.5 h可以酶解完全.LC-MS分析表明酶解产物中槲皮素含量达到75.34%,其它苷元型黄酮含量比较低.  相似文献   

9.
The characteristic mode for the herbicidal action of 2-amino-3-chloro-1,4-naphthoquinone (ACN) was investigated by using autotrophic green microalgae (Scenedesmus acutus). The effects of ACN on the growth, chlorophyll content, protoporphyrin-IX accumulation, and ethane production in Scenedesmus cells were measured in comparison with three reference herbicides, i.e., ioxynil, dinoseb, and chlorophthalim. ACN appeared to have a different mechanism for action from these three herbicides. S. acutus cells grown with ACN produced ethane, but the mechanism for its production is considered to have been different from that of chlorophthalim. ACN may inhibit porphyrin biosynthesis at a different stage from that by chlorophthalim.  相似文献   

10.
酶法细胞破碎技术不仅能提高胞内产物的提取效率、降低能耗,还能减少化学试剂的用量,更有利于环保。主要介绍酶法破碎细菌、真菌、微藻、原生菌类等微生物细胞的研究进展、工业化情况以及应用展望。  相似文献   

11.
The conversion of d-xylose to ethanol by the yeast Pachysolen tannophilus is relatively inefficient in batch culture. The inefficiency has been attributed in part to concurrent utilization of ethanol in the presence of appreciable concentrations of d-xylose and to the formation of xylitol and other by-products. To increase the concentration of ethanol accumulated in batch cultures, UV-induced mutants of P. tannophilus were selected on the basis of diminished growth on ethanol. Eleven independent mutant loci that conferred the ethanol-defective phenotype were identified. Three led to a greater yield and volumetric rate of production of ethanol than the wild type. One also produced less xylitol and was characterized by a deficiency in activity for malate dehydrogenase.  相似文献   

12.
微生物酶法转化生产L-肉碱的研究进展   总被引:1,自引:0,他引:1  
L -肉碱作为一种新型的营养强化剂和临床药物 ,广泛应用于医疗、保健、食品等领域。L- 肉碱的生产方法有化学合成、微生物发酵、微生物酶法转化等 ,其中微生物酶法转化被认为是一种最经济且最有前途的方法。就 3种酶法转化 (DL -肉碱衍生物的酶法拆分、巴豆甜菜碱的酶法转化、D- 肉碱的酶法转化 )的微生物产酶菌株、产酶条件和酶法转化的最适条件作一概述。  相似文献   

13.
An alkalophilic Bacillus No. KX-6 isolated from soil produced a d-xylose isomerase in alkaline media. The striking characteristic of this bacterium was its especially good growth in alkaline media. The d-xylose isomerase of this bacterium was purified by ammonium sulfate fractionation, DEAE-Sepharose ion exchange column chromatography and G-200 gel Alteration. The molecular weight and sedimentation constant were approximately 120,000 and 9.35 S, respectively. The enzyme was most active at pH 7~10 and was stable at pH 6.0 to 11.0. Enzyme activity was stimulated by cobalt ion but inhibited by Hg2 +, Ag2 +, and Cu2 +. Substrate specificity studies showed that this enzyme was active on d-xylose, d-glucose, d-ribose, and d-arabinose. The smaller Km value and larger Vmax value for d-xylose indicated that this enzyme is essentially d-xylose isomerase.  相似文献   

14.
从多糖提取后的紫皮石斛(Dendrobium devonianum Paxt.)渣上分离到一株能够水解石斛多糖的菌株,为丰富寡糖食品新原料种类,对该菌株的发酵产酶活性进行分析。利用酶法制备紫皮石斛寡糖,并进行小试和中试,采用硅胶柱色谱对寡糖进行初步分离,PMP衍生化后通过HPLC分析单糖组成。结果表明,水解石斛多糖的菌株为粗糙脉孢菌(Neurospora crassa)。该菌株液态发酵至第4天酶活最高,为0.1 U/μL,最佳酶解时间为24 h,粗酶液能够耐受30%的乙醇。通过粗酶液生物转化石斛多糖的小试和中试成功制备了大量的石斛寡糖,并对各组分进行了初步分离,单糖组成分析表明其主要由甘露糖组成,并含有少量的葡萄糖或果糖。通过粗糙脉孢菌酶法制备得到的紫皮石斛寡糖主要为甘露寡糖。  相似文献   

15.
Most intestinal absorption tests require collections of stool or urine. Measuring the five-hour urinary excretion of D-xylose presents difficulties in very young subjects; catheterization may be required for accurate collections, and xylose excretion may depend on the volume of urine excreted during the test.In this study, D-xylose absorption was measured by the blood tolerance curve, and the determination of D-xylose concentration in whole blood was adapted to a microtechnique. Butter-fat absorption was determined by the timed change in serum turbidity after an oral dose of 0.5 g. butter-fat/kg. (as 15% cream). It was possible to administer the D-xylose (1.1 g./kg.) and butter-fat together without significant interference by either substance with absorption of the other. Both determinations could then be performed on capillary blood samples obtained by finger-prick at timed intervals. Results in normal subjects and in malabsorptive states indicate that the method provides a valuable screening procedure and a useful measure of progress during therapy.  相似文献   

16.
Type strains of 200 species of yeasts able to ferment glucose and grow on xylose were screened for fermentation of d-xylose. In most of the strains tested, ethanol production was negligible. Nineteen were found to produce between 0.1 and 1.0 g of ethanol per liter. Strains of the following species produce more than 1 g of ethanol per liter in the fermentation test with 2% xylose: Brettanomyces naardenensis, Candida shehatae, Candida tenuis, Pachysolen tannophilus, Pichia segobiensis, and Pichia stipitis. Subsequent screening of these yeasts for their capacity to ferment d-cellobiose revealed that only Candida tenuis CBS 4435 was a good fermenter of both xylose and cellobiose under the test conditions used.  相似文献   

17.
Cytidine is an industrially useful precursor for the production of antiviral compounds and a variety of industrial compounds. Interest in the microbial production of cytidine has grown recently and high-throughput screening of cytidine over-producers is an important approach in large-scale industrial production using microorganisms. An enzymatic assay for cytidine was developed combining cytidine deaminase (CDA) and indophenol method. CDA catalyzes the cleavage of cytidine to uridine and NH3, the latter of which can be accurately determined using the indophenol method. The assay was performed in 96-well plates and had a linear detection range of cytidine of 0.058 - 10 mM. This assay was used to determine the amount of cytidine in fermentation flasks and the results were compared with that of High Perfomance Liquid Chromatography (HPLC) method. The detection range of the CDA method is not as wide as that of the HPLC, furthermore the correlation factor of CDA method is not as high as that of HPLC. However, it was suitable for the detection of large numbers of crude samples and was applied to high-throughput screening for high cytidine-producing strains using 96-well deep-hole culture plates. This assay was proved to be simple, accurate, specific and suitable for cytidine detection and high-throughput screening of cytidine-producing strains in large numbers of samples (96 well or more).  相似文献   

18.
A method was developed for the large scale preparation of uridine diphosphate-N-acetylgalactosamine (UDP-GalNAc) from uridine diphosphate-N-acetylglucosamine (UDP-GlcNAc) by means of microbial enzymes. With Bacillus subtilis cell-free extract as a source of UDP-GlcNAc 4-epimerase, about 35% of the UDP-GlcNAc added was converted to UDP-GalNAc. After the residual UDP-GlcNAc was degraded to uridine triphosphate and N-acetylglucosamine-1-phosphate with a protamine-treated extract of bakers' yeast as a source of UDP-GlcNAc pyrophosphorylase, UDP-GalNAc was separated by anion-exchange column chromatography. The nucleotide was recovered by adsorption on charcoal and elution with ammoniacal ethanol. The final yield was about 100 μmol.  相似文献   

19.
近十几年来,新型功能糖产业得到了快速发展,不仅生产规模有了大幅增加,而且越来越多具有特殊营养与保健功效的新型功能糖被开发出来。目前,微生物与酶技术的突破是开发新型功能糖的关键,尤其是分子生物学手段的使用,大大加快了新产品的开发速度,改善了功能糖产品的应用性能,引领行业技术发展的趋势。本文介绍微生物酶与技术在氨基葡萄糖、海藻糖、L-阿拉伯糖、低聚半乳糖及异麦芽酮糖等新型功能糖开发中的应用状况。  相似文献   

20.
Appropriate care for bacteremic patients is dictated by the amount of time needed for an accurate diagnosis. However, the concentration of microbes in the blood is extremely low in these patients (1–100 CFU/mL), traditionally requiring growth (blood culture) or amplification (e.g., PCR) for detection. Current culture-based methods can take a minimum of two days, while faster methods like PCR require a sample free of inhibitors (i.e., blood components). Though commercial kits exist for the removal of blood from these samples, they typically capture only DNA, thereby necessitating the use of blood culture for antimicrobial testing. Here, we report a novel, scaled-up sample preparation protocol carried out in a new microbial concentration device. The process can efficiently lyse 10 mL of bacteremic blood while maintaining the microorganisms’ viability, giving a 30‑μL final output volume. A suite of six microorganisms (Staphylococcus aureus, Streptococcus pneumoniae, Escherichia coli, Haemophilus influenzae, Pseudomonas aeruginosa, and Candida albicans) at a range of clinically relevant concentrations was tested. All of the microorganisms had recoveries greater than 55% at the highest tested concentration of 100 CFU/mL, with three of them having over 70% recovery. At the lowest tested concentration of 3 CFU/mL, two microorganisms had recoveries of ca. 40–50% while the other four gave recoveries greater than 70%. Using a Taqman assay for methicillin-sensitive S. aureus (MSSA)to prove the feasibility of downstream analysis, we show that our microbial pellets are clean enough for PCR amplification. PCR testing of 56 spiked-positive and negative samples gave a specificity of 0.97 and a sensitivity of 0.96, showing that our sample preparation protocol holds great promise for the rapid diagnosis of bacteremia directly from a primary sample.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号